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Local Analyticity Properties of the »n Particle
Scattering Amplitude

by J. Bros and V. Glaser

CERN, Geneva

and H. Epstein

I.H.E.S., Bures-sur-Yvette
(1. II1. 72)

Abstract. The connected part F.(p) of the scattering amplitude {p; ... $,|S = 1| pps1, - - P>
defined on the mass shell p? = m? and deduced from a local field theory involving only (stable)
particles with strictly positive masses can be represented in a suitable neighbourhood of any physical
point p as a finite sum f, (p) = >¥ F,(p) of ‘partial amplitudes’, each F,(k) analytic in a certain
domain %, of the complex mass sheil k? = m?. The mentioned real neighbourhood lies on the
boundary of each &#;. The above decomposition may fail to hold only at points $ where any two in-
coming or any two outgoing four-momenta become parallel (thresholds). The number N as well as
the shape of the domains &, depend on the number # and on the real neighbourhood considered. For
a generic configuration p the intersection of the domains & ; is empty. When this does not happen,
F;(p) is the boundary value of a single analytic function. This is illustrated on the case of the five-
point function, where it is shown that when D = det(p,p,) > mimim}, D being the Gram deter-
minant of the scalar products of the three outgoing momenta $,,,, 3, the scattering amplitude is
the boundary value of a single analytic function. It is also indicated on the same example how these
local results may be improved ; one finds in the equal mass case m, =m that the five-point scattering
amplitude is the boundary value of a single analytic function whenever M > 4, 8m, M being the total
centre-of-mass energy of the three outgoing momenta.

1. Introduction

In his paper [1], Professor Markus Fierz gave, as early as in 1950, a very lucid
analysis of the causal character of the time-ordered amplitudes appearing in the calcula-
tion of S matrix elements in field theory. As our contribution to the celebration of his
60th anniversary, we present in this paper an analysis of the analytic structure of the
general scattering amplitude involving # particles in a complex nexghbourhood of its
physical points. We feel that our treatment of the problem is close in sp1r1t--though
unfortunately not in style—to the argumentation used in the paper [1]; all the proofs
are based solely on the causal factorization and spectral properties of a time-ordered
amplitude.

While the analytic properties of scattering amplitudes involving four particles
have been extensively studied and are nowadays well understood and well founded on
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the general principles of local field theory!), nothing comparable has been achieved for
the case # > 52).

In the present paper, the following will be shown: the connected part F_(p) of the
scattering amplitude:

o BIS=Vpvnr- D=3 (S 20- 3 p) Felp)

defined on the mass shell p= (py, ..., ), P1+++ —P,=0, p2=m?, p,eV_, and
deduced from a local field theory involving only (stable) particles with strictly positive
masses can be represented in a suitable neighbourhood of any point p as a finite sum

F(p)= 3 Fi(p) D)

of ‘partial amplitudes’, each F;(p) being the boundary value (in the sense of distribu-
tions) of a function F;(k), £ = p + ig, analytic in a certain domain % of the complex
mass shell #? = m?. The mentioned real neighbourhood lies on the boundary of each
& ;. The decomposition (D) fails to hold only at points p where any two incoming or any
two outgoing momenta p; become parallel (thresholds). The number N as well as the
shape of the domains &, depend on the number # and in general also on the real
neighbourhood considered. Only when # — v = 2 or v = 2 is the number N independent
of the position of the point p on the mass shell, but also in the general case a decomposi-
tion (D) can be found—with some loss of information—with an N independent of p and
satisfying all the quoted conditions. For a generic configuration p the intersection of the
corresponding domains #; will be empty:

ﬁyi——— Q.
i=1

Only when this does not happen will the scattering amplitude be a boundary value of a
single analytic function. That these different possibilities do indeed occur is illustrated
onexamplesinsection4. If v =2, 7 — v = 2we have N = 1, so that the scattering ampli-
tude is everywhere (except possibly at the threshold) the boundary value of a single
analytic function. This result for the four-point function (though obtained by a different
method) has been known for a long time [6]. In the case of the five-point function (v = 3,
n — v = 2) wehave N = 3. In this case the decomposition (D) has been proved some time
ago by two of the authors [7]. The method used in [7] is geometrically much more
cumbersome, compared to the simple method of this paper, but permits to obtain better
local results due to a better exploitation of causality. Therefore the case of the five-point
function is discussed in detail in section 4, in order to indicate how the results of this
paper could be improved.

The fact that the scattering amplitude is not always the boundary value of a single
analytic function but is of the form (D) in the neighbourhood of some Landau singu-
larities was recognized independently in perturbation theory in [8], [9] and [10]. This

fact proves the necessity of a decomposition of the type (D), at least in the neighbour-
hood of some physical points.

) For a survey of the methods used and results obtained exclusively on the basis of general prin-
ciples, compare the review articles [2]-[4].

?)  As a most recent summary of the results so far obtained—again on the basis of general prin-
ciples—cf. [5].
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The main mathematical tool used in this paper is the so-called generalized edge-of-
the-wedge theorem?). It has been proved only recently in full generality in[13] and [14]
by the use of a generalization of the ordinary Fourier transform, which was inspired by
the paper [9]. On the other hand, the physical problem itself is very much related to the
proof of the L.S.Z. reduction formulae achieved some years ago by Hepp [2], [15]. The
problem can be formulated as follows: what special continuity properties does the
(amputed and truncated) off-mass-shell time-ordered amplitude 7, () enjoy thanks to
locality and spectrum of the underlying field theory, so that its restriction to the mass
shell p=m?, i=1, ..., n, be meaningful. This is a non-trivial problem since the re-
striction of a general distribution to a lower dimensional manifold is of course meaning-
less. In the next section we shall first solve this problem again, but in a form which makes
the passage to the ambient complex space in section 3 quite transparent and natural.
Thus the decomposition (D) can be also viewed as a generalization and a sharper
formulation of the well-known results of Hepp.

2. Continuity Properties of £, Near the Mass Shell

The L.S.Z. formalism gives, as is well known, the following formal prescription for
the computation of S matrix elements

Bure - oS =1irssr- - —pe [T<HIAO10> [T <0l4©)14)>

=84($pi) fc(P)lP; ..... pyev-k (m),Pv+1s' . "PuEV_(m). (1)

For the sake of simplicity, we shall consider here the usual field theory of a single Bose
self-interacting field 4 (x) describing scalar particles of strictly positive mass m. Here

Vi (m)=—V_(m)={p e Ry:po =+VF* + m?}

is the positive mass hyperboloid. Z,(#) is the connected (=truncated) vacuum expecta-
tion value of the ‘amputated’ time-ordered product of » fields:

d4 (z:: pi) fc (P) = f to(x)e'P*dx, x=(%,...,%,) € Ryp,

bp=(P1,. . P ERG Px= i;b,xi, dx = d*x, . .. d*x, @)
with

b (%) = (82, T(x)82), = I (%)),

Tx) =K, ... K, T(A(x) ... A(x), K.=[,—m2 (3)

In (2) the energy momentum conservation has been explicitly put in evidence, so that
t.(p) is to be considered as a distribution defined only on the subspace > p; = 0 of Ry,.

3)  See the Theorems 3 and 3’ of section 3. Theorem 3 has been first formulated by A. Martineau
in the context of the theory of hyperfunctions by Sato [11]. A special case of this theorem,
sufficient for the treatment of the five-point function, was proved in [7]. The authors are very
much indebted to A. Martineau, B. Malgrange and J. Lascoux for drawing their attention to this
theorem years ago at the Strasbourg meetings. Our special thanks are due to Stora [12], who
was the first to insist on the importance of decompositions of the type (D) for field theory.



152 J. Bros, V. Glaser and H. Epstein H. P. A.

If we start from the usual Wightman axioms for the field 4 (x), it is still unknown
whether sharp time-ordered products can be constructed. In that case (cf., for example,
[2] or [3]) the field operator 4 (x) should be replaced by its mean value over a finite space-
time region, more precisely

Alx) > Ay (6) = [ Ax = y)d*, 0 € DRY) @
with
suppp < D ={x € R,:|xo| + |Z] < 4}

for some finite @ > 0. The T product of # operators 4, can then be constructed with the
help of the usual step functions

T(dg () - Ay () = 3 6(x8s —58). .. 0(x 1y — 80

Ay F) Ay () . . Ay (Xw),  0() = 3(|¢] +) (5)

and with such a T product the formal expression (1) is still expected to hold. Care must
be only taken to choose ¢ so that the matrix element {p|4,(0)|0) between the vacuum
and a one-particle state is #0. It follows then from causality and the spectral condition
that {p|4,(0)|0) is an entire analytic function of $ on the complex mass hyperboloid
p? =m? (cf., for example, [16]). The same remarks apply also to the case of a Haag-
Araki theory: choose any (bounded) operator 4 in the algebra &/ (D) of local observables
belonging to the space-time region D defined by (4) for some finite 4 such that the (en-
tire) function {p|4|0)> #0; define the field operator 4 (x) by 4 (x) = ¢'P* Ae~*F*, where
e'P* is the space-time translation operator. Then the formal recipe (1) is still expected
to hold.

The problem we want to discuss in this section is the following: Z, (p) is a tempered
distribution € &’ (R4,—;,) (also in the Haag-Araki case although #,(x) may then be
chosen to be a bounded continuous function in x space) and the restriction of a distribu-
tion to a manifold, such as the mass shell as required by equation (1), has in general no
sense. How do the properties of causality and spectrum of the function ¢, (x) following
from the general principles make this restriction nevertheless possible? The proof of the
restrictability to the mass-shell was given by Hepp [2], [15], who showed that Z, ()
had continuity properties such that (1) can be defined as a distribution oz the mass shell
in the set of three-vectors p,, .. ., p,, pO=+Vpi+m?, i=1, ..., n, provided it is
applied to test function @($,, . . ., #,) € Z(R;,) which vanish in a neighbourhood of any
two parallel momenta.

We shall now rederive this result in a form more adapted for the passage to the
complex reserved for the next section.

Let us first state the properties of the time-ordered amplitude #, on which all the
considerations of this paper will be based.

1. Causality
TX))e=<TUNT(Iy) -+~ T, it[L,]2[L]
forallr <s,7,s=1,2,...,p (®))

where X = (J?_;1,and I, N I,= @ for r # s. Here sofne explanation of the notation
is needed: X ={1,2,...,n} is the set of indices numbering the different space-time
points of x = (x,, x5, . . ., x,) € Ry,, I,1s any subset of X and by an abuse of notation,
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we write T'(x;,...,%,) = T(I) for the amputated T product of u operators, where
I={1,15,...,7,} < X. Consequently, we write indifferently: 7T'(x) = T(X).
l=U{x} <R, (6)
iel

1s the collection of the single points {x,}, 7 € I, considered as a subset of the Minkowski
space Ry. Finally, for two sets A, B < R,

A2 Bmeans AN{B+V_}= g, ‘ (7)

i.e., the set A does not intersect the ‘past causal shadow’ of the set B. In the case of a
‘sharp’ T product condition (C) is simply the well-known factorization property ofa T
product in case the argument X can be decomposed into several clusters in a mutually
acausal position. In the Wightman or Haag-Araki case, when the T product is given by
equation (5), the condition (C) still holds, provided we define for any I < X:

U] = H D(x,) (8)
with
D(x;) ={x e Ry:|x° — 29| + |¥ — 7| < a}

[cf., equation (4)]. We shall denote the expression (8) by [/], and consider (6) as a limiting
case for a =0: [I] =[I],.

The condition (C) is the full causality condition for the # point Green’s function. In
the following we shall exploit only the special case of the decomposition into two
clusters

(T(X).=<TX\)T(I)). (€
when [X\I], 2 [1],%).

2. Invariance under space-time translations

t.(x) and all the distributions appearing in (C) are supposed to be invariant under
(*1y - %) = (%) +a, . . ., x,+ a) for all a € R,. All these distributions depend there-
fore on # — 1 four-vectors, e.g., £, = x, — x,, 7 =1, . . ., n — L. In order not to break the
symmetry under permutations, we shall not hesitate to express this fact by saying
simply ¢, € %'(R4p_y)) Without specifying a co-ordinate system in Ry,_;). The
Fourier transform of such a distribution, say Z,, will be also an element of &' (Ry¢,—1))-
Again, for the sake of symmetry, it will be considered as a function of # four vectors
1, - .., pn linked by the relation p, + - -+ + p, =0 without specification of a co-
ordinate system, always in the sense of formula (2), in which invariance under transla-
tions has been taken into account. The subspace p, + - * + + p, = 0 of R,, will be simply
called Ry,_;,- Note that the causality condition is translationally invariant.

3. The spectral condition
The Fourier transform of ¢,; = {T(X\I) T())>. has the following support property:
Suppler < {p € Ryguory:Px11 € Vi (M, 1)} (Sp)

4)  Usually (C) is stated only for the time components of the points #, in a special Lorentz frame.
That the local commutativity of the fields really imples (C) for the T product defined by (5)
requires an (easy) proof (e.g., by induction on the number of arguments).
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if I # o and X. Here

m=;m 9)
and V, (M) denotes the following closed sets in R,:

ViM)=V_ 2m)={peRy:p’> VP +4m?} if |I|=1orn—1

V., M) =V, (m2m =V, m)JV,2m) ifl<|]|<n—1 (10)

where | /| denotes the number of elements in the set J.

The condition (Sp) is obtained by ‘inserting intermediary states’ between the
operators T(X\I) and 7'(/) and taking into account the assumed spectral structure of
the energy momentum operator of the theory. Because of the truncation, the vacuum
state does not contribute and because of the amputation, the one-particle state does not
contribute when 7'() or T(X\I) consist of single field operators. Here again the com-
plete spectral condition would involve the Fourier transform of the general ‘cluster’
(T(I)...T(,)). but for our purposes (Sp) will suffice.

The llst of our assumptions being complete, take any point $ in momentum space
R4(—1)- For any such point and any proper subset / of X, we will have either p, € V.M,
or preV_(M)=-V,(M,) or p,eC(V,. (M) U V. (M})). More precisely, let
P (X) denote the set of proper subsets of X ={1,...,n} and define, given p =
(1, - - Pn) € Ryu_ry, the following three subsets of 37’* (X Ji

H ={IePx(X):p,eC(V,(M,) UV_(M))}
F,={IePx(X):p,eV, (M)} (11)

In the definition of &, either the upper or the lower sign holds throughout. The col-
lections of sets ", &, and &_ have the following properties

AUVL VS _ =PX), ANL,=F NS _=g (12a)
Ilet < X\lext | (12b)
Ie¥ «+X\Ie¥_ (12c)
These properties are an immediate consequence of p; + py, ;= px =0, of V.M, =

—V_(M)andof V, (M) +V, (M, <V, (M) forany I,],K < X. Thelastrelation
entails also the foIlowmg two properties
1,ef,1NL=0,[L1UL#X}>{;ULe%.} (12d)
{[,,eL., [,UL,=X,I,N], # g}=>{I,NI,e&L,} (12e)
the sign + or the sign — holding throughout, which we mention for the sake of com-
pleteness. Let us call the collection (A", &, % _) determined by a point p, in the manner
just described, a hypercell’). As a matter of fact, a hypercell is already completely de-
termined by &, (or & _) alone in view of the properties (12a)-(12c).
To a hypercell, we attach an open set {24 & in momentum space as follows:
Qo o, ={P € Rywry:p1 € C(V,. (M) UV_(M))) for all
IeX,peCV_(M),) for all I e%,} (13)

5)  The name ‘cell’ is reserved for a very similar collection of subsets of the set X attached to the
definition of a generalized retarded function as it will be discussed in section 4.
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where CA denotes the complement of 4 in R,. Every point p € Ry,_;, is in an open set
Q4 s, determined uniquely by that point, and there is obviously a finite number of
sets 4 o, covering the whole of Ry(,_y).

Now, given a hypercell (o¢",%,), the set £, o was constructed in such a manner
that the Fourier transform of (7(X\I)T(I)>, vanishes for all I € #"U &% when
P €8y o, as a consequence of (Sp'):

fer () =0 (14)

forallpe 24 o, andalll e X U &, If we define then for any I € 2*(X) a ‘retarded
amplitude’ 7; by the formula:

71 (%) =T (X)) —<T(X\D)T(I)), (15)
the following relation will hold for its Fourier transform:

L(p) =71(p) (16)
for all

PERy v andle X U L,.
Because of (C) 7, has the support property
(%) =0in U, ;= {x € Rygury: [X\[], 2 [1]} - (17)

Note that U, ; is an open set.

The relations (16) and (17) are fundamental for the rest. In order to derive con-
tinuity properties of Z, (p), we multiply both sides of (16) by any infinitely differentiable
function &(p) with compact support contained in 24 ¢ . Equation (16) becomes

te (P)a(p) =71 (p)a(p) (167)

valid in the whole space Ry,_;, for all /€ #" U &, and any a e D(24 &, ).
We can choose & so that &(p) =1 in any fixed compact set containedin 24 o .
By Fourier transformation, (16’) becomes:

(fe * o) (%) = (1 * o) (x) (167)

in Ry, forallTe X UZ,.
We now apply to 7, * a the following lemma, first used by Hepp [15].

Lemma 1. If a tempered distribution F € &'(Ry) vanishes in an open cone C < Ry,
then for any fixed test function o € F(Ry) the infinitely differentiable function F * o € 0,
15 of fast decrease in any closed cone I such that I'\{x,} < C, x, being the common apex of I'
and C. We denote this property shortly by: F x o € & (C).

Since F * « is by general theorems always C and of at most polynomial increase
together with all its derivatives at infinity, the lemma is a statement about the
asymptotic behaviour at infinity ; along any direction contained in C, (F * «)(x) and all
its derivatives vanish at infinity faster than any inverse power of the distance from
any fixed point in Ry. The proof is an immediate consequence of the very definition
(F * o) (x) = {(F(y), a(x —y)> of the convolution and of the definition of the support
of a distribution: when x runs away to infinity within any closed cone I" of the
lemma, the distance of the point x to the support of F tends uniformly to zero.
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We choose F =7, in the above lemma and want to show that

rxaeF(U) (18)

with U, = U, , for any & € #(R4—yy). In the case of a ‘sharp’ T product we have just
to put C = U; in Lemma 1, since then 2 =0 in (17) and U, is an open cone in Ry¢,_p,
with its apex at the origin, as it immediately follows from the definitions (6) and (7).
If a > 0, it is enough to establish the relation

d(x,CU, ) > d(x,CU,) —ca (19)

where d(x, . . .) is the Euclidean distance of an arbitrary point x € R4(,_, to the comple-
ment of U, |, respectively U, and c is a constant independent of x. Equation (19) says
namely that the distance of a point x to the support of 7, tends to infinity whenever
d(x,CU),) tends to infinity, which is precisely what is needed to establish (18). Equation
(19) can be inferred from the following very useful explicit representation of the comple-
ment of U, ; in Ryq,_y)

suppr; < CU, ;= UI{xi —x;+2eacV,). (20)
i€
JeX\1I1

Here ¢ = (1,0,0,0) is the unit timelike vector and 7, is the closed forward light cone.
Equation (20) becomes immediately clear if one draws a two-dimensional picture of the
definitions (7) and (8). The proof of (19) is then left to the reader.

The relations (16”) and (18) imply

tc*aey( U qy,) (21)

IEny+

if & 69(91,y+).

If we define, following Hepp [2], the essential support of a C , function as the com-
plement of the open cone in which the function and all its derivatives vanish faster than
any inverse power of the distance from the origin in the sense of Lemma 1, we can re-
write (21), using the formula (20) with 2 =0, in the form

esssuppt, * a = IEJ‘Q“% U fm—xeV) (22)
JeXx\I
lf&E@(Qx,y_'_)

The important feature of this formula is the fact that the essential support of £, * «

is a finite union of convex proper cones®). To exhibit this feature more clearly, let us
define:

Definition: A choice is a map I — £(I) which associates to every proper subset
I of X an element i(I) of {1, . . ., n} contained in I:4(I) € I.

6)  We stick to the following definitions: a cone C in Ry is a set satisfying pC = C for all p > 0;
%o + C is a cone with apex at the point %,; a proper cone is a cone C whose closure C does not
contain any linear subspace of Ry except the origin.
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In other words, a choice picks out of every subset I an element contained in it. Of
course there are a finite number of different choices if # is finite’). Let 4, 4’ be two choices.
Then (22) can be written as follows:

esssuppt.*a= [\ U {&un—*wen €V
c TeX VT, h,h'{ k(D) h (x\I) +}

=) N {xwn —*waa) € v+} = hUh,Cu' - (23)

hE IeX v,

where the union runs independently over the pair of all possible choices % and A’.
[Since with I the class of subsets £ contains also X\I according to (12b), we were forced
to introduce two independent choices in order to be able to interchange the intersection
and the union.] The conesC,,, being a finite intersection of the closed convex cones:

Kij={XER4(n_l):xi"“ij_V—+} (24)

are themselves convex and closed. The proof that the cones C,,. are also proper is left
for the Appendix.

The decomposition (23) of the essential support into the convex cones C,,, is far
from unique: as a more detailed investigation shows, some cones of the family are con-
tained in other members of the family. By denoting with C,,# =1, . . ., N, the uniquely
determined maximal elements with respect to the partial order of inclusion, we shall
write formula (23) in the form

N
esssuppt.*xa=J)C,. (25)
r=1

At the end of this section we shall determine an upper bound for the cones C,,
when the hypercell (K, ,) issuch that 2, o intersects the mass shell, while in section
4 they will be explicitly calculated for some special cases.

Given the decomposition (25), ¢, * « can be represented as a sum

N
tekoe=> f. . +se, suppf,.<C.. r=1,..,N,
r=1 :

C,.\{O} = Cr,e: Se € y(R«n_] )) (26)

where the functions f, . are infinitely differentiable, of at most polynomial increase at
infinity and have their support in the cones C, ., while s is in &. Here C, . is any open
cone containing C,\{0}. C, . should be thought of as a ‘¢/2 neighbourhood’ of the cone C,
in the sense just indicated. s, has its support outside, say, an ‘e/2 neighbourhood’ of
Y C, and is equal to £, * « outside | JYC, ., and hence of fast decrease at infinity. It is
clear that (26) can be achieved by an appropriate partition of unity (some care is needed
near the origin). The decomposition (26) is of course not unique: apart from the e
neighbourhood question, C, N C; will be in general # &.

7y There are precisely

S (-:-f-) —n@ 1)

v=1

different choices.
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After a Fourier transformation, (26) becomes:

= 3 Fue (D) +3(8) @)

forallpe K Qy ..
Here we have taken advantage of the fact that « can be chosen such that &(p) =1
in any compact set K contained in 24 o . Equation (27) is the main result of this

section. For, by the Laplace transform theorem the £, <(p) are boundary values of
functions

fee®), k=p+ig

analytic in the tubes

g-r,e = {P g 2q € R4(n—l) ‘g € ér,e} (28)
where
C‘ ={7 € Ryn_1y:gx >0 forallxeC, } (29)

are the dual cones of C, 8), while §, € #(R4(,_y,). The cones C, . are contained in the
cones C,, the dual cones of C,, but can be chosen arbitrarily close to them. Since
C, = convex hull of C, =C, if C, is convex, we see why the decomposition into convex
cones is so important. A decomposition into non-convex cones would mean a loss of
information in momentum space.

Let us concentrate now on points p near the mass shell. Denote by

M={k=(ky,.. k) iky+ o+ Ry =0 =mti=1,... ) (30)

the complex mass shell manifold. It is an analytic manifold. One of the main results of

this paper is that all the tubes 7, _ for ‘e small enough’ have a non-empty intersection
with .#° near all its real points:

M={p=(D1,.. .00 P+ +Pp=0,pf=m?i=1,.. ,n} (31)

provided no two incoming and no two outgoing momenta 4, are mutually parallel. For
that purpose it is of course enough to investigate I, N 4, J , having as basis the
cone C,, since r.« €an be chosen arbitrarily close to .7' and both are open.

Let us first clanfy that the above purely geometrical statement implies restricti-
bility to the mass shell. #* intersects 7, . near areal point p € # meansmore precisely
the following: given a (real) point p € .# we consider the 4(#» — 1) — » complex dimen-
sional tangent plane 2(p) to .#°¢ at p given by:

P (p) ={§=§+i1]EC4(,,_1,: 2:: £=0,96,=0,i=1,.. -:”} (32)

and require that 7, . N Z°(p) # @. T, [N P°(p) is a 3n — 4 dimensional tube having
as basis the cone

é,ﬁ NP(p)#z with P(p) = {q € Rynny: 2:: ;=0,92,9,=0,i=1,.. .,n}

(33)

8)  Inthe above formula gx =g, %, + * + - + g,#,and ¢, + - - - + ¢, = 0. It is at this point that the
properness of the cones C, is crucial: C, is open and non-empty if and only if C, is proper.
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Clearly if (33) holds at given point p, the same will be true for all the pointsin a suffi-
ciently small real neighbourhood w(p) of . Condition (33) implies that 7, . N #° is
non-empty, has w(p) N A as boundary points and has the local structure of a tube
there. Under these conditions the restriction f, . (k)/.#¢ of the analytic function f, . (k)
to .#° will be analytic near the considered real points and we can define the restriction
of the distribution f, . (p) to the mass shell as

Frie @) wnw= U fre (B +i9)| e (34)

4eCre

Although the notation is somewhat sloppy, the precise meaning of (34) is provided by a
slight generalization of the following two well-known theorems (see, e.g., [17]):

Theorem 1. Let the tempered distribution t € ' (Ry) have its support contained in a

cone C. Then ils Laplace-Fourier tmnsform i(k) = [ e**t(x)d¥x, k=p+1g€Cy, s
analytic in the tube I = Ry + iC and is bounded there by

" L+ 5"

R <L —5—

with L,M,N some positive constants, |p| the Euclidean norm in Ry and d(g, oC) the
Euclidean distance of the point q to the boundary of C.

What matters for us it that (k) does not increase faster than an inverse power
of the distance to the boundary.

Theorem 2. Let F(k), k=p + iq € Cy, be analytic in the local tube £ = Q2 + iB, where £2
s an open set in Ry and B=C (N B,, C being an open cone in Ry and B, the open
ball |q| < e. Ifin &, F satisfies the bound of Theorem 1 with C replaced by B, ths limit

lim [ F(p +ig)p($)d"p = <F. p>
qel’

exists for every test function ¢ € D(§2) and every closed cone I' such that I'\{0} = C and
defines a continuous linear functional in Z'(82).

Moreover, let e be any vector contained in the cone C and choose the co-ordinate system in
Cy so that k = p + iq = (pg + igo = (k.€),f + 1q9). Then

Jim [ F(y+igo B)f(po — p0)dpi

exist for every f(po) € D(|pol <a), a suﬁicwntly small, and every p € Q,={(po.P) € 2:
(po £ a,p) € D)}. The limit thus deﬁned 1s infinitely daﬁerentzable for all pef,andisa
linear functional in f continuous in the topology of D(|pe| < a).

The second part of this theorem says that the limiting distribution F(p) if regular-
ized in only one direction contained in the cone C becomes infinitely differentiable in all
variables.

These two theorems guarantee the restrictibility of f,  to .# in a neighbourhood of
any p € # providedC, . N Z(p) # @ : due to Theorem 1f, .(k)/#° will locally fulfil the
conditions of Theorom 2. Actually, a slight generalization of Theorem 2 is needed here
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since .#° is not a linear space, but the problem is easily settled by introducing appro-
priate local co-ordinates.

Thus, provided C, N P(p) # @ for all », the restrictibility to the mass shell has
been re-obtained, since the last term 3, in the decomposition (30) is C. This is at the
same time a refinement of the Hepp result : depending on the geometry of the situation,
the smearing out of the Green’s function only along a few directions contained in .# is
needed in order to obtain a function infinitely differentiable in all the variables. Thus for
example, if for a given p € it turns out that 2(p) NY_,C, # @ only one regulariza-
tion along a direction contained in this intersection will suffice. That such configurations
do indeed occur in the many-particle case will be illustrated in section 4. They corre-
spond to situations where the scattering amplitude is the boundary value of a single
analytic function.

In the above proof we could have avoided any reference to analyticity. Instead of
Theorems 1 and 2, we could use a slight modification of a simple theorem by H. Borchers
(see[2], p. 180). In view of what follows, we choose, however, the more complicated way
over Theorems 1 and 2.

It is clear that if the C* function §, in the decomposition (30) could be shown to be
analytic in a complex neighbourhood of the real points considered, formula (D) of the
Introduction would be proved. In a nutshell, this is the object of the next section.

We still owe the proof of the following:

Lemma 2. The tangent plane P (p) (33) to the mass shell intersects any of the cones C,
provided no pair of incoming and no pair of outgoing four-momenta are parallel.

In order to prove this lemma, we make some estimates on the essential support of
t. when p belongs to one of the regions 2, . attached to the point p = (p,, . . ., pa)
when p € .4 For that purpose, let us introduce the following notations: let X, =
1,2, ..., v}, Xo={w+1v+2, ...,¢n}sothat X, UX,=X={1, ..., n}. Let I =
(41,73, - - -, ,) denote the ordered sequence of p distinct elements 7, € X, while the same
letter I is reserved for the corresponding set I = {3, . . ., 4,} = X and |I| = p is the num-
ber of elements in I. Let now I, J, R, S be four ordered sequences such that 7, J < X, and
RS<X,, INJ=@, RNS=g, |I|=]|]| >0 (and) |R|=|S|>0. Then we claim
that the essential support of 7, is contained in the union of the following closed, convex
and pointed cones:

Cf:fripg;h.hJ ={x = (xl’ ¥ "xn) :xil =x_“' t e "xip=xjp;

Xy =ZKgpe o o %p, =%g ) Xy — %) € V,forallleX, (35)
UX\Z UL % — %, € V, forall ke X, U [X,\(RUS)]}

Here % and /' are two ‘choices’: A(J) takes its value in the set {1, . . ., #}, #'(%) in the set
A,...guT=0y. 0, J=Urrer fos R=(1,. . 7, S=(51,.. 50, 2>1,g>1
In other words, the cone (35) can be described as follows: there are p pairs of points in
X, and ¢ pairs of points in X, which coincide; each point in X, (X,) and each ‘singleton’
in X, (X,) is in the closed past (future) of at least one coinciding pair in X, (X,). In
order to obtain a covering of the essential support, it is necessary to take the union of
the cones (35) when I ,f,fé,S ,h and A’ run over all the possible allowed values.

The above assertion is easy to prove. Consider the following space time configura-
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tion: suppose there is a single four-vector in X, say %;, + € X, which is ‘maximal’ with
respect to the rest of X, i.e., for which

{r} 21X \{}] (36)

That means that in %, + V', there is at most a group of space time points X3 < X,. In
this configuration ¢, will ‘factorize’ as follows

t,=<{T {1} U X,) T (rest)>.. (37)

But the Fourier transform of the right-hand side vanishes in £, &, since p;; ux, ¢
V. (4m); it is even ¢V, when X; # @. Therefore the conﬁguratlon (36) is outside the
essential support of £, and all the ‘maximal’ elements of X, have to be at least ‘double
points’, By reversing the future and the past, we conclude that in the essential support
of ¢, all the ‘minimal’ elements of X, have to coincide at least in pairs. Similarly, we see
that any x,, / € X,, must contain at least a point €X, in its closed future cone since
otherwise we would have the factorization

t.=<(T(X)T(X\X)> with leX,cX,. (38)

Again the right-hand side of (38) has vanishing Fourier transform in 2 »_because of
Px, € V_. The same reasoning shows that any x,, £ € X, must contain at least an «x,,
1€ X,, in its closed past shadow. By combining these four conditions, we
conclude that any point of esssupp?, is contained in at least one of the cones (35).
Remark that (35) includes also the cases where more than just pairs of points coincide:
V. contains also the origin!®) Remark also that the union of the cones (35) represents
in general only an upper bound of the essential support. In the proof of (35) we have
used only the fact that{i} e # fori=1,...,n,I e & for/ < X,and |[|>1,I € &¥_for
IcX;,and |[I|>1,{i}UI¢%, for {i}< X, and I < X,, and finally {if} U I ¢ &_ for
{i} = X, and I € &,. This fact can be formulated also in the following form: Equation
(35) is a decomposition into convex cones of the essential support of ¢, attached to the
open set:

Qu={pERyury:pt <dm? fori=1,...,n; p;eCV(m,2m)
foral Ic X,, |I|>1;p;,€CV,.(m,2m) forall <X, |I|>1;
Piror€CV, (m,2m) forallie X, IcX,, |I|>1
PuyuI€ CV_(m,2m) forallieX, I<X,, 7] = 1}. (39)

We have # < Q 4 and Q4 , <, for all A", %, such that #N Q2 o, # @. The
choice of the 2, o, willin general depend on the position of p € # and this more pre-
cise information will result in general in a further splitting of the cones (35) into smaller
subcones. Only in the case |X,| =2 or | X,| = 2, as shown in the last section, does (35)
represent the best possible result.

We are now in a position to prove Lemma 2. Since, as we have just discussed, each
C, is contained in some C,, where o = (I,J:R,S;h,4’), it is enough to show that

%)  Strictly speaking, the above argument is valid only in the case @ = 0. When a > 0, replace in the
configurations considered (%, . . ., #,) by p(%,, . . ., %), p> 0. When p is sufficiently big, the
factorizations (37) and (38) will be valid, which is all that is needed in the computation of the
essential support.
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Z(p) N Qg # @ for all &/. [Notice that C, = C, implies Cn‘dﬂ = 5,.] We shall use the
following geometrical

Lemma 3. Let C a proper convex closed cone in Ry and C its dual in Ry with respect
to the non-degenerate bilinear form px, p € Ry, ¥ € Ry:
C={peRy:px>0 forall xeC\{0}}
Then the open convex cone C intersects the linear manifold P < @N if and only if
PNC={0)
where P is the dual of P defined by
~={x ERy:px=0 forall p e P}

This lemma is a consequence of the Hahn-Banach theorem: if 2 N C = {0} then
there exists a linear form pgx such that 2 < {x:pox = 0} and pyx > 0 for all x in C\{0},
which means 2 N C# o since p, # 0 belongs, by the definition of duals, both to
P =P and toC. On the other hand, if 2 N C #{0} there exists a x, # 0 belonging to both
2 and C and the set &/ ={p € IRN pxo = 0} contains evidently & = 2, but is not con-
tained in C, which means Z N C = &, q.e. d.

All we have to do now is to compute £(#) and to show that P(p) N C,y,={0}. An
elementary calculation gives

gz(;b) ={x=(,...,%)x,—x=Np,—A;p, foralli<y,
7,7=1,...,n andall (A,,...,A) eR,} (40)

For any » e?nN C ., we must have:

xi—xj=Aip‘—Ajf)j=0

for any coinciding pair {¢,7} < X, or X,, which implies A, = A, = 0 since no two four-
vectorsin X, or X, are supposed to be parallel. If / does not belong to one of the pairs in
(35) then it is ‘sandwiched’ between two pairs:

XM= % — X =—Np eV,  x =6, =Np eV, x =%

But this is possible only if A, = 0 also. Hence 2(p) N C, = {0} and Lemma 2 is proved.

3. Analyticity Properties of i, Near the Mass Shell

In this section we want to prove the announced generalization of the decomposition
(27).

We shall proceed as follows: due to the support property (20) of the amplitude 7,
we can represent this amplitude in the form

re= > f:{; withf,’j ey’(Rﬂn—l))J SUPPfth cﬁiaj =

iel
JjeXx\I1

={x €Ryu_1):% —%,+2eaecV,}). (41)
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If 7, were a bounded, or more generally, a measurable function, this decomposition
could be trivially obtained by a partition of unity into appropriate step functions. Since
we are dealing with distributions, we have to make appeal to a well-known theorem by
Lojasiewicz (cf., [18]) which says that any (tempered) distribution 7" having its support
in the closed set 4 = A, U 4, can be written in the form 7 =T, + T,, where the
(tempered) distributions 7', , have their support in the sets 4, , provided these sets
meet some very mild conditions, which are certainly satisfied in our case.

Now, although the (displaced) cones K, ; are not proper cones—they are of the
form Ry x +++ x Ry x (V. — 2ea) if we choose & =x,—x,vr=1,...,n,7r#j,asinde-
pendant co-ordinates in R,,_,,—the Fourier transforms of f/; are never the less
boundary values of functions analytic in lower dimensional tubes: the integral

fin (p) = jf’If (E)erute-HipE+. Hp,E, Jan—Dg (42)

can obviously be extended to complex values %; of the variable p, provided Im#k, € V.
Thus (42) is the boundary value of a functionf}, (p,,.. ., &, . .., p,) analyticin Imk, e V,
and distribution valued with respect to the rest of the variables. A more precise formu-
lation of this statement is rather obvious and it is also clear that with appropriate
changes Theorems 1 and 2, quoted in the previous section, will apply to this slightly
more general situation (cf., [3]). With an abuse of language, we shall simply say that the
fi, are boundary values of functions analytic in the ‘flat’ tubes

3—U={k:(k1,...,kn):kl-{—"'+k"=0,1mkeKU}, =1 (43)
with
Ky={q+ " +¢=0;q=0 r#ij; Qiz““fbeV-g-}

Thus relation (16) becomes

~

(p)= > fL(p) for peQy,, andallledt UL, (16a)

tel
je X\I

which trivially implies the set of equations

2 i = 3 Fi(p)=0 for peQy,, amdall,JeXUZ.  (44)
Jjex\1I1 je X\J

to which we apply the fundamental theorem:

Theorem 3. The generalized edge-of-the-wedge theorem (local versiom): let f;(R),
1=1, ..., 1 bel functions analytic in the ‘localized tubes’

Ty, s={k=p+igeCy:peS,qeB},i=1,...,1

where S is the unit ball {p € Ry:|p| <1}, |p| the Euclidean norm in Ry, and B, the star-
shaped set (‘basis’):

Bi={geRy:0<g| <7i(w) <1, @=q/lg, if 7, (w) # 0, |g] =0 if 7, () = 0}
(see the comments below). Let the boundary values

lim f,(p+i9) =fi(p), peS, i=L...1I

qeB;
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exist 1n the sense of distributions 2'(S) (cf., Theorem 2) and satisfy the identity:
i
2 fi(p)=0, peS \ (45)
i=1

Then there exists a real constant A, 0 < A < 1, depending only on N, and I(l — 1)|2 functions
Jiy (k) satisfying

fiu=—wiji=1...,n (46)
analytic in the tubes T yp, 15, where

B;;=conv(B;U B,)
1S the convex envelope of the set B; U B, and such that

!
fB =3 fu®, i=L. 1, keF s =\ Fa,s (47)
Moreover, the boundary values

}E‘g iy (B +19) =fi;(p), peAS

geAB;;

exist in the sense of distribution D' (AS), so that in this sense (47) is valid also for k = p € AS.

In case the unit ball S is replaced by the whole of Ry the localized tubes 7 p ¢
(localized in S) become ordinary tubes with basis B, and Theorem 3 (with A = 1) can be
proved rather trivially by studying the essential support of the Fourier transforms of
the functions f; (p + #¢) with respect to the variable $ (cf., [11]). Notice that AS is the
homothetic sphere | p| < A and similarly for the other sets. The functions 7; (w) defined
on the unit sphere |¢| = 1 have to be such that B, is either an open set in Ry (#; is then
semicontinuous from below on all of |g| = 1) or an open set in a lower dimensional linear
subspace R,or Ry (the case of a localized ‘flat’ tube; 7; has to be semicontinuous from
below in R, N {|¢| = 1} and 0 otherwise). If inf#; (w) > 0 the point ¢ = 0 has to be added
to the basis B,. The origin g = 0 is always a boundary point of B;. In our application
the bases B; will be to start with the truncated cones:

Kij=Ki;N{lgl <1} (48)

where K;; are the ‘flat’ cones (43) and |g| is the Euclidean norm in some arbitrarily
chosen co-ordinate system in Ry(,_;,, e.8.,

n—1
o =3 .
with
3
lgr|* = 2. (gr)>
u=0

Notice that by a real translation and a change of scale, the ball S can be replaced by the
ball $, + S with centre at p, and radius & provided the bases B, are replaced also by
bB;. The fact that the functions f; might be analytic beyond the ball S in purely
imaginary directions, as is the case with (44), gets typically lost in the above theorem.
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Also the contraction of the domain due to the scale factor A is unavoidable in the above
theorem!?). A global version of this theorem will be discussed later.

The case / =2 of the above theorem is the ordinary edge-of-the-wedge theorem
((3] or [19]), the subcase of two opposed cones B; =C;, C, = —C, goes back to N. N.
Bogoliubov and co-workers (for a survey and references, cf., [3] or [2]). As to the general
case, see the text and footnotes in the Introduction. The global version of this theorem
given in [11] and [13] will be explained later (Theorem 3').

In order to apply Theorem 3 to the identity (44), take any fixed po € 24 &, takea
b > 0 such that the sphere bS + po = Q4 &, fix any pair of indices I # J and rewrite the
relation (44) in the form:

1

> fE(p) -3 )= >fi($) =0 (49)
for all p € p, + bS.

Here 7 and s are a shorthand notation for the pair of indices 7, 4; and 4 are the
sets over which they run. We then evidently have: /I (k), respectively f7 (k) analytic in
po + bT r s, so that (47) becomes:

~

fi= SR+ S TR -F=— 3 fHl+ 3 f% (50)
red; s'eAy r'edy s'edy

where the functions f are analytic in b7 kI-k},s +poand antisymmetric in the palr

of indices 77' and ss’. The antisymmetry in the other two combinations of indices is

taken care of by the — sign in the second part of (50). Here 4 - B is a shorthand notation

for conv(4 U B). This antisymmetry entails

ST =3 B@)= 3 JE () =Tc(p) in po+ NS,

By fixing a third index K # I, ] we reapply Theorem 3 to the identity
SFE(B)— 3 Ji(p)=0in o +26S
K

and after v — 1 steps, v being the number of elements in /" U &, we arrive at the
representation:

L(B) =73 froor, (B)  in po+X"18S (51)
where the sum runs overallr € 4,,,7=1,. .., vand where the f,.] ,--r, (P) are boundary
values of functions f, — (k) analytlc in

po+ X1 bﬂ'Kgl....K;v,S.

Here we have used the fact that (A4)- (AB) = A(4 - B). Note also that the formation of
convex envelopes is an associative and commutative operation. Using the notation of
equation (23), (51) can be written as follows:

=2 fw (#), pinpo+ A0S, (62)
h,h’

10)  The optimal value of A is unknown to the authors.
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T (B) analytic in

Po+ XN 10T g, s

where

B,;,. = conv U K 53
hh X v, h(nn(x\l)} ( )

Now, if in the last formula, we replaced the truncated cone K, (48), by the untruncated
cone (43), we would evidently get B,,, = C,,,, where C,,, is the dual of the cone Cy,,

(23) of last section (the intersection goes over into convex union by duality!). We claim
therefore that (53) is of the form:

By =Cp N A (54)

where A is a certain open convex neighbourhood of the origin in Ry,_,,. Property (54)
can be inferred from the following explicit representation of B, :

e V- o (DR (X\]) .

B, -—{‘l = (g1, qn) = > € Nucny, 0’ (X\D P, R X\ ¥ = 1,...,n
le XU,

where €}° = +1 for i =7, =—1 for i =5, = 0 for 7 # 7, s, where the ,, are four vectors

varying independently over VT = V+ N {|g] <1} and p,, are the parameters of convex
completion: p,, = 0 and >, p,, = 111).

As it was pointed out in the discussion after formula (23), we will in general have
2 e & c i ,,, for certain pairs of the family of cones in the decomposition (52). Denoting
by C,, 7 = , N, the set of minimal elements with respect to the partial order of in-
clusion in this family, formula (52) can be conveniently rewritten (in general in a non-
unique way) in a form analogous to the decomposition (27). Thus, in view of Lemma 2,
we have proved:

Theorem 4 (local version) : given any po € 2 4 >, there exists a complex neighbourhood
N (po) of the real point py such that

~

E(p) = f ) for p €N (o) N Rauet, < 25 o, (55)

\I[\/]z

where theﬁ,( ) are boundary values in the sense of dzstrzbutwns in D' (Rynery N A (Do ) of
functions f, (k) analytic in the localized tubes T' =T, 0\ N (po), T ,={k=p+ zq geC,},
r=1,..., N. Furthermore, if po € M N Ry o 1is mch that no pair of incoming and no
pair of outgomg momenta are mutually parallel, f’/— 'NM.# @ forr=1,... Nandthe
restriction of I to the mass shell in Rygu_yy N N (po) iswell defined in the sense of Theorem?2.

Let us now describe briefly the global version of Theorems 3 and 4. For details, the
reader is referred to the paper [13]. In order to study the analyticity propertles of a
distribution f (p) € &’ (Ry) in a complex neighbourhood of an open set 2 < Ry it is very

') Formula (54) needs a proof since conv{(4,NC,) U (4, N C,)}is in general not of the form
A; Nconv{C, NC,}if C, , are any two cones and 4,, i = 1, 2, 3 convex neighbourhoods of the
origin.
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convenient, as first suggested in the paper [9], to investigate its generalized Fourier
transform

[, %0) = [ e to=%ed fip)ar p (68)
where ¢ is an auxiliary function having the following properties:

a) @(k), k=p +ig € Cy, is analytic in a complex neighbourhood A4~ of 0 e Ry, the
closure of £2 in Ry, and satisfies there (k) = $(k).

'b) The set of real points 0 < ¢(p) < 1 is equal to the open set £, which is supposed to |
be bounded. |

c) The origin p = 0 belongs to £2 and is a critical point for ¢ (/ $(0) = 0) ; moreover,
it is assumed that ¢ has no other critical points inside £2 so that the set of level
surfaces ¢(p) =c (0 <c<1) is topologically equivalent to the set of nested
spheres with equations p? = >¥ p? = ¢; in particular ¢(p) = 0 implies p = 0.

Thus the domains 2 considered are limited to open bounded sets containing the
origin given by the equation 0 < ¢(p) < 1 for some ¢ satisfying the above conditions.
But any bounded domain homeomorphic to a sphere can be approximated arbitrarily
closely by such an £2. The simplest example (sufficient for the proof of Theorems 3 and 4),
is the choice ¢(p) = p2, corresponding to the unit sphere 2 = {|p| < 1}.

In order to give the integral (56) a meaning, it is supposed that f has its support
contained in A" N Ry [outside of this set ¢(p) is undefined]. For x4 =0, (56) reduces to
the usual Fourier integral of the function f. Moreover, f(x,x,) satisfies the equation:

0 0
—+¢ (z a)}f(x, xg) =10 (57)

0%,

which for ¢ = $2 reduces to the heat equation. Thus f(x, x,) will be uniquely determined
by its ‘initial value’ f(x,0). Now, if in £2 f is the boundary value of a function analytic in
a tube (or, more generally, in a flat tube), the part of the integral (56) extending over £
can be deformed into the complex and will result in exponential decrease properties of
f(x,%0) in directions within Ry x R, outside a certain essential support determined by
the behaviour of Re(—ikx — xy (k) = gx — xy Re (p + iq) over the deformed integra-
tion contour. The domains of analyticity, which play the same role with respect to the
generalized Fourier transform (56) as the ordinary tubes do with respect to the ordinary
Fourier transform, are the local tubes Ty with basis B described as follows!2).

Let B be a bounded star-shaped set in an auxiliary N dimensional space Ry given
by the inequalities:

B={(eRy:0<|¢]| <r(w) <74(w) ifr(w)>0,|£[=0
if 7(w) = 0, w = &/]£]) (58)

B is required to have exactly the same properties as the sets B, introduced in Theorem
4, except that the upper bound 1 is replaced by the strictly positive bounded function
74 (w) defined uniquely in terms of the ‘localizing function’ ¢ as described in detail in [13].
Given B, consider the set &4 of points & = p + ig € Cy in the domain of analyticity of
¢ (k) such that:

|9| + 7(w)[Reg(p +1g) — 1] <0

12y These domains are different in character from the Jocalized tubes used in Theorems 3 and 4.
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We notice that the open set {2 always belongs to &gy [|¢| = 0 implies ¢(p) < 1 since we
suppose 7(w) # 0]. If the connected component of & 54 which contains £2 is bounded and
has a compact closure inside the domain of analyticity of ¢, we define the local tube 7’54
as just that component of &, more precisely

T gy = conn. comp. of {p + ig € Cy:0 < |g| <7(w)[1 — Red(p + 1q)]
if 7(w) > 0, [g] = 0 if #(w) = 0, w = g/lg]} (59)

The only real points which belong to the closure of T g, are those of Qand thisis why one
calls ¢ a ‘localizing function’ in the open set 2. If Bis an open set containing the origin—
i.e., infr (w) > 0—we drop the condition [¢| >0 in the definition (59), so that then
Q< Ty,

In order to better visualize the domain 7 g4 let us write ¢ = |¢| - w and resolve for w
and p € {2 fixed the inequality appearing in (59) with respect to |g|. The local tube 754
1s expected to be of the form

T pe={p+igeCyipef, 0<lg| < R(w,p) if R(w,p)>0,
lg| =0if R(w,p) =0, w=g/|q}. (59a)

Indeed, when 7(w) is small enough, it is easily seen that R(w,p) = F(w,p,?(w)) where
F(w,p,7) is a continuous function of p € 2, w € {{w| = 1} and 7, increasing in » such that
7 > 0 implies F(w,p,7) >0 for all p € 2 and F(w,p,0) =0. The upper bound 7g(w)
such that this condition be satisfied for all 7 < 7,4 (w) and a fixed w is precisely the func-
tion 74 (w) appearing in the definition (58) of B. [For a more precise definition, cf.,
Ref. [13] equation (6).] F(p,w,?) will tend to O when p approaches the boundary of .Q
This is all illustrated by the case ¢ = p?, where, as it is easily computed

(@) =4, F(w, 5,7 e Bl <1,7 <} (60)
7y (w) =1, Flw,p,7) = Jpl < 1,7 <1,
d 1+ V1—4r2(1—p?)

Thus.J g4 can be best visualized as a tube localized in £2 whose (bounded) basis depends
on the position of the real point p in £.

Now, if f() is the boundary value of a function f{k) analytic in a local tube B
the generalized Fourier transform f(x,x,) can be shown to have its essential support
contained in the convex cone Sp with apex at the origin in (¥,%,) space, whose section
%o =1 is the (closed convex) polar set B of the set B defined by:

B={xeRy:x£+1>0forall £ € B}.

This is the analogue of the notion of essential support of tempered distributions dis-
cussed in section 2. [The essential support Sy can be also defined directly as follows:
Sp={(x,%0) € Ry x R,:x¢ + xo > O forall ¢ € B}.] f(x,%,), which is an entire function in
x for each fixed %o due to the compact region of integration in (56), satisfies in addition
some more precise growth properties at mﬁnlty for x, fixed, which are due to the be-
haviour of /(%) near the boundary of 7 g4, i.e., to the distribution character of f{ fl ) for
which the reader is referred to [13] and [14] The converse is also true: by using a
generalization of the Parseval formula, it is shown that every solution of the equation
(67) having its essential support in a convex cone S with section B and the mentioned
growth properties, is the generalized Fourier transforrn of a distribution f(p), which is
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the boundary value of a function analytic in g4 with B = B'3). f(p) is defined only
modulo a distribution vanishing in £.

Since B = conv B = B, one finds as a first consequence of the above theory that
every function analytic in a local tube J g4 can be analytically continued to the local
tube J 34, which is, as can be inferred from the inverse generalized Fourier formula, a
natural domain of holomorphy. This is a generalization of the usual tube theorem. Al-
most as immediate a consequence is the

Theorem 3'. The generalized edge-of-the-wedge theorem (global version): let the
distributions fi(p), i =1, .. ., 1 having their support in V"N Ry satisfy the identity

%f:(?)=0

Let in £ the f,(p) be the boundary values of functions f,(k) analytic in local tubes T g 4.
Then there exist [l — 1)2 functions f; (k) =—f; (k), 1,7 =1, ..., I, analytic in the local
tubes T g, 4 with B,; = conv (B, U B)) such that

fi(k)=_§lf¢,(k), keT gq i=1,...,1 (61)

The f;; have boundary values f, ,(p) in the sense of distributions extendable to all Ry, so that
(61) s valid also for k = p € Ry.

Theorem 3 is a simple corollary of Theorem 3. To show it, take ¢ = p2, observe that
the function F (60) attached to this ¢ satisfies the following inequalities

(1—p2)§r<_ Flw,p,r)<(1—p?r forall |w|=1,p€50<7r<}.

According to the last part of this inequality we certainly have.7 ;5 4 <7 p, s Where B,
and.J p,_ sare the sets defined in Theorem 3, while the first part of the inequality implies
AT , s <7 38,4 if 0 <A< V2 —1. Thus Theorem 3 with A = 4/2 — 1 follows.

It is also clear now how a generalization of Theorem 4 is to be achieved. Take any
point py €Ly &, and any open set £ with localizing function ¢ such that
Po+R € Qy o . Take B;;=K, ;N By, where By={g€Ry,_):0<|g| <74(w),
w =¢/|q|} and K, are the flat cones (43) and where |¢| is a Euclidean norm in Ry,_;, as
explained after formula (48). It follows then from the previous definitions that the local
tubes.Z p, 4 will be contained in the flat tubes.7”;; (43). Thus Theorem 3’ implies

Theorem 4’ (semi-global version): let the bounded open set po + £2 with localizing func-
tion ¢ be compactly contained in Q- o . Then there exist functions f, , (k) analytic in the
open local tubes T g, .4 with basis

B, =conv{ U B ,
hh
IEJ(U.V_,. (DK (X\I)

13)  In [13] only the case of infinitely differentiable functions f(p) and open B’s has been treated,
while the case of distributions and flat B’s has been worked out in [14)].
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such that the boundary values fm’, (p) exist in the sense of distributions in ' (§) and satisfy
P = thh' ($), Pinpo+Q. (62)
hh'

Here the indices hh' run independently over all the choices as in equatz'on (52). The sets By,
were introduced above. Furthermore, if a point p € MN Q4 g 1is such that no pair of
incoming and outgoing momenta are mutually parallel, then M NT 97 S within
every sufficiently small neighbourhood of that point.

The decomposition (62) can be again recast into the form (55) of Theorem 4 since
B, < B, obviously implies 7 5 4 <.7 5.4

The advantage of Theorems 3’ and 4’ over the corresponding Theorems 3 and 4 is
obvious: they allow the computation of rather big domains of analyt1c1ty of the func-
tions £, in the decomposition (55). In the immediate neighbourhood of a given real point,
these domains coincide, however, exactly with the corresponding domains given by
Theorems 3 and 4. This is clearly implied by what has been said in connection with the
representation (59a) of a local tube. Notice also that the decompositions of Theorem 4
are attached to bounded subsets py + 2 of Q4 o , 24 o itself being unbounded (it is
invariant under real Lorentz transformations!) is not of this form. This is why we call
Theorem 4’ the semi-global version of Theorem 4. It is of course hoped that an appro-
priate extension of the theory of the generalized Fourier transformation will permit to
construct a decomposition (55) valid all over £ 4 ¢ . At this point we remind again the
reader that only part of the causality of the theory [cf conditions (C) and (C’) of section
2] has been used so far. As it will be indicated in the next section on the example of the
five-point function, better local results can be expected from a better exploitation of
the causality condition.

Theorem 3’ allows to answer the question about the uniqueness of a decomposmon
(62). Suppose we have two sets of functions f,, respectively, 7,7 =1, .. ., N such that

A-

te(p) =

-—-[\/]'z

~ N _
1 Zlf (), pinpo+8£, (63)

fr(k) and f! (k) analytic in I 8,4 7 =1, ..., N. Equation (63) implies that

N ~ ~

2 (=1 =

1

and Theorem 3’ tells us then that

~

S0 =1, (B + 3 7,8

where the functions f,, are analytic in the local tubes. 7 Brs¢» Brs =conv (B, U B)). Only
when N = 1, i.e., when Z, is itself the boundary value of a smgle analytic function, is the
decomposmon unique by a well-known theorem on analytic continuation. Theorem 3’

permits also to answer the problem of gluing together’ decompositions of 7, attached to
two different real regions p, + £ and po + 2" having a non-empty intersection: only
when N =1 are the functions £, and f, pertaining to these two regions, necessarily
analytic continuations of each other, as the reader may easily verify himself.
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Thus we have proved the decomposition (D) announced in the Introduction. We
just have to set

Fo(p)=t(D)a Fr () =1, (B) 4o,
Fo=T N M or Tys0 Mo

where the restriction of 7, to the real mass shell has to be understood in the sense of
Theorem 2.

4. Examples and Comments

In the process two particles — (n — 2) particles, the essential support attached
to the scattering amplitude <{p,, . . ., p,_2|S — 1|—p,_2, —p.> can be completely speci-
fied independently of the particular values of the incoming and outgoing momenta.

Indeed, the collection of subsets &, (section 2) consist always of precisely the following
subsets:

FLo={1ePxX):I<X,|I|>1}

where X|, ={1;2; .. ;#n—2}, X, ={n—1;n}and X=X, U X,={1;2;...; n} Ac-
cording to (12), the collection % _ consists of the complementary subsets X\I where
I e &, while all the other subsets of X belong to the collection 5. In order to see this,
let us first remark that obviously p,€V,(2m) when |/|>1 and I < X,, while.
Px\1=—p; € V_(2m). It is also clear that the subsets I = {i},7 =1, 2, . . ., n, consisting
of single elements, belong to the collection J since p? = m? < 4m?. According to prop-
erty (12a) the subsets I of length |/| =# — 1 also belong to 2. What remains to be
verified is that all the subsets of the form I ={n — 1} U X} and I' = {n} U X=X\,
where X, X| < X, X] U X] =X, and X}, X, # & belong to #". Now for such an I we
obviously have p,¢ V_ and p,, ¢ V_. But from p;+ p,, =0 we conclude p? <0
$%, < 0, which proves our assertion.

From the above we conclude that the cones (35) represent the best possible result
in the case considered. The sequences R and S consist, or course, of the single points
(n — 1) and (n), so that the essential support is the union of the cones

Crza={r=(x,...,% ):x. =Xjppe e Xy =Xj 5 Ky =Xy}
% —x,€V, forallieX,; Kinay = %1 = V, forallle X,\(I UJ)} (64)
with [ = (B35 + -« 55 B j (715 - - -, Jp), k taking its value in{l, . . ., p}.

As an illustration of the general theory, we will discuss in more detail the simplest
cases # = 4 and # = 5. For # = 4 we will rediscover part of well-known results, while the
case # =5 will illustrate several claims made in the previous sections.

The four-point function

According to formula (64) the essential support of ¢, relevant for the evaluation of
(p1$2|S — 1| —p;3,—p4> consists of the single cone

Cia ={x= (1. %) X =%y, By =%y, % — Xy €V}, (65)
Its dual cone is given by

Co={p=(P1,.. .01+ - +D4=0, P+ PV} (66)
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as it is easily computed by noticing that >{p,x; = (p, + £, %, = x,) when x e C,, and
P14+ +++ + p4g=0. Therefore the amplitude 7, is the boundary value of a single function
analytic in the localized tube

Th={k=p+igpeQy geCpyNA(p)
where
le — Q_xr. Ly ={PP.:2 <Mi2’ = ]., .tn ,4, (.Pr+ps)2 <M33 and
#m2, for (7,5) = (2,3) or (3,1); p, +p2 € CV_(my5, M)} (67)

and A4 (p) is an open convex set containing the origin and depending on p € £2,,. For the
sake of completeness, we have considered the general case of particles with different
masses m, >0,r=1, .. ., 4, to which evidently our theory, mutatis mutandis, applies
also. m denotes the (positive) discrete mass in the channel 7, while A/ | is the threshold
mass of the continuum.

Let us verify explicitly that the complex mass shell 22 = m2,i =1, . . ., 4, intersects
J |, in the neighbourhood of the real points #={p, , € V. (my 2), P34 € V_ (3 4)}.
For that purpose, it is sufficient, as we have seen earlier, to verify that the real tangent
plane to .# at a given point p

2(p) ={:$19:=0,i=1,.. i, 2 = 0} (68)

intersects C 12- In other words, one has to show that there exist non-trivial solutions of
the system (68) such that ¢, + ¢, = —¢;—¢, € V. But this is always trivially possible,
provided the two four-vector couples p,p, and p;,p, are not parallel, i.e., provided we
are away from the thresholds. When we approach the threshold, the intersection in
question will, however, shrink to nothing.

On the other hand, it is known ([20], [21]) that the envelope of holomorphy of the
» point amplitude is automatically invariant under complex Lorentz transformations.
Therefore the analyticity region 7 |, just computed will automatically extend to

T, =A9) Q-) Tholk=(k,. . k):Imk, +k)?= Ims>0y "\ N (69)
where A4"is a complex open set containing the real region £2,,. The last assertion in (69)
follows easily from the fact that the extended tube in one four-vector % is the whole of
C4 minus the cut 22 = p > 0. Thus we reobtain an old result [6] : in a complex neighbour-
hood of the real mass shell .# the only singularity of the four-point function is the s
cut (remember that #'< 2, & ,that # isclosed and 2, o open!). Therefore also at
the threshold the scattering amplitude is the boundary value of an analytic function.

It is instructive to indicate explicitly how these stronger results are due to an
exploitation of the full causality condition (C). Instead of the ‘retarded’ linear combi-

nations 7; = {T(X)>, — (T(I')T(I)>, (18), one can introduce the generalized retarded
functions

’Z¢(X)=<T(X)>c+iz(—)"_l 2 LTUNTJ2) - T(L)e n=|X], (70)
v= I TyeKy

where the inner sum runs over the following ‘chain’ K, of proper subsets [, < X:
S U...UL=X, J;NJ,=2 for all j#k& J;# @ for all j=1, ..., v, and
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Jie& . ., TWU...UJ, e forallr <v—1. Here & and &’ are ‘cells’, i.e., collec-
tions of proper subsets of X similar to the couple of ‘hypercells’ &, and & _ introduced
earlier and defined as follows: consider the # dimensional real space R, consisting of
n-tuples (s,s,, . . ., s,) and in it the # — 1 dimensional hyperplane >,_;:s; + s, + - +
s, = 0. The hyperplanes s; = >;_;s;, =0, ] € Z4 (X) divide >, _, into a certain number of
conical polyhedra (‘geometrical cells’) defined by s; > 0 or <0 for all 7 € P (X). A (set
theoretical) cell is the collection of the 7 = X such that s; > 0in a geometrical cell, while
the ‘opposed cell’ &’ consists of all I < X such that s; < 0. Evidently %’ consists of the
complementary sets in & and every I € 24 (X) belongs either to & or to #’. & and &’
enjoy the properties (12c)—(12e) of the couple &, and & _ of section 3 and correspond
to the special case £ = @ of a hypercell.
From the causality property (C) follows the support property

r¢(X)=0 if [I],<[X\I], and e &. (71)

It can be seen that the support of 7 is a cone C ¢, in general non-convex, whose convex

closure is a pointed cone (displaced away from the origin if a # 0). The dual cone of C » is
given by 14)

Co={t= (b1, - . 1n): ipi =0,p,eV, forall I € &} (72)
1

Therefore the Fourier transform 74 ($) of 74 is the boundary value (in the sense of tem-

gered distributions) of a function 74 (%) analytic in the tube.J & having as basis cone
&P

T g={k=p+ig:geCy). (73)

The proof of (71) and (72) is surprisingly cumbersome and lengthy for such a simple
geometrical problem, and is contained in an unpublished paper by two of the authors
[22]'5). What is also important to us is the coincidence of #, and 7 in certain portions of
momentum space. In analogy with (19), it namely follows from the definition (70) and
the spectral condition:

P (p) =t (p) for pe Qyp (74)
where 4 [cf., the definition (16) of 2, 4 ] is the following open set
Qg ={p €Ryp_yy:pr€CV_(M)) for all I € &}. (75)

The sets {2, are therefore a subclass of the sets 2 - o corresponding to the case =

In general a given £2 will contain several different sets Q2 xo, LEm#0itis easﬂy seen
that the collection of all 2, forms an open covermg of the whole of Ran_r) SO that £ is
everywhere the boundary value of at least one 74 (k). This result, which is due to Ruelle

[25], is the usual starting point for the study of analyticity properties of the # point
function.

14)  Notice that some of the conditions defining 55p areredundant:if I =1, UI, with I, NI, =¢
and I, , € &, p; € V, is a consequence of p;, , € V.

15)  The first to introduce generalized retarded functions was to our knowledge Polkinghorne [23],
the systematic study of a subclass of these functions is due to Steinman [24] while Ruelle [25]
treated them in full generality. The first proof of (72) appeared in [26]. The definition (70) in
terms of T products appears to our knowledge for the first time here and is extracted from [22].
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Let us indicate how the domain .7 |, can be reobtained starting from the general-
ized retarded functions with the help of the special and rather elementary edge-of-the-
wedge theorem (n = 2). From (75), we deduce:

b (p) =7,(p) (76)

in 2, for & such that Q,, = Q,.

There are therefore several different functions #4 (k) analytic in different tubes
& theboundary values of which coincide on the real openset £2,,. Anelementary calcu-
lation—it was performed in [6]—shows that there are 16 different cells satisfying (76)
and that the convex envelope of the corresponding cones C 4 is precisely C . Therefore
the successive application of the ordinary edge-of-the-wedge to different pairs of the
functions 7 yields analyticity in the local tube .7 |, obtained above.

That the inclusion of general retarded functions gives more information can be seen
as follows. It is clear that the 7, have a much larger support in x space thantherg:asit
is easily seen, the convex hull of supp7; equals the whole space Ry,_;, if # > 2, so that
the Fourier transform 7} is nof the boundary value of a single analytic function, in con-
trast to the 7. If we consider the set ofall I in a given cell &, we willhave?,=%,in Qg
forall I =%, The application of the generalized edge-of-the-wedge procedure to thls set
shows that in 2, is the boundary value of a single function analytic only in a localized
tube.7 &, whilef, =7, gives usanalyticity in the whole of 7 &. Now, in order to show the
mvariance of the domain of analyticity under complex Lorentz transformations—not
to speak of the proof of the crossing theorem—global methods of analytic completion
are needed, in which analyticity near the complex infinity within the tubes.7 & play an
essential role, as it can be inferred from the corresponding proofs in the papers [20] and
[21].

The role of the generalized retarded functions for #» > 4 will be dlscussed after the
following example.

The five-point function

The essential support of the amplitude ¢, pertaining to the region £, g relevant
for the computation of the matrix element {p, p, ;]S — 1|—p4, —ps) consists, according
to formula (64), of the following three cones:

Co={x=(%y,. .. %)%, =2%,, % =2%5,% — X EV %, —%x,€V,} (77)

where (7,s,1) is a cyclic permutation of (1,2,3). Notice that the conditions x; — x5 € ?7+
and x, — x5 € V are implied by the conditions written down in (77) and so they can be
omitted. The fact that

5
Z Pixl = (Ps +pt)(xs_ xr) - (}b4 +P5)(xr_ xS)
1
when >3, =0 and x € C, immediately yields the dual cones

5 5
= P:?ﬁt 0,p,+p.eVipi+prtps=—Ps—pseV, (78)
We have therefore a decomposition into three ‘partial amplitudes’:

i, () —_-;fi(p), PeRyy, (79)
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where each /. can be analytically continued into the localized tube .7} attached to the
cone C,.

The linear combination (79) is analytic in the localized tube 7 ' =9 NI NT}
attached to the cone

~

C

I

3 ~ 5
Q Cr=1{p: ;Pi =0, + P22+ P13 +P1eV, (80)

[since p4 + ps € V_is implied by the three conditions (80), it is omitted]. The question
we want to answer is: over which real physical points p is #,. NT ' # @, ie,, C N M
non-empty? '

According to Lemma 3, section 2, a necessary and sufficient condition for that is
that the linear manifold

@(;b) ={x=(%,.. %) % -2, =Np,— NP, 0<F, 1,j=1,...5,
(A, .. As) eRs, pe M} (81)

do not intersect C\{0}, where C is the closure of the dual cone to C. C is best computed by
introducing the variable transformation (invertible in view of >3}, = 0)

O‘,.=]§s-]-j)t,(1’,8,t)2CYC1. (1,2,3),p4--?5=%‘u (82)

in terms of which C becomes

C= {{01,02,03,0):0,€ V, 7 =1,2,3, varbitrary}

and

Zp!xi = Z %(_xr + X + X — %y —x5)0',- + U(%4 —xj).

1 cycl.,
This implies immediately:
C={xixy =25, 3= — %) + (¥, — %) + (%, — xg)| €V, cyel. (1, 2,3)} (83)

Now the linear manifold &(p) will not intersect the cone C only if 0=x, —x5=
AsPs — Asps, which implies A, = A;, since we suppose the four-vectors pg4,ps non-
collinear, and if

oAb+ A+ Ap) =1, €V, (1,5,0) =cycl. (1,2,3) (84)

for some (A;,A;,A;) # (0,0,0). Condition (84) involves only the three out-going mo-
menta. We can resolve the system (84) with respect to the momenta p,. The mass shell
condition p2 = m2, p, € V ,—we again treat the case of different mass particles for the
sake of generality—fixes then uniquely the value of the parameters A,. We get

fom e T, s =y (L, 2.3). (85)

V (s +7,)?
Thus € N .4 will be empty at a point p if and only if the three outgoing momenta are
presentable in the parametric form (85) in terms of three four-vectors», in V.. In order
to see that there is an abundance of physical points not representable in the above
form, let us compute the square of the three-dimensional space-time volume subtended
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by the three four-vectors p, (85), which is equal to the Gram determinant of the 3 x 3
matrix (p,p,) formed by the scalar products p,p,. We find

2 52
4m3 m3m3

H(’?i‘f"']) det

i<j

0 < det(p, p,) = t(n, 75) < m? m . (86)

The factor 4 comes from the determinant of the linear transformation y, = x, 4 x, which
has the value 2, while the last inequality stems from the fact that the factor multiplying
(mm,ms3)? in the second equality varies between 0 and 1 when the three vectors », vary
over V. In order to prove the last inequality, we compute by brute force the expression:

IT (i +my)?—4det(n,m) = > {3n?[4nini +3(ni —n?)?]

i<J cycl,

+ 2(n? + 12 (0t 10)% (0, M) + 47 (s, me)%} - (87)

Since all the n,m, are >0 forn, € VV,, 7 = 1,2,3, we see that (87) is always >0; it vanishes
only when all three n? = 0. Therefore the last equality sign in (86) is attained if and only
if all the three 7, are light-like. Thus we have proved that the S matrix elements
{p10203|S — 1|—p4,—ps> are boundary values of a single function analyticin .4, N T
provided that the outgoing momenta satisfy the inequality

det (p, ps) —mimimi = 2(p, pa)(P203) (D3 1) — Z m? (ps p1)? > 0. (88)

cycl.

Since for physical values of the outgoing momenta the determinant (86) can take any
value >0, we see that the condition (88) excludes only a relatively thin layer containing
the thresholds. The ‘region of analyticity’ (88) can be best visualized in terms of the
Dalitz plot, where the final state configuration is described in terms of three independent
parameters, the total centre-of-mass energyM VPt wherep = p, + py +p3 = (M, 0),

and the three centre-of-mass energies £, = ($,, p)M 1 = x, M linked by the relation
E,+E,+E;=M, respectlvely the relatlon X+ Xy + x5 = 1 For fixed M »>m, +m, +
my the physical region is the region D > 0 contained in the triangle £, > m,,» = 1,2,3,
bounded by the third degree curve D = 0, homeomorphic to a c1rc1e where D is the
Gram determinant (86). If M is above a certain limiting value, the domain (88)
D > mim3m} will appear in the Dalitz plot. In the limit M — o this domain will
rather quickly converge to the whole of D> 0. In the equal mass case m,=m,
r=1,2,3, the maximal value of D for fixed M is easily calculated to be

M? 5
D= 3 M2 (—9— ~ mZ) (89)

so that for M > \/Z]:—% 3m the ‘region of analyticity’ (88) will start to appear. This value
is not too far from the threshold energy M = 3m.

The results (80) to (88) can be obtained with the help of the ordinary edge-of-the-
wedge theorem (# =2) via the generalized retarded functions by exactly the same
method as for the four-point function [see (76)]. They were therefore known to the
authors for quite some time. Let us mention that also in the general case 2 particles —
(n — 2) particles there exist physical points where the scattering amplitude is the boun-
dary value of a single analytic function.
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A comparison of the localized tube J |, (67) with the ‘extended localized tube’
J 15 (69) in the case of the four-point function, leads naturally to the supposition that
the full use of causality will lead for arbitrary » to the generalization

.~ N
L= Zl f, (90)
f~,. analyticinZ ', =1, ..., N, where
7= Y AT (1)
/\€$+(C)

A being a sufficiently small complex neighbourhood of the real point considered. In-
deed, this was proved in [7] for the case #n = 5. It was achieved through the study of the
set of Steinmann relations satisfied by appropriate groups of generalized retarded
functions: the Steinmann relations were resolved through a repeated use of the
generalized edge-of-the-wedge theorem and the invariance of the domain of analyticity
of the functions ¥, under complex Lorentz transformations was incorporated. It is
hoped that a general proof of (90) and (91) will be possible by using the geometrically
simpler method of this paper.

In order to exhibit explicitly the improvement due to (90) and (91) compared to
(79), we shall calculate the domains.7 ! corresponding to the cones (78) in the immediate
neighbourhood of a given real point p. All we have to dois to compute the extended tubes

I= U ANT, withT ={({,€)eCs:IméeV ,Imé eV} (92)

r
NeZ+(©)

where =k, +k, + Ry, E =R+ k, =E—k,, (7,5,1) = cycl(1,2,3) in the neighbourhood
oftherealpoint E=p, + P, +p3=p, & =p—p., pi €V, (my), i =1,2,3. Now accord-
ing to [27] in this region the extended tube (92) is given by the inequalities:

Imz>0, Imz >0, Im >0, e =+1, where
2=, 2, =&, 55 =w 4+ eVl -2z, w, = (£E). (93)1€)

In the vicinity of the real point p we are allowed to approximate the domain (93) by its
tangent planes, i.e., to put z =2z + 8z, z, = %, + 8z,, w, = w? + dw, and develop the in-
equalities (93) up to first order in 6z, etc. Since at p all quantities in (93) are real, we
obtain

Imédz>0,Imédz, >0,

Im[2(V, + ew,) 8w, — €28z, — €2,82] > 0, e = +1,
v

Wherez :P212r= (P —.pr)z’ W= (P _Pr!P)’Ar = (P _Pr’p)z - (P _“Pr)zpz' (93.3.)

This is the sought local description of 7%, It ceases to be valid only at points where the
determinant A, vanishes, i.e., when the vectors p and p, become parallel. In (93a) we
have to insert

3 3
az=a(z k,)2=28k3+2 S
1 1 r<s

16)  There is another part of the boundary of the extended tube in two four-vectors—the so-called
S curve. This is, however, very far from the points §, =p — p, € V,, £ = p € V, considered.
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and similarly for 8z, and éw,. Since in this linear approximation the complex mass
shell 4, is given simply by 8%2 =0, r=1,2,3, 3(k,,k,) = u, + iv, arbitrary, (7,s,f) =
cycl(1,2,3), we find after an elementary calculation that 7! N .4, is locally described
by the tube:

1 (v,0,) = (VaZ — p2 — ex)o, + [VaZ — p2 + ez, — pd)Jv >0,
e=+1,1,>0,v=v,+v, +v,>0. (94)

Here we have used the variables of the Dalitz plot already described:
m
pr=M2 (p,,p)=E.M=x M2 % +2,+x,=1and p, = M’ (95)

Note that (95) and p, € V, (m,) imply the inequalities:

0<p,<x<3(l+pi—pi—pd), (s ¢ =cycl (L,23)
3

and > p,< L (96)
1

The cone (94) can be drawn in the two-dimensional plane of the variables v, and v: it is
the sector between the two straight lines [} = 0, /; = 0 contained in the first quadrant
v,>0, v > 0. For x, = u, the two straight lines /; = 0 degenerate intov, — (1 — u,)v =0.
When %, > u, the set

v=p>0, v,=(1—-pwu)p>0 (97)
[note that (96) implies 1 — u, > 0 when x, > u,] is always contained in (94) since
1L ) = @ — ) VAZ— i+ epp, (5 — ) > (2 — ) Val — 2
— o (8 — ) > 2(1 — ) VaZ— p2 > 0 if x, — p, > 0. (98)

Here we have used the inequality Vx2 — u2 > x, — p, and (96). Therefore, the open cone
(94) is always non-empty, excepting the case x, = y,. But this case corresponds exactly
to A, = 0, when the linearized description of 7 /! N .4 ceases to be valid. Now x, = p,,
1e., E, =m, corresponds to the configuration:

Pr = (mr)é): Ps,t = ( v Pl F m} :{:1-5)

r,s
>

in the centre-of-mass system p = (M,0). In this configuration no two vectors are parallel,
except when $ = 0. So from Lemma 2 of section 2, we conclude that 7! N ., is always
non-empty, except when p, =m,e, r=1,2,3, e2=1, ee V, i.e., except when all the
three four-vectors p, are parallel. This is certainly an improvement compared to (78),
(79).

Let us consider now the intersection7 ! N T ! N M, 7 #s. Wehave to look at the
intersection of two sets (94), say » = 1 and » = 2. By choosing v,, v, and v as independent
variables, we immediately see from the inequalities (98), » = 1,2, that the set

v=p>0, v,=1—-pu)p>0, r=12

iscontaineding |} N7 N M. provided x, > u, forr = 1,2. As before we conclude that
TINT !N M, r+#s is always non-empty with the exception of the case when all
three vectors p, are parallel. This is interpreted by saying that the five-point scattering
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amplitude can be decomposed everywhere only into two partial amplitudes each of
which is restrictible to the mass shell. The only exceptional point is the threshold
D=t e, r=1,23. _

We are still left with the case of the intersection 7 Y N9 3 NJ 1N A, It is de-
scribed locally by the inequalities:

I (vv)>0, v,>0, e=+1, »=1,2,3 (99)

[the inequality v > 0 is dropped since it is already implied by (99)]. As it is readily seen,
the set (99) is empty when the point # is in a neighbourhood of the threshold p, = m,e,
r=1,2,3. Now, when the masses are equal (m, =m) it can be proved by a chain of
ingenious inequalities, which will not be reproduced here, that (99) is non-empty
whenever

M >4, 8m (100)

where M is the total centre-of-mass energy!”). This shows that with the exception of a
rather small set around the threshold p, = me, » = 1,2, 3, the five-point scattering ampli-

tude is the limiting value of a single analytic function, which is a palpable improvement
of (88).
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Appendix

Proof that C,,, has interior points
Chh' ={x: fOI' a.].]. I e y+ U %‘, xh(l) e xhl(x\l) € f/-+}

We can picture the whole list of these conditions by drawing the following
diagram: let 4, . . ., 4, be distinct points in R,. If the condition x; — x;, € V, appears
in the list given above, we draw a line between &, and 4, with an arrow in the direction
k — 7. In this diagram there will be, af most, two lines joining @; and a;, namely one
pointing from a; to @, and another pointing from a, to a; (even if, e.g., the condition
x; — x, € V, appears many times). We claim that the graph obtained in this way is a
connected graph. Indeed, if it were not, there would be two proper subsets I and I’ of
1, ..., nsuch that no line connects {a;} ., with {@;};cp,and: ITUI"={1,.. ., 0}, IN T
= @. Then one of these subsets, say I, would be in &, U.JZ; the condition
Xncny = Xy ry € V. would be represented by a line joining {a}, to {4,}, in contradiction
with our hypothesis.

Because this diagram is connected, it is possible to make it into a tree diagram by
striking out a few lines. We claim that, if the corresponding conditions x; — x, € V', are

17} This estimate is due to A. Martin. The authors are very thankful for his generous help.
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struck out from the list which defines C,,,, the remaining conditions define a ‘simplicial’
cone, i.e., that the remaining conditions can be written x, —x, € v, Xypy—%p,_, €
V. with the x,, — %,, being independent variables. This is easﬂy proved by induction on
the number # of vertlces of the tree: indeed a tree with » — 1 vertices is obtained if
one extremity of the n vertex tree, say x, , is cut-off. The line thus severed corresponds
toa conditionx, —x, € V.. Therest of the conditions involve only variables where
x,, does not appear and are linearly independent of x, —x,. .

As a consequence, we see that C,, is always contained in a ‘simplicial’ cone. Hence

it is a proper cone and its dual has interior points.

Final Remark

The present work is a contribution to the study of the local analytic structure of the
scattering amplitudes, from the point of view of the general principle of quantum field
theory. It is an interesting problem to compare these results with those obtained in the
framework of pure S matrix theory, as developed especially by Stapp and co-workers
(8]-[10]. In this connection we draw the attention of the reader to a very recent investi-
gation by Cahill and Stapp [28] about the links between the algebraic aspects of the
two points of view.

It is, however, clear that the postulated cluster properties for the S matrix with
exponential rates of decrease, imply a richer local analytic structure of the amplitudes
near the physical regions, than the corresponding structure obtained on the basis of
local field theory: this is because, under the name of ‘macrocausal laws’, the S matrix
theory includes from the beginning the assumption of the short range character of
strong interactions together with relaxation-type assumptions and the usual principle
of causality.

Concerning the continuity properties of the scattering amplitudes, as discussed in
section 2, it would be interesting to compare them with the analogous analysis by
Williams [29], who approaches the problem with rather different methods.
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