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Rigged Hilbert Spaces in Quantum Field Theory:

a Lesson Drawn from Charge Operators')

by J.-P. Antoine
Institut de Physique Théorique, Université de Louvain
and

Institut de Physique Théorique, Université de Genéve

(17. VI. 71)

Abstract. Motivated by the problem of defining a charge operator, a systematic study is made
of several classes of rigged Hilbert spaces suitable for Quantum Field Theory. The result is that
(essentially) only one of them satisfies all the requirements, namely # g c # C (# q)', where
H qi is the well-known space of quasi-local states. It is then shown that, even in the case of a non-
conserved current, the charge operator always exists as a continuous operator from g4 into

(H# q)'

1. Introduction

Ever since the pioneering work of Wightman [1], [2], the theory of distributions
[3] has been an essential ingredient of Quantum Field Theory, although it was soon
realized that other kinds of generalized functions might be also useful [4]. All of these
fall in the general scheme of rigged Hilbert spaces (RHS) developed by Gelfand et al. [5].
It was shown indeed explicitly by Borchers [6] (see also [7], [8]) that the Wightman
approach fits into this framework perfectly.

More recently, when the concept of current algebra became popular [9], the
problem arose of defining a charge operator as the space integral of a density, itself a
current operator (operator-valued distribution):

o) = [ @0 &

Of course this integral does not make sense as it stands, but a suitable definition was
given by Kastler et al. [10]:

Q) = lim lim jo(f= fr) , | (2)

T—-0 R—co

1) A preliminary version of this work was presented at the Conference on ‘Special Topics in
Quantum Field Theory’, University of Missouri, St. Louis, July 27-31, 1970.
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where fre 2(R3), fr € 2(R) are suitable test functions?) such that, in the sense of
tempered distributions:

limfr(x) =1, limfr(x°) = 6(x0 — ¢) .

R—>co ~ T—0
With this definition and pure Hilbert space methods, fundamental results were ob-
tained by Kastler et al. [10] and also Schroer and Stichel [11]. But Katz [12] and de
Mottoni [13] later suggested recasting the results in the RHS language, for the follow-
ing reasons. The definition (2) is still incomplete; one has to specify in which topology
the limit is taken. From [10] and [11] one sees that both strong and weak operator
topologies are excluded. Then one considers the following sesquilinear form over

D x D
Qpr, g2) = }{im (1| jo(frfr) | @2, (3)

where @ is some dense domain of the Hilbert space # containing all local and quasi-
local states. In the general case (nonconserved current), this sesquilinear form is not
separately continuous in the Hilbert space topology, and therefore does not derive
from an (unbounded) operator in s [10]. This is the standard situation leading to a
RHS [14], [15]. One just has to put on @ a stronger topology in order to get the RHS:
Dc#cd, (P isthe strong dual of @), in such a way that Q(. , .) becomes a continuous

sesquilinear form over @ X @, or, equivalently, there exists a continuous operator éop
from @ into @’ such that:

Qler, @2) = <Qop 1, @2 ,

where (., .> is the canonical bilinear form over @' x @. This was exactly the sugges-
tion of Katz [12] and de Mottoni [13]. However, their treatment is partly formal,
because they neglected the topological aspects of the problem. We will study these in
the sequel: continuity of the embedding @ — #, nuclearity of @, action of field
operators and Poincaré generators on @, etc. But, in fact, the problem of charge
operators merely serves as a motivation. What is really at stake is the question of the
usefulness of the whole RHS approach to field theory. The answer we will find is
essentially negative, but the analysis yields some interesting by-products.

The material is organized as follows. In Sections 2 and 4, we study various
candidates for the space @ in a general field theory. Section 3 is devoted to a comparison
of the respective merits of the so-called differentiable states and the quasi-local states
as building blocks. We return in Section 5 to the problem of charge operators in the
essentially unique RHS available and give some general conclusions in Section 6.
The differentiable states are studied systematically in Appendix A, whereas Appendix
B lists the relevant properties of the various functional spaces used in the text.

Throughout the paper, we assume the usual axioms of a Wightman field theory
for a neutral, scalar field 4 (x), [1], [2], including locality and the sfrong spectral con-
dition (presence of a mass gap). We denote by U(a, /) the representation of the Poin-

2) Here, and throughout the paper, we follow the standard notation of Schwartz [3] for the
various spaces of test functions or distributions; for the convenience of the reader, we have
listed in Appendix B the properties of these spaces used in the text. We will not consider
other spaces than those described in Schwartz’ book.
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caré group underlying the theory and by P#, M* (u, » = 0, 1, 2, 3) the representatives
of the infinitesimal generators of translations and homogeneous Lorentz transforma-
tions, respectively.

2. RHS built from Differentiable States

The first RHS introduced in field theory, by Borchers [6] (see also [2], [7]), was
based on quasi-local states:

; (4)

where % is the linear span of all states of the form:

qucc;fc (%ql),

I (p(n) > = A”((p(”)) ! 0> , (P(n) = y(R4n)

Through the identification:
An(p™) | 0) > g e F(Rim)

#q 1s given the topology of #[Fo, where & = 332 (& (R4 (topological direct sum)
and & is the closed subspace of & corresponding to all states of vanishing #-norm.

This s space was recently studied in detail by Wyss [8].

In their paper [11], Schroer and Stichel already introduced a larger set of states,
namely, states of the following form:

| v :fd?’xh y(p> (5)

where @ € #;, U(x) is the restriction to space translations of the Poincaré represen-
tation U, and 4 is a smooth function of x such that
lim |x[2A(x) = 0. (6)
|2l 00 ™~ ~
Similar states were later proposed in [12], [13] for building a RHS. However, one can

do better if one remarks that the argument of [11] actually holds true for a much
larger set of states. Indeed:

(i) The smoothness of % is never used, whereas the behaviour at oo, equation (6), is
crucial. \ -

(ii) The quasi-local character of | > is used in two ways; first, it ensures the validity
of cluster properties in the space variables, namely [2]:

<<;01|U j(p2>ey[x] forany @ie #qu, 0| @ =0, 1=1,2;

second, the inverse of the Hamiltonian, (P°) -1, is defined on all quasi-local states
orthogonal to the vacuum: if ¢ € #,;, (0| ¢ = 0, the strong spectral condition
implies the existence of y € #y such that | gy = P°| >, ie. | > = (P9 ¢).
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But it is known [16] that cluster properties are mere consequences of the structure
of the representation U (strong spectral condition), and that they hold true for
arbitrary states g1, g2 belonging to s, the manifold of all C*=-vectors for U (cf.
Appendix A). Also, g € #*, (0| ¢> = 0, implies that (P9)-1| ¢)e #>, as it is
readily seen. Thus we are led to choose as a candidate for a space @ the linear span of
the states | v) = U(h) | ¢> of equation (5), where now % € ", some space of distribu-
tions to be determined later, and @ € #, the elements of which we will call differen-
trable states. s> is understood with its natural Fréchet space topology and the
structure (cf. Appendix A):

#* = S(RY) @, F(R.) (7)
(completed projective tensor product [17], [18]).

Propcsition 1. — The map « defined by u(h, ¢) = U(k) | ) is a continuous bilinear
map of 4 x #> into #, with dense range, iff # < 2;. (continuous embedding).

Proof. — First U(h) | > € # iff h € 2/,; indeed:
UG o> ]2 = <p| Ulx i) | @

— | g o
with:

g(x) = (b * h) (x) (convolution)

~

nx) =<e| U® | @>.

The matrix element # being in &, this norm is finite whenever g = A x h € &,
i.e. he 9y..

Second, the range of # is already dense in # if #" = Z; ind=ed #* is dense in #,
any @ € #* can be identified with U(d) | ¢> and é can be approached by a sequence
of elements of 2; the property holds a fortiori for any space # containing 2 (alge-
braically and topologically), in particular for all the spaces we will consider.

In order to establish the continuity of #, we note that:

UM | @ |2 =<g <2 pm) .,

where p’, p are continuous seminorms over &' and & respectively, and <., .> is the
canonical bilinear form over &' x %, which is separately continuous, hence continuous
([17], Theorem 41.1). Furthermore, the convolution map is continuous from 2;. X Z;»
into Z; «, a fortiori into &#’,i.e. there exists a continuous seminorm #' over ;. such
that:

p'(g) < [P'(m)]2.

Finally the matrix element 7(x) is the Fourier transform of the function (see Appendix
A for the notation): )

2

1) = | delnt) (g + w1 pip,
M’.



Vol. 45, 1972 Rigged Hilbert Spaces in Quantum Field Theory 81

and standard estimates show that there exists a continuous seminorm @ over #
such that:

p(n) < [w(p)]?.
Altogether we get, with s a continuous seminorm over #’:

| UG | o> |2 < 7'(h) w(e)
< s(h) w(g) . QED.
Obviously the manifold generated by the states | v) has the structure of a tensor

product # @ #. We topologize it as the projective tensor product #° &, #*
[17], [18], and assume from now on that # < 2j.; thus continuity of » is equivalent

to the continuity of the corresponding mapping u: # ®,, #° — #. Hence the kernel

of u, & % 1s closed in the above topology. After division by this kernel and completion
of the quotient, we get:

-~

K R, H
N o ’
a complete TVS with continuous embedding into # (= denotes completion).
Proposition 2. — The TVS @=[#7] has the following properties:
(i) @[] is nuclear iff # is nuclear and # finite-dimensional.
(i) @[] is invariant under U(a, A), for all (a, A) € B.
(iii) @[] is a Garding domain for the operators P#; the same holds for M*" iff x
is a continuous multiplier of . 3
(iv) The following inclusions hold, with all embeddings continuous:
D<[F)c #% < P[0 c D¥[D,]c#, 1< p<<2 (9)
where the sign ‘<’ means that the two spaces coincide as vector spaces, but #°
has a stronger topology.
Proof:
(i) o is nuclear iff & is finite-dimensional; E ®, F is nuclear if £ and F are, and
so are its quotient by a closed subspace and the completion of this quotient.
(i) Using the group law of P one finds, for any (a, A) € P:
Ule, 4) UG | 9> = Ulhy) Ula, A) | g> € D= [#]
since /4 € # whenever h e A, and Ul(a, A) | ¢> € #.
(iii) The commutation relations of the Poincaré Lie algebra imply:

PUUG) | gy = U P*| ¢y, uw=0,1,23,

D<ot = ( ®)

MR U®R) | @ = f &% h(x) U(x) { M7t + ' Pi — x1 P} | >,

MU | > —fd% h(x) U@) {MO + xt PO} | @, §,1=1,2,3

By definition, P#, M*” map #* into itself continuously. Therefore, P* maps
@[ 4] into itself continuously, but M, Mo will do it iff multiplication by x?,
i.e. the map: # 3 h — ! h € A is continuous on . This is fulfilled for # = &
or 0, but not for @,, or 27 ,.
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(iv) The only part deserving a proof is the position of #° among the various @=[X'].
As said before, #° may be identified with the set {§} ® #> c @><[¢,]. On the
other hand, a vector | ) = U(h) | ¢) belongs to #* iff 4 e 0;; indeed, in the
{p, m?}-representation of C=-vectors (cf. Appendix A), one has:

plp, m) = f % h(x) =% glp, m2) = h(p) plp, m)

-~ ~ ~

sothat wye #>* = & @,, F iff € Oy, i.e. h € 0. Moreover, by the identification
| ¢> <> U(0) | @>, #° has the topology of separately continuous bilinear maps,
(since the multiplication Ox X &% — & is separately continuous, but not con-

tinuous [3]), i.e. the topology of the inductive tensor product ¢ @ # (in
the notation of Grothendieck [18]), which is strictly stronger than the topology

of 0. ®, #%, i.e. that of ®=[¢']. QED.

Borchers has shown [19], [20], that a field smeared in the time variable only is a
C*-function of x, bounded together with all its derivatives; more precisely:

A, fo) | wy e #(#), forany fie F, ypeHq,
or, equivalently:

Ch|Alx, fi) |w>eB forany he#,we #q.

The properties of differentiable states allow us to improve this result slightly.

Proposition 3. - For any & e #, y € #,, the matrix element (i | A(x, fi) | > is a
C**-function of x, square integrable with all its derivatives:

| Ax, fo) | w> € Dpa )

Proof. — Let | y» = A(y) | 0> € #4;. Then:
| A, fi) | 9> = <h| Alx, f2 AGy) | O
= (b | Aly) Az, fi) | 00 + <k | [Ax, fi), A()] ] 0>

The first term equals <& | A(p) U(x) A(0, fi) | 0> and belongs to Z;. (Proposition 8 in
Appendix A), since {0 | 4(0, f) | 0> = 0 in all reasonable cases (an exception to this
would be a current operator generating a spontaneously broken symmetry). As for

the second term, it follows from locality and standard estimates that it belongs to <,
thus to Z;..

3. Differentiable vs. Quasi-Local States

So far we have used #* as the natural domain of cluster properties, but this
choice has several drawbacks. First, it is true that #, ¢ #* (see Proposition 4 below).
But one cannot, in general, express ¢ € # explicitly in the {p, m?}-representation

3) Contrary to the corresponding result of {197, [20], the same property does nof hold for matrix
elements of A(”)(xy, ..., Xn; f1), fre F(R"), n > 1.
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characteristic of differentiable states. Let | ¢ = A ®)(g™) | 0 € #4. One can show t‘hat
the representative ¢(p, m2) can be obtained from ¢® if, and only if, A is a free field

or a generalized free field. Indeed in order to compute p(p, m?) = (p, m? | @) (we use

the suggestive Dirac notation, which may always be made rigorous with a RHS [15)),
we need the kernel (p, m?| p1, . . ., pa), and this requires some information about the

Wightman function W) which is unknown in general. All of this stems, of course,
from the form of the scalar product in #: {g|y) = (Wem, ¢+ X ), for
@, w € #q [2]. The only exception is the case of a (generalized) free field, where the
above kernel essentially reduces to 6@ (p — pr — - -+ — pa).

Second, # is in general not nuclear (whereas #; always is), so that @[] 1s
not nuclear either. But nuclearity is essential in a RHS approach (kernel theorem,
generalized spectral theorem [5], [15]).

Third, and more serious, we don’t know how the field operators A4 (g) act on #.
It is actually quite possible that #° would not be invariant under A(g). All of this
becomes clearer if one compares the present situation with the general construction of
a RHS in the presence of a symmetry group [15]. There one also ends with a space (2

of the form # &, ¥, where # takes care of those operators derived from the sym-
metry, and ¥, which is nuclear, takes care of the other ones. Here, of course, the
other ones are precisely the field operators. # is by dafinition adapted to U, P*, M*"
(and in this respect o is redundant), but not to field operators. In order to remedy
this defect, we need a space ¥ which is nuclear and mapped continuously into itself
by all field operators; 2 then will take care of U, P*, M**. The obvious candidate for
such a space is #, itself. We will, therefore, replace #> by #y is our previous
arguments and study the corresponding spaces @.

4. RHS Built from Quasi-Local States

The space of quasi-local states #,; was described in Section 2. But here again,
obvious generalizations are at hand, which were considered by Kolm [20], From the
fact that vacuum expectation values are C*°-functions of the space variables, bounded
with all their derivatives, one sees that it is possible to smear the fields in the space
variables with any distribution from Z; ., in particular from @, or #4). ;. is discarded
for being neither nuclear, nor invariant under M*”; we are thus left with two spaces:

F

yf ~  — 190 o 9” 4n ,

ql 5:9 » ol n;; (R )

i 0. / | o R |
Hum ==, 0,0 7= 3 [OR) &, SR,

A

where o, Ao are the closed subspaces corresponding to states of vanishing #-norm.

H g has the same =-algebra structure as #; (8]

4) For a single field operator (n = 1) one can go further up to &y, in view of Prop. 3.
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Proposition 4. — One has the following inclusions, algebraically and topologically:
Ky S Hgc #=c#, (10)
where <, as usual, means ‘algebraically identical’.
Proof:
() Hu < #u

The inclusion, both algebraically and topologically, is obvious. The algebraic
equality follows from the spectral condition, by an extension of an argument
due to Kolm [20]: for any ¢s(x) € O,(R3), fi(x°) € #(R), there exists 5(x) € F(R4)
such that: i
Algs, fo) | 0> = A(n) | 05 .

(i) Hucw
This follows immediately from the structure of 3%(1; [8]:

| A(p) | 0) |2 = Tem, gmrs x gy,

< e plpmt x gm)

< ¢[g(p™)]?

where p, ¢ are continuous seminorms over O.(R$?) R, & (R2%), O(R3") é,, L(R),
respectively.

(ili) #y c H#>
By definition, # is the largest domain of # invariant under any element L of
the algebra generated by {P#, M*}, with the corresponding projective topology
[14], i.e. the coarsest topology that makes all the mappings L: #°° — # con-
tinuous. But .%”q; has the same property. Indeed, L is defined on Hy by:

0 QS

Ao

L(A(@)|0)) = AL ¢)| 0>, ge

and this is a continuous map from 92”,1; into 5, because the map ¢ — L ¢ and

the embedding Hq — H are continuous. Thus the embedding Hq — H#™ must
also be continuous.

As a trivial consequence of this result we have:

Proposition 5. — The statement of Proposition 1 holds true with 5, or é%q; instead
of #*.
As before, we may now build appropriate spaces @. Define
(=)

(~) A R4 -
P[] = (ﬁ;%f_‘”) ,
-

_ (~)
where 4", is again the kernel of u: # ®, #yu — #. Then:
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Proposition 6

=)
(i) The TVS (Dg; is nuclear iff " is nuclear and it has the propertles (ii)—(iii) of Pro-

position 2.

(ii) The following inclusions hold, with all embeddings continuous and ‘<’ standing
for ‘equal as vector spaces’:
DulS] € Bul¥] < Hu < Bul0)] € Hu = DulC]]. (12)

(i) For any ¢ € &, A(p) maps continuously #,; into itself and the four other spaces
into #y; for any @ € 0} 0: @ &, A(p) maps all five spaces continuously into oy,

Proof:

(i) The proof is identical to the one given in Proposition 2, using the fact that
Hal, ﬁ%q; are Girding domains for P#, M#.

(i) For any test ‘function’ 4(x), one has immediately:

f~)
Uh)‘(p>=[k*(p>, [(p)E.%‘”qz.
Therefore, it follows from the continuity properties of the convolution [3] that
w:{h | ¢>} > Uh)| ¢> is a separately continuous map & X Hg — Hq
(0, X #q — #q), and a continuous map & X Hq — Fqa (0, X .%;q; — Ji;qz).
Using Proposition 4 and the argument of Proposition 2, one gets all the inclu-
sions (12) The last equality follows from the fact that the bilinear map
0, X éfq; —>,;f’ql is continuous, thus also the linear maps ¢, ®, Wq; el qu;,
q;[@] e %”ql, this is not the case with #° or #y, since the bilinear maps

O, X H*® — H>, O, X H#q— Hq are not continuous (cf. Appendix B).

(iii) Obvious by direct check, from the relation:

Am)(@m) Uh) | pm > = | pm) @ (b xp®)> . QED.

In conclusion, if we want a space @ which is nuclear, continuously embedded
into # and a Gérding domain for P#, M*, and all field operators, our choice is rather
limited. The relations (12) tell us that only one manifold of states will do the job,
namely #; (with its various topologies). In other words, without any additional in-
formation on the field operators, there is essentially (i.e. up to unnecessary compli-
cations) only one RHS available, namely the well-known Borchers algebra
HqgCHC(Hy)'!

5. Properties of Charge Operators

We will return now to the problem of charge operators raised in [12], [13]. Thus
we consider a Wightman field theory, with the strong spectral condition, in which
there is a distinguished quadruplet of fields 7,(x) (# = 0, 1, 2, 3)%), local and relatively
local with respect to all other fields in the theory. The divergence, D(x) = 0* 7,(x),

5) 7u need not be a Lorentz four-vector [10].
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has the same properties, but nothing more is assumed, in particular D(x) does not
necessarily vanish. Then we consider the following sesquilinear form over #y X #g
(see Section 1):

Qgr, @2) = lim g1 | fo(fr fr) | 2>, @1, @2€ Hq, (13)

R— oo

where fr, fr are the usual test functions of [10] such that limfr = 1, limfr == 0 as
tempered distributions®). e =0

Proposition 7. - Q(.,.) is a continuous sesquilinear form over #y X #yu or,
equivalently:

Qor, p2) = (Qop 1, 2>, @1, g2 € Ky, (14)

where éop is a continuous (antilinear) operator from #y; into (#4)" and (., .> is the
canonical bilinear form over (#g)' X #q.

Proof:
Write
| p> = A(g) |0y, i=1,2
Qlpr, g2) = Qulgr, @2) + Qz(qr, @2)
with
Q1(g1, @) = lim {gn | [jo(frfr), Algpe)]| 0>,

R— o0

Qelgr, @) = lim (g1 | A(ga) folfr fr) | 05 -

For the first term, we write | x(x)> = [jo(x, fz), A(@2)]| 0>. Again || | x(*)) || € #(R?)
by locality. Then, using standard estimates, one gets

| fdagcfﬂ(f) {pr| 2@ | < || o] f @x fr(®) || | 2(2)> ||

<cerlf gl (] 21D
and therefore:
| Qulpr, @2) | < cf| o] 2(]] 21])
< || g || 9lge) .

where $, ¢ are continuous norms over & and #y; respectively, and ¢ = lim ¢g.
For the second term, the argument of [11] gives immediately: e

| <g1| Alge) jo(fr fr) | O | <[ <y | ir(frfr) | 0>7| + [ <y | DUrfr) | 0_>| )

6) The limit T — 0 is superfluous in the conserved current case [10]; we will not be concerned
with that problem here and will concentrate on the infinite volume limit.
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where | p> = (P%)~1 A(g1) A(ps) | 0> € #4 and f, denotes the radial component of .
The first term vanishes as R — oo then:

I Diffa)| 05 = [ d% fals) o U(p) D) | 0 = s D gy
with

n(x) ={yp| Ulx) | Dy e #(R?),

| D> =D(0, fr) | 0> € #qr .
Therefore, since fr — 1 in &', we have:

lim | {fr, p> | = | dimfr, 1> |
Pos s R— o0

< p(n)
< dq(y) ¢'(D)
< 4" ¢'(D) ¢"(¢1) 9" (@)

where ¢, ¢' . . . are continuous norms over #y;.
Finally:
| Qlpr, @2) | < ¢ || g || glp2) + 4" ¢'(D) " (qn) 4" (gp2) - (15)

First case: D(x) = 0.
Equation (15) then becomes
| Qe ) [ <cll gl

for any fixed 2 (or vice-versa). From this follows [10] the existence of an (unbounded)
operator Qop in #, with domain D(Q,p) D #¢, such that:

Qlpr, @2) = g1 | Qon | @2) .
Second case: D(x) == 0.
Equation (15) then reads:

| Q1. @2) | < c7(g) 7' (g2)

where 7, #' are continuous norms over #,, i.e. Q(.,.) is a continuous sesquilinear

form over #y X # g4, or, what is the same, there exists a continuous operator Q.p
from #,; into (#y)’ such that:

Qpr, @2) = <§op @1, @2 .

6. Discussion

Trying to build a RHS appropriate for a general Quantum Field Theory, we have
found that the solution is virtually unique, namely #4 c # c (#q)'. Other RHS’s
are more complicated but not essentially different (Proposition 6), or, like those
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suggested by Katz [12] and de Mottoni [13], they lack one or another vital property:
continuous embedding into #, invariance under M*’, nuclearity (thus the kernel
theorem and the general spectral theorem, for P, e.g. [20]), . . . etc.

On the other hand, when we look for a reasonable definition of the charge operator
(in the case of a nonconserved current) in the RHS, we find that the corresponding
sesquilinear form Q. , .) is already continuous in the worst case, i.e. when we assume
nothing of D(x) besides its being a Wightman field. This means, should we have some
additional information about D(x) (e.g. smoothness in momentum space, as in the
PCAC condition [9]), there is no room in the formalism to exploit it. More precisely,
there is no way of correlating those properties of D(x) with the behaviour of the

operator @op (larger domain, for instance); the formalism is not flexible enough, for it
offers choice only between two spaces, s and ;.

In conclusion, a systematic use of RHS’s in Quantum Field Theory does not
look very promising, at least in the original form of Gelfand et al. [5]. However, the
last remark points towards a possible improvement. An answer to the above criticism
would be to enrich the RHS further, by providing, so to speak, a way of interpolating
between ), and #:

Hg S CHECHy S CHC e (H) = (Hp) < ()

An example of such a structure (which is built into the RHS, but not used explicitly)
is afforded by the nested Hilbert spaces of Grossmann [21]. If one does not want to go
into this, the only alternative is to stick to Hilbert space techniques (which can never
be dispensed of totally, since some concepts, such as selfadjointness of an operator,
are defined only in a Hilbert space). For the definition of charge operators and related

problems, a detailed review of the Hilbert space approach was given recently by
Orzalesi [22].
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Appendix A: Poincaré C~-vectors

Let G be a connected Lie group, U a strongly continuous representation of G
into a Hilbert space #. A C>=-vector for U is a vector @ € # such that the s#-valued
function g — U(g) @ is C* on G. The manifold s# > of C*-vectors is then given by:

d oo
H? =N nD4}, (A.1)

i=1n=1
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where Ay ... Aa (d < oo) are the representatives of a basis of the Lie algebra of &
(usually noted dU(Ay)) and D(A) c # is the domain of the operator A4 [23]. On #*
there exists a natural topology, given (for instance) by the countable set of seminorms:

Pro...ndp) = || AT .. A ||, e, (4.2)
n=20,1,2... for 1=1,2,...,d
where || - || is the Hilbert space norm of #. This topology makes #* into a complete

metric space, i.e. a Fréchet space [17].

Note. This is of course the projective topology with respect to all the mappings
A H#% — #, where 4 is any element of the algebra generated by the restriction
to # = of A1... Aq [14].

In our case, the physical representation of the Poincaré group B underlying the
theory is characterized by the following norm:

[ 2][2 =10 ]2+ f do(m?) f ap(pr + m2)-12 | hip, m?) |2, (A.3)
MS

where | 0) is the unique vacuum, M2 > 0 (mass gap), ¢ is a tempered measure, and
we have written:

hp, m2) = h(p, p°) | o — 2 (restriction to the mass shell) .

Remark. For the sake of simplicity, we leave out all spin degrees of freedom (see
also equation (A.4) below). Since each irreducible representation [s, 7] of *B corres-
ponds to a finite, discrete spin, their inclusion is trivial (discrete direct sum of
finite dimensional representations of S U(2)) and does not change the argument.

In this representation, the Lie algebra of P is represented by the following opera-
tors [2]:

PE o spb, B=1,23,

PO > (p® + m2)if2,
L

ot P ape

ML s pi B l=1,2.8,

MO > (p2 + mz)ma%l, 1=1,2,3. (A.4)

Taking arbitrary powers of these operators, according to equation (A.2) we find that:

’

0
g || Bt Bap ) ol < oo,

for arbitrary polynomials B, Ps.
This implies for s#> the following structure:

# 2 Pp) @ Fme], (A.5)
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where #3[p] = &(R®) is the usual Schwartz space of fast decreasing C*-functions [3]
and #[m?] = F#(R,) is a Fréchet space of fast decreasing, continuous functions of m?

(no differentiability required); ® denotes a completed tensor product (the three usual
topologies of the tensor product coincide here since & and & are both Fréchet and &
is nuclear [17]); finally ~ denotes an isomorphism of topological vector spaces.

Proposition 8. — The topological vector space #* has the following properties:

(i) > is nuclear iff # is finite dimensional. |

(ii) (H#) ~ F'[p] é.z F'[m?], where &' is the space of tempered distributions, %’
the space of %empered measures, in the indicated variables, and é),, denotes a
completed projective tensor product [17].

(ili) For any ¢ € #°, he #, the matrix element (k| U(x) (1 — Eo) | ¢> belongs to
the space Z;.[x] (C*-functions, square integrable to~gether with all their deri-
vatives); Eop :~| 0> <0 | is the projection on the unique vacuum | 0>.

(iv) @ e #>, (0| > = 0, implies the existence of y € #°° such that | ¢> = P°| ).

Proof:

(i) The isomorphism (A.5) implies that #* is nuclear iff # is nuclear [17], [18]; but
this cannot happen, unless & is finite-dimensional; indeed, no nuclear space is
known which consists of functions satisfying only a condition of decrease at co;
a condition on differentiability is required in all cases.

(i) This follows from the fact that both & and # are Fréchet spaces [17].

(iii) The matrix element can be computed in a straightforward way in the {p, m2}-

representation:
n(x) =<k | Ulx) (1 — Eo) | ¢
== Jd?’zbe“‘l"i‘ 2(#)
with

oo

1) = [ delom) (g2 + w202 hip, ) gp, )

~

ME
Since ¢ € #*, the following estimate holds, uniformly in :
(p* + m?) =12 | @(p, m?) |2 << B y(m?) (A.6)

with y a fast decreasing function. Using the Schwarz inequality in L2[m?], we
get immediately:

[ 1)< el bl — | <01 B39 < oo

with
e = B [ do(m) piom).

M%
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Thus y € L2, Similarly P(.) y € Ls for any polynomial PB(p), since the estimate
(A.6) holds for | B(p) || ¢(p, m?) |2 as well. In other words, y € Dy, i.e. y is the

Fourier transform of a function from Z;., namely #.
(iv) The proof is identical to the one given by Kastler et al. [10], the essential ingre-
dients being the presence of a mass gap and the {p, m?}-representation of P° as

(2 + m2)L/2;

e Sp] @ Flm] = (p* + mp2 g e S[p) ® Flm3) .

Remarks

1. Using, instead of the above, y € L1, B(.) y € L1, one gets: 5 € Dy~ = &, a well-
known result of Borchers [19].
2. If he s#* also, then a similar argument yields:

0
(o) et
1€
XE.@LE héLz: %

and thus # € &, also a well-known result [2], [16].

Appendix B: Schwartz’ Spaces

For the convenience of the reader, we list here the various functional spaces used
in the paper, with the notations of Schwartz [3]. They can all be presented in the
following diagram, where all embeddings are continuous:

F < Drp < Dpg < Ow

(@ M M N

0. < 21p <P & 1<K<p<Lg<oo). : (B.1)
The upper line contains spaces of C*-functions, which are, together with all their
derivatives, fast decreasing (&), p-integrable (2;5) or at most polynomially increasing
(Om), respectively. Z; « is also called # [19]. The lower line contains spaces of distribu-

tions: fast decreasing distributions (0;); tempered distributions (%', dual of &); 2}
is the dual of 2;r [(1/r) + (1/p) = 1]. Then: :

(i) Fourier transform:
F s> L, S S, 0, Oy .

1) Metrizability: & and 2, are Fréchet spaces, the others are not.
34 B P
(iil) Nuclearity: &, &', Opn, O} are nuclear; Z;p, Z;» are not.
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(iv) Convolution:
& X & —&: continuous ,
0, X & —&: separately continuous,
0. %X 0, — 0, continuous,
Drp X Drg — Prr: continuous ,
(l .1 1) |
v P g
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