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Quantum Theory of Measurement and
Macroscopic Observables')

by Klaus Hepp

Physics Department, ETH, 8049 Ziirich, Switzerland

Abstract. The generation of probabilities from probability amplitudes in a quantum mechanical
measurement process is discussed in the framework of infinite quantum systems. In several explicitly
soluble models, the measurement leads to macroscopically different ‘pointer positions’and toarigor-
ous ‘reduction of the wave packet’ with respect to all local observables.

1. Introduction

The interpretation of quantum mechanics is one of those philosophical problems
which no physicist can completely avoid. It is naive to expect that quantum mechanics
as a mathematical model will determine its own interpretation. However, there is the
inexplicable fact that aspects of our world are explainable in mathematical terms (i.e.
that there exists a morphism from mathematical models on experimental data). Hence
we have to proceed in the general spirit: ‘Erst die Theorie entscheidet, was man
beobachten kann’ [11].

In our modest contribution, which does not claim any originality, we shall discuss
some explicitly soluble dynamical models for measurement processes in which prob-
ability amplitudes evolve into probabilities. We shall base our discussion on the
quantum theory of systems with infinitely many degrees of freedom, developed during
the past decade by Araki, Haag, Kastler, Kadison, Lanford, Robinson, Ruelle, Segal
and many others. We believe that our discussion follows closely the pragmatic attitude
of an experimental physicist. In fact, we are inspired by the manifestly macroscopic
slits, clocks and pointers with which Bohr has so beautifully discussed many of the
puzzles of quantum mechanics [2].

The essential points of this paper have been explained to the author with great
patience by M. Fierz and R. Jost. To them as well as to S. Coleman, O. Steinmann,
A.S. Wightman and M. Winnink we are much indebted for stimulating discussions.

2. Statement of the Problem

In ordinary quantum mechanics, the pure states of a system are the unit raysin a
separable Hilbert space and the mixed states or ensembles the density matrices P on
S . The observables correspond to bounded hermitean operators 4 on#°, and the time
evolution is given by a continuous 2-parameter family of unitary ‘propagators’ U(¢,s).

) This paper is dedicated to Professor M. Fierz on the occasion of his sixtieth anniversary. It is
a personal, but not a comprehensive review of the quantum theory of measurement.
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Finally, for every state P and observable A, one defines the expectation value of 4 in
P to be

(A>p = Tr(PA). (2.1)

If A=>a,E, has a spectral decomposition {E,} which is purely discrete, then (2.1)
becomes

<A>P =5 zanpn
pa=Ti(PE) >0, Sp,=L. (2.2)

The following morphism between this mathematical model and the experimental
data of physics is commonly accepted:

A. The measured values of 4 are the eigenvalues a,.

B. If the state P is an eigenstate of A with eigenvalue a,, P = PE,, then 4 hasin P
the value a,.

C. If Pisamixture of eigenstates P, of 4, P=J3 4. P, P, =P, E,. §,50 3b,—1,
then A has in P the value a, w1th probability 2,.

From (A), (B) and (C) we shall give strong evidence that (2.2) has the following
probability interpretation:

D. There exist quantum mechanical measurement processes (in which the system is
coupled to an apparatus with a large number of degrees of freedom) where, when 4
is measured in a general state P, the resulting state is an incoherent superposition
of states, where A has the value a,, with the probability Tr(PE,).

As an abstraction of the Stern-Gerlach experiment (SG), von Neumann [24] has
given the following model of a ‘measurement of the first kind’ for Tr(PE,): Let, for
simplicity, the state space H s of the system be two-dimensional, J# 5= C2. The
states s, = (§) and _ = (}) are eigenstates for ¢ with eigenvalues +1 and projectors
P, By(C),c 3 has the values +1 with probabilities p, inthestate P=p, P, +p_P_.In
the coherent superposition ¢ =c, ¢, + c_ip_ with ‘probability amplitudes’ c,€C
satisfying |c, |2 + |c_|?> =1, ¢® has no definite value. In the measurement the system is
coupled to an apparatus with state space # ,. Assume that the latter is initially in the
state gy and the combined system in the state ¢, ® ¢y €H#s ® H# 4 (in SG, ¢, are
spin eigen-states and ¢, the coordinate wave function). By a well-chosen interaction
(in SG the passage through an inhomogeneous magnetic field [8]), the combined system
makes the transition

Y ® o =P @ @y (2.3)

Here ¢, € 5, correspond to some big pointer with two well-separated positions (in
SG the splitting of the position of a heavy particle). If (2.3) is the effect of some unitary
time evolution U, then one arrives at the ‘cat paradox’ [21] by linearity:

Uler by +o_3p) @ po—>cothy @ py+c_p_ ® p_. (2.4)

Von Neumann [24] and Wigner [26] have argued that only after the interaction of
system and apparatus with the conscious ego the coherent superposition (2.4) acquires
a definite pointer position, with relative frequencies |c,|?and |c_|? in a series of identical
experiments. This solipsistic point of view is philosophically tenable and experimentally
not refutable. However, the majority of the physicists adhere to the following more
pragmatic interpretation of (2.4) (see e.g. [8, 18]): After a measurement of o¢® in
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¢+, + c_y_, onearrivesat (2.4), which—due to the macroscopic difference between the
two pointer states ¢, with projectors Q .—for all feasible experiments on the combined
system, can be identified with the mixture

e Py ®Qu+[c_[2PP_®Q_. (2.5)

The replacement of (2.4) by (2.5) will be called the ‘reduction of the wave packet’.
Since quantum mechanics does not predict in general the outcome of single events, the
further reduction from (2.5) to P, ® Q., if the pointer position is read in a single ex-
periment, is a pragmatic subjective act. Due to the absence of phase relations in the
splitting (2.5), this further reduction is not in conflict with the laws of quantum
mechanics, but it will not concern us in the sequel.

In this way, the experimental state-of-the-art defines the admissible pointers for a
measurement. If o < #(H#g x H# ,) corresponds to the set of all feasible observations,
then (2.3) is a measurement of o3, if

W ® e AY_ @ ¢_) =0 (2.6)

for all A e 7. In other words, (2.4) and (2.5) are equivalent with respect to &7 [12].
The following example is due to Jauch:

Example 1. Let # = ,=C? and &/, be the diagonal matrices in the basis

{¢.}. Then .5 ® ¥, , — .5 ® W, , is a measurement with respect to & = Z(Hs) ®
"

In order to go beyond formal mathematical arguments, one has to analyse realistic
models of measurement and to find a natural set of observables .o and time evolutions,
with respect to which an objectification of a microevent is realized through different
pointer positions. For this purpose we have first to understand the notion of coherence
for large quantum systems.

3. Coherence and Classical Observables

In this section we shall formulate the quantum theory of measurement within the
algebraic approach to systems with infinitely many degrees of freedom. We shall re-
phrase and recapitulate a number of mathematical facts (most of them from [6]) which
clarify the notion of coherence of states. It is very satisfactory that in this quantum
mechanical description of a microsystem coupled to a macroscopic apparatus, the
coherent superposition of states and their incoherent mixture can become equivalent
with respect to all quasilocal observables, when some classical observable assumes
different values in these states.

General formalism: We assume that the set of observables of the system generates
a C*-algebra &/ with unit. The set S(27) of all positive linear functionals w on &/ with
w(1) =1 contains all states of the system. Every w € S(&/) gives rise to a representation
m,, of & in a Hilbert space S#,, with cyclic vector ¢,

For wy, w,€S() and A, A, >0, A + A, =1, the incoherent superposition
w=Aw, +Aw, eS() is always meaningful and has the interpretation (C). If
w,, w, are vector states for some representation 7 of & (w; = w(y;) o 7, P, €,
1 =1,2), then one can form

= + Mo/[[hy + M| (3.1)
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for all A € C, for which ¢, + A, # 0. However, it is p0551ble that (3.1) as a state ongi is
always identical with the incoherent superposition (1 + |A|?) 1w, + |A|2(1 + |A]?)~

This phenomenon occurs, when w, and w, are disjoint, i.e. when no subrepresentation of
7, 1S unitarily equivalent to any subrepresentation of =, :

Lemma 1. w,,w, € S(¥) are disjoint, if and only if for every representation m of o4
with w; = w({;) o m for some Y, € H#,, i=1,2, one has

(), m(A)h,) =0 for all A e . (3.2)

Proof If the =, are subrepresentations of = and E, € m(2/)’ the projectors on

/) p; with central supports F; e Z (n(f)’) satistying FE; = E,, then disjointness is
equlvalent to F, F, =0, hence E 1E, =0 and thus (3.2). In the converse case, there

exists a representation 7 with two equivalent subrepresentations acting on the same
subspace. Then (3.2) does not hold.

If w, and w, are not disjoint, they are called coherent. Let 7 be such that, for
1, € # , and w; = w(y,) o 7, 7(F)y, is not orthogonal to m(#)y,. Then we can form
the coherent superposition w(}) o 7 of w, and w, using (3.1). Clearly, every pair
1,4, € S is coherent with respect to Z(#°). On the other hand, the states of a living
and a dead cat with 108 disintegrated neurons should be rightfully described by disjoint
states. In the following section we shall construct models for measurement processes,
where different pointer positions are disjoint states for a rather big natural algebra of
observables. An automorphism « € Aut(2/) of ./ is a 1-1-mapping of ./ onto & which

preserves the algebraic structure. The following trivial consequence of Lemma 1 will
have far-reaching implications:

Lemma 2. If w,,w, € S(&F) are disjoint and « € Aut(F), then w, 0 e and w, 0 o are
disjoint.

While coherence cannot be destroyed by an automorphic time evolution during the
measurement process, we shall find in section 4 sequences w, ,, w, , of coherent states
which converge weakly in S(%), w; , 7 w;, towards disjoint states w;, w,. In this case,
all cross-terms (2.6) converge to zero:

Lemma 3. Consider sequences w; , w> w;, 1 =1,2, with w,, w, disjoint. Let , be
vepresentations of o and s, , € H, with w; = w(; ,) © my, i =1,2. Then, forall A e o
}'1_)12 (l/}l o Tn (A)¢’2,n) =0, (33)

Proof: If w,(A*A) =0, then
|(‘)l’l Ry ¢2 n |2 W)y n A*A) — 0. (34)

Otherwise, W) n (A*A) # 0 for sufficiently large #, and w4 , = w; ,(4*(*)4)/w; ,(4* A)
€ S(&). Then wf , 7> w4 and, since w, and w, are disjoint, w; and w3 are disjoint. Hence
|w; — w%]| =2 [7]. By the weak continuity of the norm one obtains

4 <« "wl no w’?,n”z <4- 4| (‘/’1 o T (A)‘lbl,n) |2/"77n (A)'tl'2,nuz <4 (3'5)
and (3.4) holds.
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Lemma 4. Let w; = Z;?:l Ai"wi", Ail‘l = 0, Z:)=1 A'-n =1 fO?‘ 'l:-"—"— 1,2, a%d let Wim and
wy, € S(F) be disjoint for all m,n. Then w, and w, are disjoint,

Proof: The m,, are unitarily equivalent to a subrepresentation of @, , and those
are disjoint.

An interesting class of states are the primary states w, where (%)’ N 7, ()"
= {Al}. If w,,w, € S(&¥) are primary, then either w, and w, are disjoint or quasiequiva-
lent [13]. Let ¢, 4, be orthogonal vector states in 5#,, with projectors £, E, and with w
primary. Then w(y,) and w(y),) are coherent, and the measurement problem for
A=aE,+a,E, is well-posed and non-trivial.

Quasilocal and classical observables: For infinite systems it has been powerfully
argued by Haag and Kastler [9] that the algebra of observables.2/ has a quasilocal struc-
ture in the following sense: There exists a set & of bounded regions A € R?, such that
Ug A =R3; for A', A" € D there exists some A € P with 4> A’ U A”; and for every
/A € 2 there exists some A’ € 2 with 4 N A’ = ¢. For every A € & there should exist a
C*-algebra o7 () with unit satisfying

HA) A (A for A< A"

[ (A),A(A)] =0 forANA"=¢ (3.6)

Ug & (A) norm-dense in &7.

The classical observables of the system do not necessarily belong to .o7. They are sup-
posed to correspond to operations which can be made outside of any bounded set. For
A € D let o (A) be the C*-algebra generated by all &7(A') with A’ e Zand AN A" = ¢.
Let 7 be a representation of &/. Then

&L, =Ng m(N)" (3.7)

is called the algebra of observables at infinity in the representation = [15]. Since £,
lies in the center of #(27)’, it is abelian, which is a necessary prerequisite for a set of
classical observables.

Special observables at infinity are the macroscopic observables. For any sequence
A, € D converging to infinity (i.e. almost all 4, lie outside of any bounded region), let
A, el (A,) with |4,]| < b uniformly in #. Let 7 be a representation of .o/. If

L
w—}llil;xo = w(d,) =4 (3.8)

n=1

exists, then 4 € &Z,,. A state w € S(%/) has short range correlations [15], if &, = {Al} or,
equivalently, if for every 4 €./ and € > 0 there exists a region 4 € & such that

|w(4 B) — w(d)w(B)| < |Ble (3.9)
for all B .o/ (A). Every primary state has short range correlations.

Lemma 5. Let w have short range correlations and let {A, € o/ (A,)} be as in (3.8). If

1
lim Z w(d,)=a (3.10)

n=1



242 Klaus Hepp H.P. A.

exists, then one has in H#,,

1 N
w-lim — A,) =a. 3.11
52 Tl =a 3.11)

Now
n=1

Proof: Since N713%_ a (A4,) is uniformly bounded, it suffices to prove (3.11)
between a dense set of states. We show that for any A4, € Z and any 4 € & (4,),

N

1
im — * - *A).
%’l_r)l:’ = _lw(A A, A) =aw(A* A) (3.12)

Given A e 7(A,) and € > 0, we choose A, € Z such that (3.9) holds. For some M,
A e (A,) NoF(A,), whenever n> M. Hence, by locality, for N > M:

1 & M 1<
‘N Zw(A*A,,A) - aw(A*A)Ié_%]— |a|w(A* A) +_I\7,,Z lw(A* 4, A)]

n—1
+l%iw(z‘1n) —a

M+1

lw(A*A)| +be  (3.13)

For primary states w;, w,, the existence of a macroscopic observable with different
expectation value in w, and w, entails disjointness:

Lemma 6. Let w,,w, € S(&) be primary and {A, € & (A,)} be as in (3.8). If

1 .
thlei(A,,)=a,, i=12, (3.14)

Noow

and a, # a,, then w, and w, are disjoint.

Proof: By Lemma 5, N™' 3V _,m, (4,) w a;. If w; and w, are not disjoint, then
Ty, < Ty, OF 7,,, < 7, . In the latter case, there exists a projector E € =, (#/)’, such that
T, (A) =m, (A)E for all 4 €.o/. Hence a,E = a, and thus a, = a,.

We see, how differences in the expectation values of macroscopic pointers lead to
disjointness. Only with a measurement apparatus with infinitely many degrees of free-
dom can one have a non-trivial quasilocal algebra. For infinite systems, there are many
other mechanisms which entail disjointness. For instance, two KMS-states w,, w, for
different temperatures 7';, 7', are disjoint, if one of them is primary of type III [23].
Again, type III factors only occur in infinite systems.

Product states for quantum spin systems: The above mathematical results will be
applied to the quasilocal algebra .27,,,, of infinitely many spin 1/2 systems C? at lattice
sitesm=1, 2, . ... A pure state |¢) in C2 is characterized by a unit vector ¢ € R? with
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o-ele) = |e). Two product states in @2, C2, |¢!)y = ®X_,|el), have a scalar product [25]
N
v ) n|? =TT (1 +ewel)/2
n=1
<exp (- 3 b= clP/4) < exp (NI~ R 3.15

where fye = >N_,e,/NV/2%€, The estimate (3.15) leads to

Lemma 7. Let |e) = Q. |el), i =1, 2, be product states on S ;,, such that for
some € > 0

Lim (fye ~fid) =d #0. (3.16)

Then |e!) and |¢?) are weakly inequivalent and hence disjoint.

For product states we obtain disjointness under weaker assumptions than (3.14).
This has been used in [19] for the construction of a pointer. It is reassuring to learn
from (3.15) that the finite approximations of the infinite system satisfy

|n(e!]|A|e?) n|> = O(exp — N2¢||d||?/4) (3.17)

uniformly for all 4 e Z(®QY , C2), | 4| <1 and M fixed, if N — . Hence macroscopic
differences between product states imply a rapidly decreasing overlap for all finite
approximations. The coherence is prohibitively weak, if—as in a laboratory experi-
ment—the number of degrees of freedom is large.

4. Models for Measurement

We turn to the construction of time evolutions which transform a coherent pair of
initial states of the combined system into a disjoint pair of final states. The state space
of the micro-system will always be a separable Hilbert space # s with all hermitean
operators in #(#5) as observables. The observable to be measured will always be o®.
As apparatus we choose either a quantum spin system ., or a continuous fermion
system & ;. Let o7 be the algebra of observables of the combined system. Then the time
evolution can be chosen to be either a continuous 2-parameter family o, € Aut (%), or
a non-automorphic strongly continuous family U(¢,s) of unitary operators in a fixed
representation 7, or even a discontinuous unitary family. The more singular time
evolutions are admitted, the easier it will be to arrive at disjointness.

Automorphic time evolutions: Here the main obstacle is Lemma 2, which is often
circumvented by a time average. For instance, let .o/ = #(C?) and «, = exp(ia*?)(.)
exp(—io®l) € Aut(). If w,=w(f,) and w=w(), Y=c, ¥, +c_p_, then (2m)!
[§7dtw o «, = |c;|>w, + |¢c|*w_. We do not, however, accept the ergodic mean [5, 16]
as a fundamental solution to the problem of the reduction of wave packets. The first
and trivial solution in our spirit are time evolutions a,, € Aut(%/), such that for s =
1, 2 lw; 0 oys 3> @; for £ — o, where w, and w, are coherent and @, and @, disjoint.
For non-conservative forces this can be easily achieved:
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Example 2 (development of a photo-emulsion). Let #s= C3, # 4= ®2.,C2 and
o =l pinonallsitesn =0, 1, 2, . . .. The state b} could represent an AgBr molecule
at the site #» and ¢» an Ag atom. The ‘development’ at # should only act for 2n7 < ¢
< (2n+1/2)m,n=1,2, ..., and only under the catalytic action of a ‘germ’ 45 at 0. This
is described by the time-dependent Hamiltonian

Pyol, 2nm<t<(2n+1/2 n=12 ...
Hpy={ ° . ( AT (4.1)
0, otherwise

(4.1) has the propagator U(¢,s) = exp? [! drH(r) € &/ and leads to the automorphism
os = U(2,5)(.)U(s,?). Furthermore,

U(o,t)¢+o§1¢:;>¢ ® s ="
U045 & ¥ 3§75 & s = ¢~ (42)

for ¢ — o, and w(y*) and w(y~) are pure and macroscopically different, hence disjoint.
By (3.17), a developed silver grain with 10!? atoms is an excellent approximation to an
infinite pointer.

For conservative forces it is less interesting to study the weak convergence of
w o o, for £ — «. More physical, in the Spirit of scattering, is the convergence of the
Interaction picture time evolution @ o a, 0 a?,. Here «, is the evolution of the interact-
ing micro- and macro-system and «? the free evolution. The following model has found
some interest in solid state physxcs [17]:

Example 3 (X-ray edge). Let # = C? and of 5= (C?). Let &, =47, be the
C*-algebra of the canonical anticommutation relations over L2(R*) [20]. Let u > 0 and
ol € Aut(2) be the automorphism generated by

H, = f A%k (B2 — p)a* (K)a(k) (4.3)

in the Fock representation. Let «, € Aut(&/) be similarly generated by
H=Hy+ PV
V =a*(ga(g) e 4 (4.4)

where g € #(R%) and P~ € Z(C?) is the projector on i_. As the initial state of the ap-
paratus we choose the ground state w, of H, (minus an infinite self-energy):

@o (a* (fm) - - -a*(f1)a(g)) . . . a(g,)) = Smadet[(f;, 4g))] (4.5)
where 4:L2(R3) — L%(R%) is an integral operator with the kernel

A(p.q) =0 —p*)8(p —9)-

Let w* = P* ® wq Then w* 0 a, 0 &%, = w™, while w™ 0 &, 0 «?,(4) can be computed
from (4.5) and the time evolution

a(f) — a(e7M ethot f) — (2, f) for t — co. (4.6)
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Here h and ho are the 1-body operators corresponding to Hy + V and Hy, and £, is the
unitary wave operator in L?(R3) with the kernel

g(P)*g(q)

Q+(P:€)=3(P—9)—m h(g?)
o[y _ [ 2ple@) \
h(g?) (1 Jgr_pt_m . (4.7)

Hence w™ 0 o, 0 &%, 5> P~ ® w, where w is the ground state of Hy + ¥ (minus an infi-
nite self-energy) and has the form (4.5) with 4 replaced by 2% AQ.. By a theorem of
Powers and Stermer [20], the pure states wy and w (and hence P* ® wpand P~ ® w)
are unitarily equivalent, if and only if 4 — Q% A4Q, (or 2,4 — AR,) is a Hilbert-
Schmidt operator. The kernel of 2,4 — AL, is

g(p)*g(@)h(g?)
PP—g>+i0

The square integral of (4.8) diverges. Hence w, and w are disjoint, and the X-ray edge
acts as a measuring apparatus. The initial state P* ® w, can be viewed as the equi-
librium state at 7 = 0 of a non-interacting electron gas in a conduction band with an
occupied impurity level. In P~ ® w, the impurity is ejected (by an X-ray), and here
all electrons have a 1-body interaction with the hole. In the latter situation, P~ ® w
is the equilibrium state, which by (4.6) is the weak limit for  — + of P~ @ wg 0 «,
o a?,. w differs from wy by an excitation of infinitely many particles and holes with
probability one [3].

This is an infrared divergence, without a macroscopic difference in the sense of
section 3. We remark that by Lemma 3 all the cross-terms converge to zero. An
explicit proof of this fact is quite difficult: While the Heisenberg picture time evolution
o, 0 &2, operates as a l-body operator on the test functions, the evolution
exp (tHt)exp(—Hyt) is a many-body operator in the wg-representation. A similar
apparatus using bosons can be constructed with the Blanchard model [1].

(O — p?) — O — %) (4.8)

Example 4 (Coleman model). One can also obtain the transition (4.2) by a time-
translation invariant automorphism e, = «,_;: Consider on L?(R!) ® ®2.,C2 the
operators

Hy=p, H=Ho+V, V=3 V(ix—n)ok (4.9)
n=1

Here V is real, continuous, of compact support with [dx V(x) = 7/2. The Dyson equa-
tion for U(f) = exp (tHyt) exp (—H{) is

U@:l—iJhVMU@
0

V(s) =exp(tHys)Vexp (—iHys) = > V(x + s — n)ok. (4.10)

n=1
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(4.10) has the solution
! @
U(f) =exp (~i Ids DVix+s— n)o}.) . (4.11)
0 n=1

One sees that (4.11) leaves L2 (/) ® ®;.; C2invariant, if / is any bounded open interval
in R!. Let s#5 = L2(I) ® C? with projectors P* on ¢, € C?, and let &7 , =27 ;,. The
interaction picture evolution &, o &2, = W(£)(.)W(£)*,

W) =P+ + P~ U(t) e (4.12)

is automorphic for all £, As initial states we choose ¥ ® ¢, ® ¢,, where y € L?(I),
o* ¢, =+, and where the apparatus state ¢, has all spins up or down. Since I and
supp(V) are bounded, there exists some N and some unitary U €./ such that

U(wo)=U Ii[l or

N Lo o]
U=(]]o})exp (—z’fds
n=1 n

0
Hence as states on 27 one obtains essentially (4.2):

Wiy ® ¢+ R pr=x ®¢'+ X @i
Wthx ®y_ Q. 57 U @ ¢_ ® ¢.). (4.14)

By Lemma 4, it is not necessary to start with the pointer in a pure state. In the incom-
plete tensor product to ¢, the states ¢, = U,@, with local unitary U, € o/, are total.
Instead of starting from w(gp,), we could take w = > P, w(p,). Then w(y @ ¥_) @ w
would converge weakly to w(y ® ¢_) ® > ppo(V np_), with local unitary V,, € ;.
By Lemma 4, this pointer position would be disjoint from w(y ® ¢,) ® w.

The Coleman model can be considered as a caricature of an electron in one-
dimensional motion, whose spin is measured by the result of a local interaction with an
infinite spin array.

z

Vix+s— n)cr,l,) (4.13)
1

I

Non-automorphic time evolutions: In Example 1 the evolution is not an auto-
morphism of the algebra of observables. However, it can be accomplished by a strongly
continuous group of unitary time translations in ##g ® 5 4. If one wants a measure-
ment which leads to macroscopically different pointer positions in finite times, then the
unitary time evolution is so discontinuous that it has no Hamiltonian:

Example 5 (big bang). Let #' s = Ciand # , = @2, C2 witho/ , = .. Let U(H):
H 4 — H 4 be defined by linear extension of

Ul(t) él Pn =,§1(BXP (ioht)i,). (4.15)

Then W(f) = P* + P~ U(f) is unitary on S#. If one takes as initial states ¢, ® ¢, with
all apparatus spins pointing up, then the pure states W(t), ® ¢, are macroscopically
different in arbitrarily short times earlier and later. A boson model of somewhat similar
structure has been discussed by Primas [19].



Vol. 45, 1972 Quantum Theory of Measurement and Macroscopic Observables 247

5. Conclusion

The solution of the problem of measurement is closely connected with the yet
unknown correct description of irreversibility in quantum mechanics. In the framework
of infinite systems we were able to analyse some models for measuring processes, which
are not manifestly in contradiction with physical and mathematical common sense.

We have shown, without using any averaging procedure, that coherent states of a
quantum system coupled to a quantum apparatus can split into disjoint states. For
non-catastrophic time evolutions one has to wait infinitely long in order to arrive at
those macroscopic changes which destroy all phase relations for local observables. The
introduction of an asymptotic condition into measurement theory is as natural as else-
where in microphysics, where S-matrix theory is sometimes considered as the ultimate
receptable of all physics.

It is gratifying that time is two-sidedly unbounded for { — . Hence the same
mechanism which we have employed for measurement can also be used for the prepara-
tion of the system, in the sense of the following diagram [14]:

- (NN -~

o— o

t—> —o0 t—=>+oco

preparation evolution measurement

For practical purposes it is not necessary to pass to infinite systems and times.
However, one has to establish the existence of the limits N — « and { — « and the
disjointness of the resulting states of the system and apparatus, in order to be sure that
in the finite approximations the error can be made arbitrarily small for sufficiently large
N and f. We also note the direction of time in the above diagram : while the automorphic
evolution between finite times is reversible, it is precisely the irreversibility in the limit
of infinite times which reduces the wave packets.
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