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Is a Quantum Logic a Logic?

by R. J. Greechie!) and S. P. Gudder

Kansas State University, Dept. of Mathematics, Manhattan, Kansas, USA
and University of Denver, Denver, Colorado, USA

(1. V. 70)

In a recent study Jauch and Piron [2] have considered the possibility that a
quantum proposition system is an infinite valued logic. They argue that if this is the
case then for any two propositions p and g there must exist a conditional proposition
p — gq. Following Lukasiewicz [3] the truth value [$ — ¢] of the conditional p —g¢
is defined as follows: [$ — ¢] = min {1, 1 — [p] + [¢]} where [p] and [¢] are the truth
values of [p] and [¢] respectively. Here [$] = 1 is interpreted as ‘p is true’. Note that
[#] =1 and [p —¢] = 1 implies [¢] = 1 so we have a law of deduction, which is a
property that any reasonable logic should possess. Notice further that if [p —¢] =1
and [¢ —7] =1 then [p — 7] = 1 so that implication is transitive as it should be.

Let £ be an orthomodular poset (representing some quantum proposition system)
and let § be an order determining (full in [1]) set of states on £. We further assume
that if m,, m, € §, then 1/2 m; 4+ 1/2 m, € §, that is, § is closed under the formation
of mid-points. We say that a, b € £ are conditional is there exists ¢ € £ such that for
allm € § m(c) = min {1, m(a’) + m(b)}. If ¢ exists it is unique. We call ¢ the conditional
of a and b and write ¢ = a — b. We say that L (or, more correctly, the pair (C, §))
is conditional if every pair a, b € L are conditional. Now if L is to be a logic with a
law of deduction then £ must be conditional. Jauch and Piron [2] have shown that
standard proposition systems (that is, ones that are isomorphic to the lattice of all
closed subspaces of a Hilbert space) are not conditional and thus cannot be logics in
the usual sense. We generalize their results to the orthomodular posets £ considered
above. In fact we obtain the strong result that C is conditional if and only if £ =
{0, 1}. We then characterize the pairs a, b € £ which are conditional.

Undefined terms appear in [1]. If a < 0" we write a +- b fora V b. If a << b we
write b — a for b A a’. We first state a useful lemma whose simple proof is left to the
reader.

Lemma 1. (i) m(a — b) = 1 if and only if m(a) < m(b); m(a — b) = m(a’) + m(b)
if and only if m(d) < m(a) = 1.

(ii) m (a—>b) = m(b) if and only if m(b) = 1 or m(a) = 1.

This lemma will be frequently used without further comment.

Theorem 2. L is conditional if and only if £ = {0, 1}.
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Proof: Clearly {0, 1} is conditional; in fact 1 =0 —1and 0 = 1 — 0. Now let
be conditional and suppose there exists a € L — {0, 1}. Then ¢ = a — a’ exists and
m(c) = min {1, 2m(a’)}. Since § is order determining 4’ < c¢. Hence there exists
be L such that &'+ b=c¢. Now m(d) = m(c) — m(a’) = min {m(a), m(a’)}. Thus
m(b) < 1/2 for all m e §. It follows that b < &’ since § is order determining. Hence
b= 0and ¢ = a’. Thus m(c) = min {1, 2 m(c)} and hence m(c) = 0 or 1 for all m € §.
Moreover since 0 << ¢ <C 1 there exist m,, my,€ § with m,(c) =0 and my(c) = 1.
Letting m = 1/2 m, + 1/2 m, we have m(c) = 1/2, a contradiction. Hence C = {0, 1}.

We have seen that, for non-trivial posets £, not every pair of elements is condi-
tional. We now study the properties of pairs of elements that are conditional.

Lemma 3. If a — b and a’ V b exist and are equal then a C b.

Proof: Thereexistsde Lsuchthatb+d=a’ V b. Weshowd < a’. Otherwise there
exists m € § such that m(d) > m(a’). Then m(a’ V b) = m(b) + m(d) > 1 — m(a) + m(b)
so m(a) > m(b). Hence m(a" V b) = m(a — b) = 1 — m(a) + m(b), a contradiction.
Now there exists ee L with d + ¢ = a’. We show e << b. Otherwise there exists
me § with m(e) > m(b). Then m(a’) = m(d) + m(e) > m(d) + m(b) = m(a’ V b) = m(a’),
a contradiction. Hence there exists fe L withb=f+¢, a4 =d+eand f <b <
so that @’ C b. Thus a C b.

Lemma 4. If c = g — b exists then @” < cand b <e.

Proof: 1f a’ < ¢ then there exists m € § such that m(c) << m(a’). Hence m(c) < 1
and 1 — m(a)+ m(b) = m(c) <1 — m(a). Thus m(b) << 0, a contradiction. That
b < c¢ is immediate.

We say that § is sufficient if 0 + a € £ implies there exists m € § with m(a) = 1.

Theorem 5. Let § be sufficient and assume that a’ V b exists. Then a — b exists
if and only if a << b or b < a.

Proof: Clearly, if a <<b then a =—=b=1 and if b < a, then a >b=2a" + b.
Conversely, assume ¢ = a — b exists. By Lemma 4 ¢ > 4’ V b. Hence there exists
d € £ such that (a" V b) + d = ¢. Suppose d + 0. Then there exists m € § such that
m(d) = 1. Hence m(a’) = m(b) = 0 and m(c) = 1 — m(a) + m(b) = 0, a contradiction.
Therefore d = 0 and ¢ = a’ V b. It now follows from Lemma 3 that a C b. Suppose a4
and b are not comparable. Then a A b <a and a A b <b. Hence there exists
my, my € § such that m, (@ — (@ A b)) =1 and m, (b — (a A b)) = 1. It follows that
my(a) = my(b) = 1 and my(d) = m, (a A b) = my(a) = my(a AN D) = 0. Let m=
1/2 (1/2 my + 1/2my) + 1/2 my = 3/4 m, + 1/4 my. Then m (a A b) =0 and m(b) =
1/4 < 3/4 = m(a). Hence m(a’) + m(b) =m(c)=m (@ Vb =m(a + (a A D)) =
m(a’) + m (@ A b). Thus m(b) = m (a A b), a contradiction.

Corollary 6. Let § be sufficient and a’ V b exist. If a — b exists, then 2 - b =
a" Vb b—aexists, b V aexists,and b —-a=1">"V a.

The proofs of the previous theorems depend heavily on the fact that Sis order
determining, sufficient or both. If we strengthen § still further we obtain a stronger
result. We say that §is strongly order determining if {me S: m(a) =1} C {me §:m(b) =1}
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implies that @ <C b. It can be shown that strongly order determining implies both order
determining and sufficiency. (The converse fails; see [1].) Notice that the set of states
on the lattice of all closed subspaces of a Hilbert space is strongly order determining.

Theorem 7. If § is strongly order determining, then @ — b exists if and only if
a<borb<a.

Proof: As in Theorem 5, if a and b are comparable, then a — b exists. Now
assume ¢ = @ — b exists. Suppose a < b and b & a. Then there exists m,, m, € §
such that my(a) = 1, my(b) < 1, m,(a) < 1 and m,(b) = 1. Note that my(c) = my(b)
and m,(c) = 1. Let m = 1/2my + 1/2 m,. Then m(a) = 1/2 + 1/2m,y(a) < 1, m(d) =
1/2 my(d) + 1/2 << 1 and m(c) = m(b). This last sentence contradicts Lemma 1 (ii).
Hence a and b are comparable.
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