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L'hamiltonien de Spin de Koster et Statz :

cas de Fe (III) en symétrie cubique1)

par R. Lacroix et J. Weber

Laboratoire de physico-chimie du solide, Institut de chimie physique, Université de Genève

(19 VIII 70)

Abstract. It is shown that the additional constants of the spin-Hamiltonian due to Koster
and Statz appear only from the fourth order of the perturbation calculation in the case of the
Fe(III) ion. Hence they are experimentally negligible.

Comme il est bien connu, l'hamiltonien de spin est constitué de deux termes:

lts — "Hc + "Um > ou "Hc est indépendant du champ magnétique H et exprime le clivage
des niveaux en champ nul, alors que "UM est linéaire et homogène selon les composantes

de B pin 77.

Koster et Statz [1, 2] ont montré que l'expression habituelle 1lM ßJFgik B{ Sk
a

est insuffisante et doit, en toute généralité, être remplacée par une expression plus
complète, dérivée de la théorie des groupes, et faisant intervenir un nombre plus grand
de constantes.

En particulier, ces auteurs [1] ont calculé fiM pour un ion de configuration
3 d6 6S (par exemple Fe3+) en symétrie cubique. Désireux d'évaluer l'ordre de grandeur
des constantes qui interviennent dans cet hamiltonien, nous allons rappeler leurs
résultats.

Les états 15/2 M> du terme aS forment la base d'une représentation 7)6/2 du

groupe des rotations qui se réduit, en symétrie cubique, selon les représentations r~
et T^g. La transformation unitaire qui exprime cette réduction s'écrit:
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\d>
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x) Travail effectué dans le cadre d'une recherche subventionnée par le Fonds national suisse

de la Recherche scientifique.
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où on a noté | M> pour 15/2 M}. Ces états seront, par la suite, notés 11 t>, où t symbolise
les représentations T1, ou F8 et x signifie l'une des lettres r, s, d, e, f ou g.

Dans la base des états propres de T7, et rs, Koster et Statz ont obtenu pour la

matrice de 71m• lorsque B est parallèle à l'axe z, la forme:

¦UM ßB

gl 0 0 0 ¦ 0 gi
0 -gt 0 0 \ o 0

0 0 gi 0 : o 0

0 0 0 gl j gx 0

0 0 0 gl \ ga 0

gl 0 0 0 0 -ga

d

e

f
g

r
s

D'autre part, ils ont exprimé ce même opérateur au moyen de l'opérateur équivalent:

¦UM gßBSz + ßB(glAl+ gl Al + gl BD

avec

A\ 63 S

Si -— [3S(S+1)-1]SZ,

[70 S (S + 1) - 105] Ssz + [15 S2 (S + l)2 - 50 S (S + 1) + 12] S2

B\ f35 {6 [Sz (S* + S*) + (S*x + S*) SJ + 9 Sz + 3 [6 S (S + 1) - 5] Sj

- 3 S (S + 1) [3 S (S + 1) - 2] S2}

Cette forme a l'avantage de faire apparaître clairement l'hamiltonien habituel gß B Sz

et les constantes supplémentaires gl, gl et gl.
Les deux formes de l'hamiltonien sont reliées par les équations suivantes:

22

IÖ5 gi 35

2

g2

81 ii-gjg*

2

21

10

81
'

161/5

105

Wg*

2268 gl + 378

13

«î- 36^35 ¦ëi

11340 OJ

1

36 1/35

567/5
1

^gi

451/7

Le problème que nous nous sommes posé est, comme nous l'avons dit, l'évaluation de

l'importance numérique des constantes supplémentaires g\, g{j et g\. Notre calcul sera
fondé sur la méthode des perturbations. Nous prendrons pour hamiltonien non
perturbé ?/0 tous les termes qui ne contribuent pas à lever la dégénérescence du niveau
fondamental 6S (en symétrie cubique 6/\) et ne participent donc pas directement
à "Us. Nous aurons ainsi:

\u % + a + iiB
où A est l'interaction spin-orbite et "HB ß B (Lz + ge Sf) l'hamiltonien Zeeman, et
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où on laisse de côté l'interaction spin-spin, dont les contributions sont négligeables
vis à vis de celles de A. Fe calcul de perturbation sera poussé jusqu'au quatrième ordre.

Premier ordre

Nous allons exprimer la contribution du premier ordre dans les deux bases,

\M} et \tr}.
(M \ïlM\M\ geß B <*rxM \sz\«rxMy geß B M

<tr \nM\ tr\ <*rxtr \iiB\ «ryr> g.ßB<frxtr \SZ\ «/Vt>

Deuxième ordre

Fa. contribution du deuxième ordre aux éléments de matrice de "#M peut aisément
être évaluée dans la base des états | M>.

Uß étant diagonal en S, seuls interviendront des sextuplets. D'autre part, A est

somme d'opérateurs à un électron ut ¦ st dont la partie orbitale, vecteur axial, se

transforme comme la représentation rf. En conséquence, seuls auront des éléments
de matrice avec tri les termes 67^4.

Comme l'opérateur S est diagonal selon la représentation de la partie orbitale
des fonctions d'onde, il n'aura pas d'éléments de matrice entre l'état fondamental •f1
et les termes 6P4. La partie en L de 1lB sera donc seule à intervenir.

Enfin, on peut montrer [3] qu'entre des états de même spin, A peut être remplacé

par l'opérateur équivalent A U • S. Supposant le champ B orienté selon l'axe z,

on trouve alors pour la contribution du deuxième ordre:

(«rx m \uz\oL6rizM/ <a 6r4 z m \ lz i «rxMy
(M\UM\My2=-ßBMZ- En'0

Les éléments de matrice de la sommation étant indépendants de M, <[M \ 1iM \ M}2
est proportionnel à M, c'est-à-dire au terme du premier ordre <[M \ %lM \ Myx. En
conséquence, le deuxième ordre modifie le facteur g, mais n'apporte aucune contribution

aux constantes supplémentaires gl, gl et g\.

Froisième ordre

L'interaction spin-orbite n'étant pas diagonale dans le spin, il peut intervenir au
troisième ordre non seulement des sextuplets, mais aussi des quadruplets et des

octuplets, ce qui rend malaisé le calcul dans la base | M">; nous utiliserons donc la base

\try. En revanche, les règles de sélection déjà citées limitent aux représentations 7\
les termes prenant part à la perturbation du troisième ordre.

Les seules représentations irréductibles auxquelles nous avons affaire dans cette
étape du calcul étant 7^ et 7^4, il convient de faire la remarque suivante: la fonction
de base de /\ se transforme comme celle de la représentation D0 du groupe des

rotations, alors que les fonctions de base de 7\ se transforment comme celles de Dx.
En conséquence, lorsque nous effectuerons le produit direct des fonctions de spin et
d'orbite, nous pourrons d'abord réduire la représentation produit selon le groupe des

rotations, puis passer au groupe cubique. Les termes 2S+17^4 seront donc réduits
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d'abord en états \2S +lri J My, puis en états \2s+iri J try. Comme l'interaction
spin-orbite répond à la règle de sélection AJ 0, seuls les états |2S + 1J'4 5/2 t t>
auront des éléments de matrice de A avec les états |87\ try du niveau fondamental.
Bien entendu, A est aussi diagonal en t et t.

De plus, comme les éléments de matrice (J M \A\ J My sont indépendants de M,
tous les éléments <2S + ir,4 5/2 t r \A\erxtry seront indépendants de t et r. En
particulier, on aura:

<2S+1A\« \A| «As> <2S+1r4~-d\A\ *rxdy.

Les contributions à (t r \ tlM \ t' t'>3 seront de trois types:

a) ßB]TPaß(aL2S+'r*tT\Lz + geSz\ß2S^ri~t'Fy
aß *• *•

où

<«A s |/i| a2S+1r4s> <^2S+1r4—s |/i| «rlS>

(£« - #o) (E, - E'

b) ßBZQ/ [(*rxtr\Lz\o,«ri^-t' Fy + (K^r^t r \lz\ vxt*y
ou

<«A s \a\ ß 2S+1ri—sy(ß2S+lri—s \a\ a «r^sy
o y t t -

c) -gjB£paa(«rxtT\sz\«rxtry.
a

Pour évaluer les éléments de matrice de Lz et Sz, nous allons utiliser le théorème de

Wigner-Eckart. Si F\ est un opérateur tensoriel, on aura, dans la base |2S+ ^F^J My:

<*2^ri^M\Ti\ß2S^rl^M'y

<a^r4-l||r,|| ß 2S+1r4l><l{ m -w 5 5

2 2 H/

La réduction de 7)5/2 selon les représentations cubiques s'exprime par la relation:

\*s+1ri~try= £|«+ir4AM><i-jf |A*T>.

Les coefficients <5/2 M | 5/2 i t> sont évidemment indépendants de la nature de la
représentation 7)6/2 et seront donc les mêmes que ceux de la réduction de 7)5/2 provenant
du terme 6.7\ dont la table est donnée au début de cet article.
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Les éléments de matrice de F\ prennent alors la forme suivante dans la nouvelle
base:

<a«+ir4A<T \Ti\ß2S^rx-~t'Fy

<a2S+1r44lirj|is2S+1A4>2,<4-^l^-M> i^+Mf^-t'Fy x
* Z Af,M' ^ Z Z, Z,

5 5 ,55< M -M' Ä -ff>x 2 2 '22 ÏX

Cette relation est également valable si on remplace un des Ti ou les deux par des *rx,
la sommation restant inchangée puisque indépendante de l'origine de la représentation
Df.lt-

Comme L et S sont tous deux vecteurs axiaux, donc opérateurs tensoriels de

même nature, on aura les relations de proportionnalité:

<a2S+T4-^r \LZ\ ß^+^-^t'r'y
(«rxtr\sz\«rxt'Fy

<a«+ir4-§-ll£,ll ß2S+1r^y
-—=R.<6A il s, y «a>

Ce qui implique que la matrice de Lz est diagonale en t et x comme l'est celle de Sz.
On aura de même:

<a2S+1r4-|-<T \sz\ a^r4^T>
<6ryT|Sj6A^r>

<a2S+ir4-^-||Sj|« 2S+1r4^->

<a <T4 — * r | Lz | «A * t> <a «r4 — Il LJI «J\>

(«r^rlSJT^r) O/1, I1SJ|«A>
Se rappelant que <£ t | #m \txyx ge ß B <8/11 < t | SJ Tj i t>, on obtient pour la
contribution du troisième ordre:

<M #M I * T>3 <i!T I #M I iTX i7P- (S. - 1) +^r(ZPaßR«fi+ ZZQaT«)

On voit donc que le terme du troisième ordre est exactement proportionnel à celui du
premier. En conséquence, il modifie le facteur g, mais ne contribue en rien aux
constantes supplémentaires g\, gl et g\.

Quatrième ordre

Le terme (t x\ llM \ t' t'>4 se compose de cinq sommes. Trois d'entre elles contiennent

les éléments de matrice («A t x \ Sz | erx t t> ou <T4 5/2 t x \ Lz \ Tx t t> et
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apportent donc à (t x \ "UM \ t' t'>4 une contribution proportionnelle à (t x \ "UM 11 r\.
Ainsi elles modifient g, mais ne prennent aucune part à la formation des constantes

glgl^gl-
Les deux sommes restantes sont respectivement de la forme:

P,

(Ey-Ef)
5

- E jf^fa <<x25+1r4-f<T|/i|r2S'+1r,^r> x
2

<YiS'+1rlktr\,uB\ß2S,+1rl-?-t'T'> + <a«s+1r44-<T|«i,|y8S+1^*<v> x

i7 2S+lrl k t'F lAiß^'+'r.-^-t'x'y
2

b) -2ßBZu^(«.«rxjtx\Lz\*rxt'x'y
*j

U«J -(F F) (F
1

F WF WvE^^^ß25^^*^ x
(E* - En) (tß - En) (Ey - En) f£ 2

< ß 2S+1A \ir\A\y 2S'+lrl ktxyfy 2S'+1rl ktx\A\^r,jtxy.
Cependant, les états excités résultant d'un transfert de charge n'apportent qu'une
faible contribution relativement à celle des états d'origine ionique, c'est pourquoi nous
ne conserverons que l'apport de ces derniers, qui sont tous des quadruplets. Dans
cette approximation, le terme b) disparaît et la somme de a) ne porte que sur des

quadruplets. Les termes 2S'+1/'/ seront alors 4P3, *7"'4 ou ljf6, les seuls ayant un
élément de matrice de A avec des états | 4jT4 5/2>, *T2 étant exclu par les règles de

sélection du groupe cubique et *TX par la règle AJ 0. De plus, la contribution des

47\ peut être laissée de côté, car elle est proportionnelle à (t x \ "UM \ t xyx.

Tout le calcul se faisant selon les états réduits 11 t), nous allons expliciter cette
réduction. Cependant, il convient de remarquer que la réduction de iri et 4P5 fait
apparaître deux représentations Fs. Nous avons donc, dans ces deux cas, un degré de

liberté dans le choix des fonctions d'onde.

Pour 4T4, nous allons expliciter le choix déjà annoncé d'états | *7^ 5/21 t>
correspondant à la réduction intermédiaire selon les représentations irréductibles du

groupe des rotations. Dans le cas de *rs, nous allons choisir les fonctions de base des

deux représentations rs de façon à ce que l'une d'entre elles n'ait pas d'élément de

matrice de A avec un état | *T4 5/2 t t> et nous ne conserverons donc que l'autre.

Les fonctions réduites dont nous avons besoin pour notre calcul sont les suivantes :

1 /, 3 1 \
*r3 s> —-- m >- \v — >

1/3 1
14r3 dy —=- \\u y+\v — >3

(/2 V 2 ' ]

2 y

1 l, 1 3
\*r3ey

j/2 y 2 ' ' 2
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où u et v représentent les états de base de rz se transformant comme l/]/3 (2 z2 — x2 — y2)

et (x2 — y2).

l'P^y-
2|/3

3 ,_/, 1
2|* -y-> + /3 i\x- — y-i\y

(" 3 3
— > + * y —>
2 7 |r 2

7

14r¦r4<*> ,3 ,-/, 1
- 2 z-—-> +|/3 *-—->-* y

2|/15 L 2
K \ '

2 '7

5(l*^r>+*'|y~7r>

4/» 2l/5
2i/3

2 7

3 3
* —r-y + i \y -rr>

]/3^\x

2

1 1

— > — i y — >
2 y u 2 7

où #, y et z représentent les trois états de base de P4.

i^»s>:
J 2)/3

1
,- /, 3 ,32\a — > - 1/3 c — > - »: 6 — >I

2 / K II 2 / I

2 y

+ c'

1 1

T> + .-|»-2->

\iridy
2|/87

> + »' i >
2 ' '

2
7

^\a-2~yA5f3{\c-Iy-l\o-y)

+(lc7
|4r^>=w[2l/3|fli>+5(|c^> + j|J4->)

-3^S"(|c —|_>_.-|ft —1->

où a, b et c représentent les trois états de base de P5 se transformant comme xy, zx
et yz.

Appliquant au calcul des éléments de matrice de A et de Lz le théorème de

Wigner-Eckart étendu par Statz [4] aux groupes ponctuels, on obtient les résultats
suivants:

3\l f^ i A(a.,y)<a«r4s \A\y*r3sy= - 3j/^

<,x*rid\A\y*r3dy=<:oL*ri~e |/l|y47» 3j/^ iA(cc,y)

<\x*rts \Lz\y*r3sy=^iB(«.,y)
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<a *r4 à \ Lz\ y *r3 dy -j/A i B(«, y)

<a 4r4 « | Lz | y *r3 e> - j/1 * S(«, y)

<a 4A s | L, | y T3 <*> -|/| * ß(«, y)

<a4r4^|^|y4r3S>=|/A,ß(a,y)

<a4r4s |/1| y 4r6s>=-^|-C(a,y)

<a *r4 d\A\y 4r5 rf> <a <T4 « |/11 y Ws ey 0 C(«, y)

<K4r4s|7:z|y4r5s>=^-7)(a,y)

<a 4A d | Lz | y 4r5 dy -iL D(«, y)

<«*/> |Lz|y4r5e>=|/I|-D(a,y)

<a4r4s|L,|y4r5^> --|=rD(a,y)

<a*r4^|Lz|y4r5s> --^=-7)(oc,y)

Posons :

A{x,y) B(ß,y) + B(a,y)A(ß,y)
E(y*r3)-E0

„ _y C(*,r) D(ß,y) + D(«,y)C(ß,r)
aß Af E(y*rf)-En

G=:EPaßGaß H ~EP*ßH*ß.
a,ß a,ß

On obtient alors pour la contribution du quadrième ordre de perturbation aux
constantes gk :

gx=-(d\Lz\dyi=-~G+^H

g2=- (e \Lz\ey^-~G+~H

gs=-<s\Lz\syi=-3G + ~H

g^islLfdy^^-G+^H

^ß=E
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Passant par les relations linéaires reliant les gk avec g, gjj, gl et gl, on trouve:

Ag=-~(2G + H)

gl =-y (3 G -H)
£o 0

d o.
On constate que le quatrième ordre de perturbation ne contribue pas à gl et gjj.
Ce résultat est tout à fait logique et pouvait être prévu. En effet, tous les éléments de
matrice de notre calcul de perturbation appartiennent à des opérateurs dont la partie
orbitale se transforme selon la représentation Dx du groupe des rotations. D'autre
part, gl et g4 font partie de la base d'une représentation Db. Comme il faut au moins
le produit de cinq représentations Dx pour qu'apparaisse une représentation 7)5,
il est évident qu'on n'aura aucune contribution à gl et g4 avant le cinquième ordre.

Nous avons évalué G et H dans le cas de Fe(III) placé dans un cristal de MgO.
Les fonctions d'onde utilisées pour le calcul des éléments de matrice de Lz et A sont
celles du modèle covalent que nous avons développé [5]. Nous avons obtenu les

résultats suivants:

G 0,643 • 10-6, 77=-2,139-IO"6, g\ 8,1 • 10"7.

Nous voyons que, dans le cas du fer trivalent, les constantes additionnelles de

Koster et Statz sont extrêmement faibles, ce qui explique pourquoi l'hamiltonien de

spin habituel suffit à la description des résultats expérimentaux.
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