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L’hamiltonien de Spin de Koster et Statz:
cas de Fe (III) en symétrie cubique’)

par R. Lacroix et J. Weber
Laboratoire de physico-chimie du solide, Institut de chimie physique, Université de Genéve
(19 VIII 70)

Abstract. 1t is shown that the additional constants of the spin-Hamiltonian due to Koster
and Statz appear only from the fourth order of the perturbation calculation in the case of the
Fe(III) ion. Hence they are experimentally negligible.

Comme il est bien connu, 'hamiltonien de spin est constitué de deux termes:

S
H, = H, + Hy, ol H, est indépendant du champ magnétique H et exprime le clivage

des niveaux en champ nul, alors que H,, est linéaire et homogéne selon les composantes
N

N
Koster et Statz [1, 2] ont montré que ’expression habituelle H{,, = B Z’ g B 8;
"

est insuffisante et doit, en toute généralité, étre remplacée par une expression plus
compléte, dérivée de la théorie des groupes, et faisant intervenir un nombre plus grand
de constantes. '

En particulier, ces auteurs [1] ont calculé 3, pour un ion de configuration
3d®8S (par exemple Fe®+) en symétrie cubique. Désireux d’évaluer ’ordre de grandeur
des constantes qui interviennent dans cet hamiltonien, nous allons rappeler leurs
résultats.

Les états |5/2 M) du terme ¢S forment la base d’une représentation D;, du
groupe des rotations qui se réduit, en symétrie cubique, selon les représentations I,
et I'y. La transformation unitaire qui exprime cette réduction s’écrit:

| B 1 5 | 3
[ e sl)
! 1 5 | 3
o= ([-w )
’ 1 { |5 3
‘d>:ﬁ(l/5‘7>+!—7>)
| 1
, |6>=—7>
8 ] 1
|f>'= 7>
1/ _| 5 3
~|g>=~l76——(1/5 ——5-> 1 —2—>)

1) Travail effectué dans le cadre d’une recherche subventionnée par le Fonds national suisse
de la Recherche scientifique.
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ouonanoteé | M) pour |5/2 M. Ces états seront, par la suite, notés |£7), ol symbolise
les représentations I, ou Iy et 7 signifie I'une des lettres 7, s, d, ¢, f ou g.
Dans la base des états propres de I'; et I's, Koster et Statz ont obtenu pour la

S
matrice de H,,, lorsque B est parallele & I'axe z, la forme:

0 —g 0 0 0 0 e

0 0 g5 0 0 0 f

We=PBl 0 0 0 g g 0 g
0 0 g | & y

g4 O O O 0 "'"g3 S .

D’autre part, ils ont exprimé ce méme opérateur au moyen de I'opérateur équivalent:
Wy =gBBS.+BB(gA:+84; + ¢ B)
avec

A =S LB -1S
5 #s

A® =635 —[70S(S+1)—105] S* +[1552(S+1)2—50 S (S+1) +12] S,

By =35 {6[S,(S; +S!)+ (St +52)S.]+9S53+3[6S(S+1)—5]S;

—3S(S+1)[3S(S+1)—21S,}.
Cette forme a 'avantage de faire apparaitre clairement ’hamiltonien habituel g § B S,
et les constantes supplémentaires g3, gd et g3.

Les deux formes de ’hamiltonien sont reliées par les équations suivantes:

22 2 2 165
§= o581 T 358 T 578 — 55 &
, 8 2 10 Y5
Eo=— g &1 _?7“8'2 g1 58 +*8Tg4
. 1 1 13 1
80 2268 & T 378 & T 113405 T 5607 /5
5 1 1 1
8= Zey3 & 3635 O T asy7 S

Le probléme que nous nous sommes posé est, comme nous ’avons dit, I'évaluation de
I'importance numérique des constantes supplémentaires g3, g; et g3. Notre calcul sera
fondé sur la méthode des perturbations. Nous prendrons pour hamiltonien non
perturbé H, tous les termes qui ne contribuent pas a lever la dégénérescence du niveau
fondamental 8S (en symétrie cubique 8/"}) et ne participent donc pas directement
a H,. Nous aurons ainsi:

7-! = ?1!0 = A =+ uB
oli A est l'interaction spin-orbite et #¥z = B (L, + g, S.) 'hamiltonien Zeeman, et
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ol on laisse de c6té l'interaction spin-spin, dont les contributions sont négligeables
vis a vis de celles de /. Le calcul de perturbation sera poussé jusqu’au quatrieme ordre.

Premaer ordre

Nous allons exprimer la contribution du premier ordre dans les deux bases,
|M> et |tT).

M | Uy | M)y=¢g,BBEIMVM|S, |\ M)=¢,BM
G| Hy|ttH = tv | W |y tt) =g, BBt |S, |y i),

Deuxiéme ordre

La contribution du deuxiéme ordre aux éléments de matrice de H,, peut aisément
étre évaluée dans la base des états | M.
My étant diagonal en S, seuls interviendront des sextuplets. D’autre part, A est

S N
somme d’opérateurs & un électron #; -s; dont la partie orbitale, vecteur axial, se
transforme comme la représentation I';". En conséquence, seuls auront des éléments
de matrice avec 817 les termes ¢I,.

>
Comme l'opérateur S est diagonal selon la représentation de la partie orbitale
des fonctions d’onde, il n’aura pas d’éléments de matrice entre I'état fondamental 81",

S
et les termes 8/",. La partie en L de ¥ sera donc seule a intervenir.
Enfin, on peut montrer [3] qu’entre des états de méme spin, A peut étre remplacé

> N S
par l'opérateur équivalent A = U - S. Supposant le champ B orienté selon I'axe z,
on trouve alors pour la contribution du deuxiéme ordre:

M \|\U,|abTyz2M><a8lyz2M |L,|8INM
o o« 0
Les éléments de matrice de la sommation étant indépendants de M, (M |H, | M),
est proportionnel a M, c’est-d-dire au terme du premier ordre <M |, | M>,. En

conséquence, le deuxiéme ordre modifie le facteur g, mais n’apporte aucune contri-
: ; : 3 5 5
bution aux constantes supplémentaires g3, g, et g;.

Troisiéme ordre

L’interaction spin-orbite n’étant pas diagonale dans le spin, il peut intervenir au
troisieme ordre non seulement des sextuplets, mais aussi des quadruplets et des
octuplets, ce qui rend malaisé le calcul dans la base | M >; nous utiliserons donc la base
|2 7). En revanche, les régles de sélection déja citées limitent aux représentations 17,
les termes prenant part a la perturbation du troisiéme ordre.

Les seules représentations irréductibles auxquelles nous avons affaire dans cette
étape du calcul étant I} et I, il convient de faire la remarque suivante: la fonction
de base de I'} se transforme comme celle de la représentation D, du groupe des
rotations, alors que les fonctions de base de I', se transforment comme celles de D, .
En conséquence, lorsque nous effectuerons le produit direct des fonctions de spin et
d’orbite, nous pourrons d’abord réduire la représentation produit selon le groupe des
rotations, puis passer au groupe cubique. Les termes 25+1[°, seront donc réduits
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d’abord en états |25 +1[", J M, puis en états |25+ 1], J¢1)>. Comme l'interaction
spin-orbite répond 4 la régle de sélection AJ = 0, seuls les états |25+ 1, 5/2¢ 1)
auront des éléments de matrice de A avec les états |8 £ 7> du niveau fondamental.
Bien entendu, / est aussi diagonal en ¢ et 7.

De plus, comme les éléments de matrice ( J M |A| J M sont indépendants de M,
tous les éléments (25+1],5/2¢7 |A| 8]} ¢7) seront indépendants de ¢ et 7. En
particulier, on aura:

5
<2S+11“47 g |A] 8= <25+1r4 -d|A| ey dy .

Les contributions a <{¢7 | #, | ¢’ T">5 seront de trois types:

a) ﬂBZP AL Z tt[L + g, S, | ¥, t’r’)

ou
5
Ty s |A] «® 4Ty sy BTy —s |A] Ty s
P, = R
4 (E,— Eo) (E; — Ey)
5 5 r !
b) ﬁB%j 0, [[<6F1n |Lz|oc61’4-2—t’ Ty + {a 6P47t v |L,| ¢l ¢ 1:)]
ou

5 5
Ty s A] B 59T, 65 AT 4] o STy s
* B (Ea - Eo) (Eﬂ - Eo)

c) wgeﬁBZPm<“Pltt|Sz| 8 iy,

Pour évaluer les éléments de matrice de L, et S,, nous allons utiliser le théoréeme de
Wigner-Eckart. Si T§ est un opérateur tensoriel, on aura, dans la base |25+ 1], [ M>:

<0L2S+1F M I T | [3 25+1F M'> o

5 5 5 5
M

5
25+1 P 25+17 > ) M=k _

La réduction de Dy, selon les représentations cubiques s’exprime par la relation:

| 25+, — tr>-2}25+1]’ M><WM|—~151:>

Les coefficients (5/2 M | 5/2 ¢ 7) sont évidemment indépendants de la nature de la
représentation Dy, et seront donc les mémes que ceux de la réduction de D, provenant
du terme ©/"; dont la table est donnée au début de cet article.
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Les éléments de matrice de 79 prennent alors la forme suivante dans la nouvelle
base:

5
(a5, — —tT | T¢| B B — t’ By =

5 5 T A
@S T, B 25+1F47>2 Cptrly M Gy M5t

M,M! 2

5 5
22 M M ————k
{53 | —q>

Cette relation est également valable si on remplace un des I, ou les deux par des 81,
la sommation restant inchangée puisque indépendante de I’origine de la représentation

Dy .
S s _ ) '
Comme L et S sont tous deux vecteurs axiaux, donc opérateurs tensoriels de
méme nature, on aura les relations de proportionnalité:

5
SR AT - v (L] § BT t’ >
Oy tt|S, ¢

5 5
<0€25+1F4“§“ L, B2+, 7>

CIL IS, o1
Ce qui implique que la matrice de L, est diagonale en ¢ et T comme I'est celle de S,.
On aura de méme:

<O!. 25—[—11"

2tr|5|a25+1f' £y

<6P1tT|Sz|6F1tT>

2

H 5
@S — || S, ||« BHT )
CIL ST *

5 5
@y te Ll Thtry  (aTay ILATYD

=T .
Syt |S, |8t Ol IISZH‘TO *
Se rappelant que ¢t |Hy|tt), =g, F B t7|S,| I} tt), on obtient pour la
contribution du troisiéme ordre:

<tri?{M‘tr>3=<tr\?—£M|tr>1[2Pa (S,—1) —|——2 ﬂRaﬂ+ZZQa ]

On voit donc que le terme du troisiéme ordre est exactement proportionnel a celui du
premier. En conséquence, il modifie le facteur g, mais ne contribue en rien aux
constantes supplémentaires g3, g5 et g3.

Quatriéme ordre

Le terme {¢ 7| Hy; | t' '), se compose de cinq sommes. Trois d’entre elles contien-
nent les éléments de matrice (¢ 47 |S,|8 ¢t7)> ou (8 5/2t7 |L,|8] ¢t7) et
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apportent donc & <¢v | ¥, | ¢’ 7'), une contribution proportionnelle & {¢ 7 | Hy | ¢ T)4.
Ainsi elles modifient g, mais ne prennent aucune part a la formation des constantes

3 5 5
By B B 25
Les deux sommes restantes sont respectivement de la forme:

9
% &, )

< 257 +II‘! Bttt lyB‘ﬁzs'+1F tr T’> 1 <0C25+1F itr‘y31y25+111 kt"l'> %

a) —

[(a s+, 5 4T |Aly = kT x

<,y 25+1_l‘1£kt IAIﬁZS’—l—lIv tr,rf>]

b) mzfaB%‘U”@ﬁn]zr IACWNED

1
7 — 6 ¢ A 25+1]-v p v
Y (E“E)(Eﬂ“Eo) (E, — Ey) %K T |A]p T

(BB, —- mA!y Wkt P Rt |[A]a Ty i)

Cependant, les états excités résultant d'un transfert de charge n’apportent qu’une
faible contribution relativement 4 celle des états d’origine ionique, ¢’est pourquoi nous
ne conserverons que l'apport de ces derniers, qui sont tous des quadruplets. Dans
cette approximation, le terme b) disparait et la somme de a) ne porte que sur des
quadruplets. Les termes 25'+1]", seront alors 4%y, 4I, ou I, les seuls ayant un
élément de matrice de /A avec des états |47, 5/2), 4, étant exclu par les régles de
sélection du groupe cubique et 4/} par la régle A J = 0. De plus, la contribution des
4", peut étre laissée de coté, car elle est proportionnelle & {f 7 | Hy | £ 7).

Tout le calcul se faisant selon les états réduits |£ 7), nous allons expliciter cette
réduction. Cependant, il convient de remarquer que la réduction de 4I'y et 4I'; fait
apparaitre deux représentations I'y. Nous avons donc, dans ces deux cas, un degre de
liberté dans le choix des fonctions d’onde.

Pour 4/';, nous allons expliciter le choix déja annoncé d’états |41, 5/2¢7) corres-
pondant & la réduction intermédiaire selon les représentations irréductibles du
groupe des rotations. Dans le cas de 4/, nous allons choisir les fonctions de base des
deux représentations I'y de fagon A ce que 'une d’entre elles n’ait pas d’élément de
matrice de A avec un état |4, 5/2 ¢ 7) et nous ne conserverons donc que l'autre.

Les fonctions réduites dont nous avons besoin pour notre calcul sont les suivantes:
3 1

o )=——- ||t ——>—|v — )

e == (le =50 =0 5>
3

Tady= = (lu =55+ 10 5]

1 1 3
14F33>: T/f_(lu_—2—>_lv 7>)
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ol u et v représentent les états de base de I'y se transformant comme 1/)/3 (2 22 — x% — y?)
et (x2 — y2).

1 3 . 1, . 1
I4F4!S>=§V§" [2|Z —"7>+]/3 (|x—7>—z1y — 5 >)

+ (1x il —2—>)]

1 1
Tedy= |22 =5 > + V3 (1r 5> = ily =)

5 3 . 3
. (\x 7> + 14 |y 7>)]

Ti= 7= - (s -5 +ily =)

+ V3 ! > — 1| ! >)
V ('x /I
ou x, y et z représentent les trois états de base de I',.

W 1 3 ) 3
|4F5!S>... 2]/ [ |a—>—V3 (|c 7>—z|b —2—>)

=i D)

. B 1 1 - 3 . 3

+(le =5 >+ils =5 )|

ey = | 23 s 5 +5(1e 5> +ils )

7B
-3 (1 —5>=ilb -5 )]

ol a, b et ¢ représentent les trois états de base de [y se transformant comme xy, 2x
et yz.

Appliquant au calcul des éléments de matrice de A et de L, le théoréme de
Wigner-Eckart étendu par Statz [4] aux groupes ponctuels, on obtient les résultats
suivants:

atlys |A|yTys) = — 3V2iA(ex,y)

5 _
AT Ay Tydy = e |A] ATy 0> =3/ 3 il

(atlys |L,| y* s> :V—i— 7 B(a, )
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<a‘P4d‘Lz|y4I’3d>=—- %iB(oL,y)
1/6 .

{atlye |L,|y ey =— asﬁzB(oc,y)
1/2 .

atlys |L,|y5d) =— —3—18(0{,)/)

<o¢4]_'4d|Lz|y4F33>=V% 7 B, y)
V3
(atlys |A|y 4 s>=~2——C(oc,y)

<a4I’4d|A[y4F5d>=<m4f4eiA|y4P53>~V——C( )

2)5

i
<a4f4s|Lz,y4F53>=ﬁD(cx,y)

13
<a4f4d\Lz|V4F5d>=V4-4w§D(%7’)
atlye|L|y45e) = e D(x, )

2
<a4f4s|Lz|y4F5d>=—Vg—,_fD(a,y)
(e Ty d L]yl sy =— 1/5 D(x, )

Posons :
B(B,y) + Bla, y) A(B, )
Cap= 2 E(y*l,) — E,
‘ Cla, y) D(B,y) + D(a, y) C(B, y)
;A
=P Zy" E(y ;) —
G:%’PaﬂGaﬂ H=;;PaﬁH

On obtient alors pour la contribution du quadriéme ordre de perturbation aux
constantes g, :

3 13
=—@|L|d,=—— " H
&1 {d|L,|d), =& +55
9 3
= — Iy = — —H

g3=—<s|Lz|s>4=—3G—|—7H

3 1
= L,\d — G +—=H
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Passant par les relations linéaires reliant les g, avec g, g3, g5 et g3, on trouve:

9
Ag—=—_—_(2G+ H
g 25(2 + H)

5 1
=5 B6-H

ga=0.

On constate que le quatriéme ordre de perturbation ne contribue pas a g et g5.
Ce résultat est tout a fait logique et pouvait étre prévu. En effet, tous les éléments de
matrice de notre calcul de perturbation appartiennent a des opérateurs dont la partie
orbitale se transforme selon la représentation D; du groupe des rotations. D’autre
part, g5 et g3 font partie de la base d'une représentation D;. Comme il faut au moins
le produit de cinq représentations D; pour qu’apparaisse une représentation Dy,
il est évident qu’on n’aura aucune contribution a g} et g5 avant le cinquiéme ordre.

Nous avons évalué G et H dans le cas de Fe(III) placé dans un cristal de MgO.
Les fonctions d’onde utilisées pour le calcul des éléments de matrice de L, et A sont
celles du modeéle covalent que nous avons développé [5]. Nous avons obtenu les
résultats suivants:

G=0643.10¢, H=—-2139.10-%, g =81.10-7,

Nous voyons que, dans le cas du fer trivalent, les constantes additionnelles de
Koster et Statz sont extrémement faibles, ce qui explique pourquoi I’hamiltonien de
spin habituel suffit a la description des résultats expérimentaux.
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