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Exchange Induced Correlations

by W. Baltensperger

Theoretical Physics, ETH, Honggerberg, 8049 Ziirich, Switzerland

(12. 1. 72)

Abstract. An explicit variational many body wave function, which contains correlations
between Fermions of opposite spin, is discussed. Energetically it profits from the off-diagonal ex-
change part of a repulsive interaction. In a simple model the state can only exist, if the product of the
exchange integral and the level density exceeds 3. The spectrum of the single particle excitations
has a gap, which does not occur for certain double excitations. It is suggested that the theory applies
to the 34 band of ferromagnetic transition elements, since it leads to a reduced observed band width
and a majority spin polarisation of photo electrons.

1. The Variational Ansatz

Fermion states automatically contain a correlation: identical particles of equal
spin are never at the same place. The basic example for this is the Hartree-Fock
configuration

c:o' Cja’ e |O> (1)

|0> is the vacuum state. ¢, creates a fermion with spin o = =+1 in the orbital ¢, (r).!)
Fermion operators anticommute:

+ + + + _
Cag Cba e Cho Cag = O! Cag Cpo o+ Cho’ Cag = 8ab 800" (2)

The spatial correlation is not immediately evident in the second quantized formulation
(1), as it is in the equivalent Slater determinant. Wigner [1] has shown that it is feasible
to write down states in the space representation which describe correlations also between
particles of opposite spin. The surprisingly simple state introduced by Bardeen, Cooper
and Schrieffer [2]

1;[ (g + 2 Oy €2y [0 (3)

O<u, ve<l, ud+ol=1 | ' (4)

reproduces correlations which occur in superconductors. This result was reached at a
price: the state (3) does not belong to a fixed number of particles. In solid state applica-
tions, where the number of electrons is large, this defect is insignificant. The observables
conserve the number of electrons and their matrix elements connect amplitudes which
belong to the same number of particles. The fluctuation is of order 4/N,, where N is the

') In non-magnetic materials the orbitals do not depend on the spin: g,,(r) = @,(r).
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number of electrons in the coherence region in which 0 < v, < 1. In this narrow fluctua-
tion range the properties of the amplitudes are practically constant.

Encouraged by the capabilities of (3) it is tempting to discuss the following
Ansatz [3-5]:

|')b> = H (ua‘r + Vgt c:f)(ual + Uqy c:l)|0> (5)

0 <ty Vag <1, thgo + 056 =1. (6)

We shall assume that the pairs of brackets follow in some random fashion in (5) ; often
there is no natural sequence of orbitals anyway. Also we shall suppose that different
orbitals have random phase relations. These requirements together with the reality of
the amplitudes u,,, v,, reduce most matrix elements to spurious terms.

In the state (5) not only the number of particles, but also the z-component of the
total spin fluctuate. We shall discuss states with given mean value of S* and since our
Hamiltonian will commute with this variable, we regard the fluctuation as a defect of
the Ansatz. The total x-component of spin S* connects amplitudes of different 2-
component of spin ; hence the non-vanishing value of {|S*|¢> is unphysical, just as the
expectation value of a pair creation operator is zero in an exact theory of super-
conductivity.

2. Expectation Values

a) [¢) is normalized:

Wl =TT (g +viq) = 1. (7)

ag

b) <‘/’|C;?|'1l’> = Upt Ups ld_I (u,%a = vﬁa) ~ 0.

The product extends over all orbitals which are situated to the left of the orbital &
in (5). Excluding a few cases of b which are insignificant, the product contains a
large number of factors smaller than one, so that it can be neglected. In the pure
Hartree-Fock state, in which each v,, equals zero or one, the factor u,, v,, vanishes.
Thus

Shlega |y =0, <hlep|$h> =0. (8)
) <leto Caolh> = Bpa o | (9)
Here terms with b # d are spurious. v2, is the mean occupation of the one particle
state bo.
d)  Plegs CaolPd = Bpads (10)
Ap = Upy Uyt Up) Vp) . (11)

A, is a measure of the extent to which the orbital 4 is used coherently in the state
[>. The maximum value A, = 0.25 is reached for v}, = v}, = 0.5.

e) <'p|°;1 C:1|'/1> = <¢'|cd1 ch1&/1> = Opa Ap- (12)
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f) The expectation value of any product of operators c..and ¢ with an odd number of
factors is spurious. Only the expectation values of even products in which the
orbitals occur pairwise count. There is also a product of four operators which
belong to one orbital:

<¢|C;rcb1 Ciﬂ Cb1l’/’> = 'Uzzar 7)%1- _ (13)

A -

— —0,5

Figure 1
Occupation probability »2 and coherence parameter A as functions of a dimensionless Hartree

energy. [ — ok = 7, (46), v2 from (48), x = 0.2].
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3. Density Correlations
The density operator for particles with spin o is:
= 2, Pir (%) Poa (X) 2 oo (14)
Thus
o (X = {po (x)> = 2. |Pao (%)|* v2- (16)

In the case of plane waves ¢ ,(x) =V ~!2exp (ik-X), normalized for a volume V, the
particle density remains homogeneous in the state |¢).

# (pgx)pgyrly)?

(x —y)

Figure 2
Correlations between particles of equal and opposite spin (schematic).

The density-density correlation for particles with equal or opposite spin is:
<¢'|Pa (X)po- (¥) |'/’> = bZ i Pac (X) Ppa(X) Por (¥)Pao- ( <¢"Caa Cho Clo’ Cao- |’l’> (16)

For o = ¢’ non spurious terms arise from @ = b, ¢ = d and a = d, b = c¢. With the help of
the completeness relation >, ¢ (X)@,, (¥) = (X — ¥) these combine to:

Plpe (X)po (V) [ = {ps (X)><ps (¥)) + 8(x—¥)<p, (X)) — |v3 (X, ¥) |2 (17)

where

.v?. X y Z (Pba ‘Pba (Y) vga' (18)
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For x =1y the last term cancels the first ; it represents the ‘Fermi hole’. With plane waves
for ¢y, (X) the function v2 (X, y) = v2 (x — y)is the Fourier transformed of vZ,. It typically
extends over a distance, which is reciprocal to the highest occupied wavenumber.

For o# o' the contributions to (16) come from the terms a=10b, c=d and
a=d#b=c:

Plpo(X) po (N> = {pe (X)) p_o (¥)> — |AX, ¥)]2 + Z |Pao (O[] pu_ ()22 (19
with
Alx,y) = Z Py (X)Pas (¥) Aa- (20)

The last term in (19) corrects for @ = d = b = ¢ which is included in the second; it can be
neglected when the orbitals are extended waves. The terms a = ¢, b = 4 lead to sums

Z (Pao ‘Pa—a (¥) A (21)

which are spurious, since the phases of different orbitals are assumed to be random.
The state |¢)> thus describes a negative correlation —|[A(X,y) |2 between particles of
opposite spin, which is determined by the occupation probabilities v2,. In the non-
magnetic case, U, =v,; =v,, we have A, =v2u2 <vZ. The correlation hole therefore
cannot be as deep as the Fermi hole for x = y.

4. The Energy

We consider a system of electrons with a Hamiltonian of the form

H= Z Tab C:a Cha + % Z Wabcd Caa o’ Cco’ Cdo (22)
a,b,o a,b,c,d, 0,0’
where, in order to avoid cumbersome notation, the matrix elements refer to a spin inde-
pendent system of orbitals g,, (X)= @, (x). The expectation value {|H |y involves
only the diagonal ‘kinetic energy’

Tp=T, (23)
the ‘Coulomb coupling between two orbitals’

W abba = Usap (24)
and the corresponding exchange energy

Waaw=Jw Ha#b J,u=0. (25)

The expectation value of (22) is therefore the same as that of a reduced Hamiltonian
H red*

1 1 + +
Hred = Z Ta C;-o Cag +3 Z Uab c;ra C[ﬁ,' Cpo’ Cao — 2 Z ]ab Cao Cao” Cbo’ Cho- (26)
a,o

a,b,a,¢’ a,b,0,0’

It is illuminating to introduce the variables [6]:

N = C:T Cat + 0;‘1 Cay (27)
2SZEC:TCHT —C:l C“i (28)
Sg = c;-a Cag = S5 + 10S? ’ (29)
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which according to (2) satisfy the following commutation relations, cyclicin x, y, z:

(S5, 53] =180 5%, [, 53] =0 (30)
(26) becomes:
Hred = ; Tana +% Eb Uabna (nb - Bab) - Zb]ab (Sa'sb+ %na nb)' (31)

To the expectation value of a Hartree-Fock configuration the terms
~2Jap (Sa S5 +5253) (32)

do not contribute. The improvement of the state |¢4) over the Hartree-Fock scheme lies
in the fact that it can make use of these terms. The correlations (19) are therefore in-
duced by the non-diagonal part of the exchange energy.

With the help of (26), (9), (10) and (11) the mean energy becomes

E = <'1HHW‘> = ;;J Tavz%cr +’% 2 (U 800 ]ab vaa vba ZJ&&A Ab (33)

aoc #£bo’

This can be written as

E= Z (Ta + %Caa - %Kaa)vgo - Z LaAa (34)

The Coulomb energy

Caa = Z Uab vgo' (35)

bo’(s£ ao)

depends weakly on 2 and only spuriously on o for extended waves, while the Fock poten-
tial

Kaa = %Jcb vl%a (36)
is spin dependent in ferromagnets. The sum

Li=2Jah (37)

is a measure of the off-diagonal spin coherence. The combination
Ta + %’Caa - %Kao (38)

is the Hartree-Fock contribution to the energy from an occupied level.

5. The Variational Problem

The energy E is a functional of the system of orbitals ¢,, (x) and of the occupation
probabilities v2. Both can be varied to minimize the energy.

We first con51der the variations 8¢,,(x) [3]. Since the varied system of orbitals is
again to be orthonormal:

(@1, @;) — 8:;=0. (39)

Lagrange multipliers v,; are introduced for these side-conditions.
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The functional derivative

S{E— S (qoi.%)}/a% (x)=0 (40)

with respect to the orbital f belonging to the spin o becomes in the space representation
with the operators |

Ix =—(#22m) A + ¢(x) and W(x,y)=e?/|x—y]|:

Tagi(®3e+ 5 [d@yer MW, y)o ) e, (%) 0k v
ba’(#fa)

= 3 [ @yer MWEY) e, (3) 95(X) 03 030 + 2N X)) = by ()= 3 v, ¢, (%)
b(# ) J
(41)

This non-linear set of equations is a generalization of the Hartree-Fock equations. At
best it can be treated in some self-consistent manner. If the left hand side of (41) can be
considered as the action of an operator % on ¢,(x), an orthogonal system of eigenstates
of & solves the problem with y,, =8,,v,. When Tx and W(x,y) are translation-in-
variant, plane waves are a solution of (41). Similarly if 74 and W(x, y)are invariant
with the discrete translations of a Bravais lattice, Bloch waves are self-consistent.

We now turn to the variations 6v,,, 6%,, = —0V,,Usy/"as- 10 maintain the number
of particles (Y| N|yg> = >, ,v2, constant, we introduce a chemical potential . On the
other hand the magnetization will be left free to choose its optimum value.

B(E ' Z vl%a')/avacr:() (42)
bo’
results in
(Ta - F‘)vao Ugo ‘s z (Uab - Saa’Jab)vgo' Vag ao
bo' (# ao)
- Z ]ab Ab (Mga - vaza) VggUg—g = 0 (43)
b

or with (35), (36) and (37)

(Ta— 1+ Cop — Kag)ag thao — Lo (2o — v2)0%_y 2_y = 0. (44)
It is convenient to use the Hartree-Fock one particle energy

To— o+ Cog = Kug = &™ | (45)
in the dimensionless form

Taoc = EEI&F'/La ] (46)

6. Solutions

The two equations (44) with o = +1 always allow the Hartree-Fock solutions
v2,=0 or L (47)
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A further solution is

14+ 72_
‘03'0 =%(1 — Tao 1 +: - ) (48)
ag

which is acceptable if 0 < v2, < 1. In the non-magnetic case (48) gives:

v =3#l-7), A=Hl-7). (49)

Let us consider the simple model in which the exchange integral and the density of
states are constants:

Jab=]1 V( ?aF)""V' (50)

The self-consistency requirement (37) becomes for (49):

T2

L=] [ ety FINHF) = JvL | drd(l —73) = L]vh(r —379)| . (51)

Ty

Since the coherence can at best exist in the range 7, =1, 7, =—1, (51) requires

Jv=3. (52)

Magnetic solutions of (48) lead to smaller values of A, and exist only if Jv > 3.
The general self-consistency problem demands that the quantities C,,, K,, and L,

which occur in (48) are given by the sums (35), (36) and (37), and that the total number
of particles is

N = aZa Vs (63)

The chemical potential u and the limits of the range, for which the coherent solution is
chosen, are the adaptable parameters. It is noteworthy that with (52) the description
itself sets a limit on its possible applicability.

A serious problem is the stability with respect to other states. In the model (50)
and with the condition (52) the Hartree-Fock theory predicts complete ferromagnetic
polarization. An elementary calculation shows that this has a lower energy (34) than the
non-magnetic solution (49). For plane waves a constant exchange integral corresponds
to a point interaction; a more realistic long-range repulsion might make better use of
the correlation (19). The spin coherence should not be expected to be a common
phenomenon; its occurrence depends on especially favourable conditions.

7. Excited States

In general, orthogonality to an approximate ground state is a poor criterion for the
definition of an excited state. Since, however, each orbital is treated individually in the
definition (5) of |}, a state which is orthogonal within the Hilbert space of one orbital
may represent a simple excitation. An orthogonal and normalized state is obtained by
the following substitution of any bracket in (5):

(#ag + Vag Caz) = (Vag — ao Co)- (54)
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There is an abundance of degenerate states, since the energy (33) is invariant with
respect to the transformation

applied to any orbital. It is convenient to define one particle excited states in such a way,
that they have simple matrix elements. We therefore define:

|ac, > is obtained from |¢> through the transformation (54) applied to 4o and (55)
applied to all orbitals situated to the left of a.

Then

a0, P|bo’, ) = 84y 855, <ao,ihlih)> =0 (56)
The energy of excitation

€ag = (a0, Y| H — pN|ao, ) — (p|H — uN | (87)
becomes with (33) and (45)

€a0 = €ao" " (thiz = Vio) +2LaAs (58)

In the first term both factors have the same sign and they vanish at the Fermi level. The
second term is positive because of the minus sign in (54). It represents a gap in the co-
herence region.

A double excitation in the orbital  is obtained by successively exciting 2} and a|).
Thus: -

|, ) is given by (5), however, with the brackets of the orbital a replaced by

(’Uar — Ugy CIT)('UM — Uq, C:L)-

The corresponding excitation energy

€a= 2. 5" (tag — o) o)

shows that with the two minus signs the correlation is in phase again. With the non-
magnetic solution (49) the excitation energies become:

311+ 7?) 272 A#0
' . (60)
2|TI A=0

The double excitation reverses the sign of the spin-magnetization which the orbital
contributes. For this reason the spectrum of ¢, starts at a finite energy in ferromagnetic
materials; the two terms of (59) vanish at different orbitals.

Some useful matrix elements are:

ah, dleg s[> = —ud, (61)
<a|, Sb“":l 4> = ‘*’“il (%31 — ""31) (62)
<at, leay 9> = v2y (63)
<a,¢v[cj7 Cal|¢> =u§1”ﬁ1 (64)

<at, bT"l‘IC:T Cot [YD =_v§1 “31‘- (65)
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Figure 3
Single (e,,) and double (e,) excitation energies versus Hartree-Fock energy in the non-magnetic
case.
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There is a one to one correspondence between the states |4, |at, ¥, |a}, ¥, |a, ¥
and the Hartree-Fock ground state, single excitations (holes below the Fermi level,
particles above) and the double excitation. In general the excitations carry a current.
Strangely the double excitations should play a role in the low temperature specific heat
and transport problems. These questions demand an evaluation of the self-consistency
problem at finite temperatures.

8. Possible Applications

The exchange integral between states of a metallic electron band may typically be
of order J &~ 3eV (for atomic volume) and the density of states v 2 0.3 eV~!, so that
Jva1<3. In the 34 shells of transition metals values as high as v =2 eV~! occur and
Jv > 3 seems realistic. While it would be premature to predict an applicability of the
theory, some empirical facts should be noted.

a) The 3d band width as measured by the ESCA [7] method is about 3 eV for nickel
and 5 eV for rhodium. Band structure calculations [8] give about 5 eV for Ni. In the
photo-emission process an external field creates a one particle excitation (hole) and an
electron in a higher band. If the hole lies in the coherence range, the gap energy has to be
furnished, which makes it appear to lie deeper. The band width is squeezed on the
observed ¢,, scale. This explanation requires 2LA~x 2 eV or L ~4 eV. From (37)
L ~ JvAde"'F- where A€ F- is the range of coherence. The values [ =3 eV, v =2eV™!,
A=1/4lead to 4e"-F- = 2.6 eV, which is possible. If Ni is in the coherent state, while
Rh is not, then in the Ni-Rh alloy system a phase change should occur, at which the
apparent band width jumps.

b) The small magnetization of Ni interpreted by the Stoner-Wohlfarth [9] theory
corresponds to a shift between the up spin and down spin bands of 0.5 eV only. This
small number requires an extremely dramatic screening effect. On the other hand a
small magnetization is a natural consequence of the spin coherent state.

¢) Lowde and Windsor[10] found in a detailed analysis, that the neutron scattering
cross section presents a larger parallel spin correlation than accounted for by current
theories. Since the spin coherence is driven by the operator (32), a considerable parallel
spin correlation should result in this state.

d) Busch, Siegmann and Campagna [11] have measured the polarization of photo-
emitted electrons from Fe, Co and Ni. In all cases the polarization corresponds to that
of the majority (up spin) carriers. Similar results were obtained [12] by tunnelling into
superconductors. In the Stoner-Wohlfarth theory the polarization is at low photon
energies given by the relation of the up spin to the down spin Fermi surfaces. In Ni and
Co the up spin bands are nearly full; the corresponding Fermi surfaces are small and
erroneously a negative polarization is predicted.

When a magnetization distribution such as that of Figure 1 is plotted against the
observed energy scale ,,, a positive polarization is expected, which diminishes some-
what as the photon energy is increased over the width into which the coherence region
is compressed, say 1 eV. Qualitatively this agrees with observation; the argument is,
however, not backed by detailed numerical calculations.

The problem of the spin polarization of photo-electrons has stimulated various
explanations [13-15] and it was also the motivation for the present work. While there
is a consensus that collective effects quantitatively modify the band theory, this work
proposes that exchange can drive a system into a spin coherent phase.
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e) Adifficulty of the present theory lies in the small gap of the double excitations in
the ferromagnetic state. The observed specific heat and the transport properties
demand a spectrum with a gapless continuum. This suggests that if the coherent ground
stateis a useful approximation, there might be more subtle excitations than those which
reverse the magnetization of an orbital.
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