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Definition of Green’s Functions for Dilute Fermi Gases
by David Ruelle

I1.H.E.S,, 91, Bures-sur-Yvette, France

(20. XI. 71)

Abstract. The infinite volume limit is shown to exist for Green’s functions of a large class of dilute
Fermi gases. In particular, this gives meaning to the time evolution of the corresponding infinite
systems.

I started struggling to understand statistical mechanics about ten years ago in
Zurich, with the kind help of M. Fierz and R. Jost. It is nice to remember these discus-
sions which Fierz insisted to have in German—after a few minutes German was replaced
by Schwytzer-Diitsch. Few mathematically solid results were then known about
thermodynamic limits, correlation functions, reduced density matrices, etc. Now,
‘rigorous results’ have become an industry but I hope that M. Fierz will find some
pleasure in looking at this note dedicated to him on his sixtieth birthday.

It was shown in a recent note [6] that Ginibre’s work on the reduced density mat-
rices of quantum gases [3], [4] can be used to discuss the existence and analyticity of
Green’s functions. Here we sharpen the results of [6] in the case of Fermi systems. In
particular the time correlation functions are seen to be well defined in the limit of an
infinite volume for a dilute Fermi gas.

Green’s functions are defined by

GH®) = Z' Tr(A, e Ce~iHad, . e Cm~im-DHaf o~ B+l1~{mHa)
where H 4 is the Hamiltonian for a bounded region A of R*, Z =Tr ¢ BHA A, is either
[dx di(x)a(x) or [dx,(x)a*(x), and ¢, € L2(R*)!). We have used the notation
C=( ...l d=(d;, ... ¢, andassumed that{ e Z,

F={C:Rel < " <Reln<Rel +p}

For a system of particles interacting through a suitable pair potential @,2) and for
small activity, the operator ¢ ¥4, with A >0, may be defined in terms of Wiener

') More generally one could take

4, = f diy. . A2y @Yy Y ulErs - o a T Y1y - YA E) - (5 a(31) - (v
where ¢, € L}(R*?*9), see [6].
?)  Ginibre’s conditions [4] are (A), (B) of the theorem below and
(©) f | P(x)|dx < + o for some C > 0.
|x|>¢

We shall replace (C) by the stronger requirement
(C) @e LY (R*) N L(R).
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integrals and is of trace class (see Ginibre [1]). The operators 4,e *#4 can also be ex-
pressed in terms of Wiener integrals and are of trace class.

When A is complex and ReA > 0, e"*H4 is defined and analytic, therefore G% is an
analytic function of the complex variables {;, = 8, — if; in the domain

D={CB< ' <Bu<Bi+B

If e and ¢, = - -+ =1, Ginibre’s analysis shows that G4 tends to a limit when
A — ©.3) From this the following result can be deduced (see [6]):

There exists a function G® analytic in & and such that
lim G3(®) = 6*(©) m
uniformly on compacts with respect to § € 9.

The theorem below shows that G%(%) has a limit G® when 4 — o« and ¥ is in the

closure 2 of 2. This defines infinite volume Green’s functions for real times and not
just {e 2.

Theorem. Let @:R” — R satisfy the following conditions

(A) D is even (D(x) = P(—x)) and continuous for x # 0
(B) @ is stable
(C) [|DP(x)|dx < +oo, [|DP(x)|?dx < +oo

For a Fermi system with pair potential @ at small activity, G® extends to a bounded
continuous function on L such that

lim G4(0) = G*(Y)
uniformly on the compacts of 9.

We decompose the proof in several steps

Lemma 1. Let #, be defined by

M= CG§ZB3"Bs>§,ﬁ4—Bz>S:-'-

B

g
n

BB > ﬁ+ﬁl—ﬁm_l>§,

For sufficiently large A, G is bounded on M, uniformly with respect to § and A; if ¢y
is of class C2 with compact support, the same is true of 0 G%4/0 . Furthermore G tends to a
limit G® uniformly on the compacts of M, when A — .

B+B— ot

If L € .#, G% can be expressed in terms of operators

8["""(1"4")'9"!4Ak(t,'bk)e_"" H, ., elteHa Ak(¢k)e—[itk+(1/4n)ﬁm4 ,

3)  The bounded open A < R" form a directed set, when ordered by inclusion. We let lim G, when
A — « be by definition the limit of the directed family (G ).
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and e~*a with 0 < A < B. Using Hélder’s inequality ) we find an upper bound for |G|
in terms of the expressions

Z7VTr(e”/4BH A, () Ax(hy)* e~V AMBHA)]
and

Z1 Tr[(e*(1/4n).8HAAk(¢k)* Ak(¢k)e—(l/4n)ﬁH4)n]

These expressions are known to have a limit when A — . This proves the uniform
boundedness of |G%(%) ]

The derivative 3G%/d {, is obtained by replacing 4,(¢,) by [4(¢s), H 4] in the ex-
pression of G%. One is thus brought to considering the expression

Z7H Tel (e VAWPHALA (), H Al[Ak(), H aI" e™V/4mBH )] (2)

or a similar one with [4,(¢,), H 4] replaced by [4,(¢,), H 4J*. Since ¢, is of class C? with
compact support, the commutator of 4,(¢,) with the kinetic energy part of H ,is again
of the form A(¢). The potential energy part of H , is

~ f dx f dy D(x — y)a*(x)a*(y)a(x)a(y)

and its commutator with A (¢,) is

- I a f dy (%) P(x — y)a*(x)a*(y)a(y)

or
~ [ax [dy u(x)D(x — y)a*(y)a(x)a(5).

We insert these expressions in

[4i(be), H Al Ax(hs), H 4"

and use the anticommutation relations to put the annihilation operators a to the right
and the creation operators a* to the left (Wick ordering). A number of terms are thus
obtained which are conveniently described by diagrams; they are integrals of Wick
ordered products a*(x,) . . . a(x,) multiplied by continuous functions ¢(x;), and the pair
potential D(x; —x)). The pair potential appears as factor 0, 1, or 2 times. If
®(x, — x;) appears there also appears a factor ¢(x;) or ¢(x,); for each variable x; which
does not appear in a factor @(x; — x,) there is a factor ¢(x;). Inserting now in (2) we
obtain a sum of terms which are integrals of reduced density matrices multiplied by
factors ¢(x,) and D(x, — x;) as described above. Using the condition (C’) of the theorem,
and the fact that the reduced density matrices are bounded functions, uniformly in /A
[3],°) we obtain a bound on (2) which is independent of A. This gives the desired
boundedness of 9G%/d¢,.

The C? functions with compact support are dense in L2. Therefore we may assume
that ¢, . . ., ¢, are C2 with compact support in proving that G4 tends to a limit G* uni-
formly on the compacts of #, when /1 — . Since the G% and their derivatives dG%/d {,
are uniformly bounded, this results from G({) — G*({) for { € 2 (see (1)).

%) See[2] Lemma XI, 9-20, p. 1105.
) An easy extension of Ginibre’s results is actually needed at this point.
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Lemma 2. Let & be given and A, chosen sufficiently large. We assume that 1 <l < m,
that K is compact in R and that {,_,, . . ., {, are fixed such that

O0<Rel < - <ReC,,,<.§

Given € > 0, there exists & > 0 such that

IG%(_@GI, o .,—1:9!, CI-F.[’ - gm) —_ Gz(_igl, v i .,—7:91__1, gl’ I gm)l <€ (3)
whenever A > Ay, and 0,, {; satisfy 0, € K, |{; +10,] <6, 0 <Re{,<Rel,,,.
Furthermore, GY(—if,, ..., —il,, {ipy, - - ., L) has a limit GHy(—if,, ..., —i0,,

Livts o o L) when A — o, uniformly for (8,, . .., 8;) e K.

We have
|GH(—i0,,. . ., =0, Lirre v o L) — GH(—10,, . . ., —i0,_1, Ly - - ., L)
_ IZ_l TI’[AI ei(az_el)HA P Al—l
X (ei(el—eg_l)HAAl e—(Cz+1+i91)H4 — e“(Cl‘{’wH])HAAle-(§;+|_Cl)HA)
X Apyq. - g—(Cm-Cm-l}HAAmg—(ﬂ—w:—Cm)HA]|
< XY

where
X2=Z1Tr(ePHA2 A ' O2O0Ha 4, A . . g"1@2-00H4 47 ~PHA2)

< (144l - - - 4l)?
Y2 =[F({, {) — F(§, —i6,) — F(—i8,, ;) + F(—i6,, —6))]
F(u,v) = Z7' Tr[e~B2-i01i-tw* Ha g* = A% e Crni=9*Ha g}

X eCu¥-0Ha 4 =G0l 4 o Ay e B127101-Cm A

1+1-

and (3) results from Lemma 1.

We prove now the convergence of G4(—:0,, . . ., —0,, {;4y, . - -, {m) When 4 — .
For [ =1 this is again a consequence of Lemma 1. For the general case we use induction
on I. By the compactness of K, given 8 > 0, there exist {, . . ., {*’ with the following
properties

a) 0<Rel¥<Rel,,,
b) for each §, € K there is a 7 such that

|5D + 16, < 8.

By the first part of the lemma we have thus

lGﬁ(—iel,. . .,""1/'8,, C!+l" . ey Em) “"‘“G%("—f:el,- . .,—-7:9;__1, C}J), Cl" s sy Cm)[ <€.
On the other hand the induction assumption implies that, for (6,, . . ., 8,_,) € K*"! and
A sufficiently large, we have

IG%(—@BI, § & "—7:91__1, gSJ’)’ ey CM) b Gg_l)(_iel, i .,—1:0!_1, CSJ), ey Cm)| < €.

The uniform convergence of G4(—if,, . . ., =0, {41, - - ., {,) follows.
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Proof of the Theorem

Since the functions G4 are analytic in Zand bounded continuous in &, it is easily
seen that uniform convergence on the compacts of the distinguished boundary &

implies uniform convergence on the compacts of 2. The distinguished boundary is
defined by

y———og’,
I=1

5”:={§2R6C;= -+ =Rel;, Re{;,;=---=Rel,=Rel, +B}.

Therefore by Lemma 2 we have uniform convergence on the compacts of & when
A — o, and the theorem is proved.

Remark on time evolution

It is known that for certain quantum lattice systems, time evolution can be
described by automorphisms of a ‘standard’ C*-algebra (see [5]). In this note we prove
only the existence of Green’s functions (a similar result is known for a large class of
lattice systems [7]). It is probable that time evolution cannot be described here by auto-
morphisms of the C*-algebra of canonical anticommutation relations, and it is unclear
if it is given by automorphisms of its weak closure. For further considerations on this
problem see [1].
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