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Mass Differences as Additional Electromagnetic Corrections
in Low Energy Elastic and Charge Exchange n N Scattering

by G. C. Oades and G. Rasche
Institut fiir Theoretische Physik der Universitdt Ziirich

(17. VIIL. 70)

Summary. We present a treatment of low energy n~ p —>n~ p and i~ p > n® » scattering
which includes non-relativistically both mass difference effects and the effect of the long range
Coulomb potential. Using this formalism we then show how the corrections to the usual charge
independent expressions can be calculated in a first order perturbation treatment.

1. Introduction

In a recent paper [1] we have given a formalism which takes into account the
Coulomb corrections to the charge independent nuclear m N interaction. These
corrections are important when one wishes to isolate the purely nuclear scattering
amplitude for use in dispersion relations or in tests of charge independence. It is
usually assumed that these Coulomb effects constitute the bulk of the low energy
electromagnetic corrections but, to be consistent, it is also necessary to include the
electromagnetic mass differences between the proton and the neutron and between
the #+ and 7% in the analysis of the coupled prbcesses n-p—>npandxn= p —an.

The usual procedure, when analysing differential cross sections, is to take mass
differences into account kinematically when extracting the scattering amplitude; the
dynamic effects of these mass differences on the scattering amplitude are not treated.
In the present paper we include these latter effects in our non-relativistic treatment
of the Coulomb corrections. In so doing we adhere as closely as possible to the
notation used in Ref. [1]. In case of any confusion or for a more detailed discussion
of the problem the reader is refered to this paper which also quotes some of the earlier
literature. '

In Section 2 we write down the Schrédinger equation in the simultaneous presence
of mass differences and Coulomb effects. In Section 3 we deal with the inner Coulomb
and mass difference corrections and in Section 4 we deal with the outer Coulomb and
mass difference corrections. In Section 5, for use in experimental analyses, we give
perturbation expressions correct to first order in the Coulomb and mass difference
effects. Finally in two appendices we give the connection between our corrected
S-matrix elements and the differential cross sections and we check that our S-matrix,
as constructed from the coupled two channel Schrédinger equation, is unitary and
symmetric.
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2. The Schriédinger Equation

- Since the potential energy operator in the Hamiltonian is non-controversial, we
concentrate our attention on the kinetic energy term
2
BN+ o

2wy 0 e

Here the superscripts (1) and (2) stand for the pion and nucleon respectively. Because
of mass differences the mass factors are operators in isospin space with the form

kin =

1
2m£1§

1 ——1 —1 t. (1 { _—1 1 ta) (1 4
mglﬁ)' - L 2 ‘3 ( - 3) + Lo ( + 3) ( _. 3)

| 1 1 1 1
e s s S, o P 2
mf';,) m, 2 (1 + 75) + m, 2 (1 —1y) (2)

where g is the mass of the 7~, y, the mass of the #°, m, the mass of the proton and
m,, the mass of the neutron. ¢ and 1/2 ¢ are the pion and nucleon isospin operators.
The operators in (2) are diagonal in the charge basis of isospin space, |¢) (¢ = —, 0
denoting the 7~ $ and #° » states), and so the inverses of these operators exist, having
the form

1
mc(;lfa): - ﬂ—"z‘ta (1 —25) 4+ 1o (1 + 23) (1 —43)

1 1 :
mp = mpy (L7t (l—zg) . | @)

The operators m{}) and m{2) commute so one can introduce total linear momentum P

and relative linear momentum # and transform to the c.m. frame 13 =0.
Using the same algebraic rﬁanipulations as in the single channel case we obtain

1
_— 2 —
Hkin_ 2 mgp (?) ) F - 9 (4)
where
1 1 1
Moy = m,, D T Moy

In the charge basis we have in matrix notation

1 1 1
"op T Gt Sk s
m, . Mo my ;

where m_ and m, are the reduced masses of the 7~ $ and #° » systems. The inverse
of (5) is obviously
m_ 0\
‘ = - 3 6
Thus we see that taking into account mass differences in the kinetic energy for
the relative motion amounts to replacing the reduced mass by a mass operator which,
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in the charge basis, has the form given by (6). In addition, one has to introduce a rest
mass operator which takes into account the difference in the rest energles of the two
channels. The form of this operator is:

1 1 1

an:mp_z_(l + Ty) +mn_2_ (L—5) + o (1 +4£5) (1—14) —H-—“Z“"ta (1 — 1)
or, in the charge basis

Mo!’ = (mp " #- ) )

0 my, = Ho
Using units with 2 = ¢ = 1 we arrive at the Schrédinger equation
1
2mp op op op)w:EVJ

where U, is the strong, charge independent nuclear potential and V,, is the long
range Coulomb potential. U,, is diagonal in the total isospin basis of isospin space.
We assume that no other channels are open so that U, is a real potential. The exten-
sion to the inelastic scattering region by the introduction of a complex U, is trivial.
The only essential difference being that our 2x 2 S-matrix is no longer unitary. V,,
has the form

Vip=Vr) 312 (1 + 75) ,
—V (r) being the static Coulomb potential in the n— p state. The wave function o
depends on the relative coordinates in the ¢.m. frame, on the nucleon spin variable,
and on the isospin variables of the pion and of the nucleon.

We now go over to the partial waves corresponding to diagonal absolute value
of the total angular mementum, 3rd component of the total angular momentum and
parity,

1
pislr, ) = [REDW) | = + RO 05— 2, 6, )

where £, | is defined in Ref. [1]. The radial wave equations for the functions R, .
can now be written down. For simplicity we only consider the case of / = 0, although
the results can be immediately generalised, and we use the notation of Ref. [1]

() — RTOT
RY = R!

The superscript 7°T means that the radial wave functions are exact solutions of the
coupled channel system in distinction to solutions of other equations which will be
introduced later.

The system of coupled equations determining RZ°7 can be written in matrix
form as

1 1 2 V2
- d2+(E*umﬂ_ 0 ) EIIE RO R RN
1 |dr 0 E-m,—u) |V2 2 1 RIoT )7
S " g, Sl B 0
0 mg 3 (U:; 1) 3 3+ 3 1

(7)
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Here U, and U, are the s-wave diagonal values of U, in the total isospin basis of
isospin space. Defining wave numbers corresponding to the relative linear momenta
of the two channels by

B=2m_(E—m,— p_
kg =2my (E —m, — p)

we can rewrite (7) in the form

@ 1 2 V2
g e 0 (- 0] otz TG0 (R?:O'f Y
d® Lo 2m Z o 1 gror | =Y -
0 gath O 1

(8)
We can alternatively transform this equation to the total isospin basis when we
obtain the corresponding equation for RIP?7, the s-wave radial wave functions in the
total isospin basis.

Defining
m_— my =Am
k2 — R = AR? (9)
the transformed equation becomes
d? 2 V2
——+ B —Ak? — AR?
d1'2+ _+ 3 3 Ak
V2 42 1
— Ak? — + R+ — AR
3 dr? TR 3 Ak
2 4 2y2 2y2
2 Ug — — V,——A4mU — ———AmU
il I A ¥ s . Tkl A Tt (R§°T 0
2y2 2y2 4 2 RIOT) =
%m_ c——ggdm Ug 2m._ Ul——s—m_ V, ——?;—AmU1 .

3. The Inner Corrections

We first consider the functions RIY which are solutions of the equation obtained
from (10) when mass differences and the Coulomb potential are only included for
r < 7y, Where

ro = Mmax (7y, 7,) .

Here 7, is the range of the nuclear interaction and 7, is the charge radius beyond
which the 7~ p Coulomb potential behaves like a point charge potential. Thus we have
42
e 0 RIN
43 (R?N) =0 7r=7 (11)
i k2 1

0 dr? -
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while for 7 < #, the functions RIY obey (10).

We now introduce solutions R} of the purely nuclear problem i.e.

a2
a)=0 (12)
Ri")

dr? (
d2
0 E’E + ki — 2 m_ Ul

and choose the two linearly independent solutions which have the behaviour

(RY, sin (k_ 7 + d5)
(=)= (") oo

Ry 0 -
RN - sin(k_.r+61))- St

where 0, are the purely nuclear charge independent s-wave phases. We have
arbitrarily defined the charge independent phases to correspond to scattering with
the 7+ and proton masses so as to avoid mass corrections in 7+ p scattering.

(13)

Since (11) and (12) coincide for » > 7, we can write the general solution of (11)
in terms of four constants ag, o, f;, B, in the form

RéN = 03 R:I&Voc + ﬁ3 Rﬁ%l

r=r, - (14)
R = RL 1 B Ry, 7

Performing the same manipulations as in Ref. [1] we arrive at implicit relations
between these constants of the form

%3 = By sin (03 — &) =

I Fo
T dr RY [2m_V, (RN —y2 RY)
° +2y24m (2 Uy R{Y + U RY)
+ V2 AR? (Y2 RIN 4 RI™)] (15a)
=% Sin (63 — 61) =
1 0
_Ek_fdr R [2Y2m_V, (RN —y2 RY)
O _—24Am (Y2 Uy RIN + U, RY)

— AR? (Y2 RN + RIM)) . (15b)
Thus combining (14) and (15) we have

RY = a R, + oo RY

sin (85 — &)
r=7,
! X
RV = ——RE + f, Rij

sin (d; — 6,)
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Finally we select two linearly independent solutions R}J , and R[Y ; corresponding
to the choices a3 =1, f; =0and oy = 0, B, = 1 i.e.

75305 R:IIV

RIN _ RN
ba sa T+ sin (d; — &)

IN _ Xia N
RSa

12 sin (03 — 6,)
IN _ X34 RN
%" sin(0g — &)
RIN _ X1p RN RN
Y sin (8, — 8y) T M
4. The Outer Corrections

We now have to take into account the tail of the Coulomb potential and the
effect of the mass differences for » > 7,. It is convenient to work in the charge basis

so we transform (16) to obtain

RIN — V% Ré\fa_}_ V V_ xla ‘Réva

—

sin (03 — &)
| I/ 2
RI_A%_ V_ RS 1 Xap R 3 Xip R
sin (03 — d,)
r=r (17)
2 ‘ E % b oo - l ¥ B
Rég: V? Ré\[a + 3 3a “M1B 3 la “M3a
sin (43 — 0,)
RIY ]/_ RY, + 5 1o R+ 5 g R,
sin (0; — &)

From (8) we see that RT°T and RV satisfy the same coupled equations for » <7,
and so we can write

RTOT) RIN RIN o ‘
ror) =4 ) sy (qd) v (19
( R(ﬂ)"OT Rg{.\z RIN 0 |
where A4, and A4 4 are arbitrary constants.

Also from (8) we see that for » > 7,, RI°T satisfy the equations

dr?

d2
(EFE'* k?)_RgOT = | (19b)

d2
(_ ) ) RTOT . 2 V. RIOT _ | (19)
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We now define two independent solutions of (19a), u, and 4, with asymptotic
behaviour
u, ~ sin(k_r +1) —0o,+nln2k_7)

ug ~ sin(k_r+15) — o, +nln2k_v) (20)
7 — 00
where the Coulomb parameter 7 is given by
&2 m-

n=— (e = o = 137.0388-1)

and the s-wave Coulomb phase is given by
go=argl'(1+1im).

The phases 7{-) and 7{~) are fixed by imposing the condition

’ IN?
3 _ K
U, |r=1r, R, | wsw
’ IN+
% _ R (21)
Ug |T=T7, RI_A; £ 55

where the prime denotes differentiation with respect to 7. For » = r,, RT°T obeys the
same equation as u, and u, so we can write

R™T - B u_ + Bgug r =1, (22)
Matching value and derivative of RT%T at 7, as given by (18) and by (22) we obtain

B,—X,4,, By=X,4, (23)
where the constants X, and X, are given by

uy(re) = X' RIS (7y)

up (re) = X" RIS () (24)

In the same spirit we define two independent solutions of (19b), v, and v, with
asymptotic behaviour

v, ~ sin(ky7 + 7'

¥ —> 00

vg ~ sin(kyr + 1Y), (25)
r— 00

the phases z{) and 7 being determined by

3 IN:

Ya _ P

v, |T="1, R luos

v} R

Y _ S (26)

Vg |7 =70 Ry |r=r

We also define two constants Y, and Y, by
v(re) = Y Rig (o)

vg(re) = Y5 Ry (7o) . (27)
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Forr > 7,, Rj°T obeys the same equation as v, and v, and so we arrive at the analogous
result to (22) and (23),

RIOT — 4 Y,v,+43;Ysv 7 =14, (28)
Thus our general solution of the two channel n~ p, n°» problem with Coulomb
interaction and mass differences included has the form

RTOT X, u Xpu
- )= . s 29
(ror) =4 (327) =40 (377%) 72 ®
where A4, and 4 4 are arbitrary constants.

Using the known asymptotic behaviour of the #’s and the v’s we can proceed
from (29) to obtain the S-matrix elements in the charge basis, taking care to include
the correct normalisation factors since the #—p and a® » systems have different
relative velocities. The resulting expressions are:

B = [X Vet =) — X, v, ety )—f“”)]D;OT

—0 k—my e . i f+(—) (;) -1

Sror = e [—24 X, Xpsin(ry,) —v57")] Dror
o M—
Bym_\V2_ : _

Stor = (27 )" (24 ¥, ¥, sine® ] D a0
— e

0 =[x, ¥, 601 - x, v, o570 D3

where
Dyor = X, Y, ei(#+70) _ X, v, e~ief)+20) - 31)

In Appendix I we show how the scattering amplitudes are constructed from these
S-matrix elements and in Appendix IT we check that the values given by (30) and (31)
correspond to the elements of a symmetric and unitary matrix.

5. Perturbation Expressions

We have shown in the previous section how the full S-matrix elements can be
obtained once the functions R!" are known. These RI¥ can be obtained by numerical
solution of the coupled equations for 0 < 7 <{ 7, or alternatively they can be approxi-
mated by replacing the RJY by RY. in (15a) and (i5b) thus obtaining approximate
values of the y’s to substitute into (16). This latter procedure amounts to treating the
Coulomb interaction and the mass differences as perturbations. The first order values
obtained in this way are

7o

1
Xoa = — 35 dr(RY22m_V,+ 4 Am U, +2 Ak?)
0
1 i _ i _
Xap = ay | dr(Re, Rip) Y2 m_V,.—2y2 Am U, — Y2 AR

3k_

0
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7o

5 ¢ 1 0 . . . '
fie = — gz dr(RY, Ri‘;) @Cy2m_V,—2)2 Am Uy — )2 AR?)
0
np= 3 dr(RY)?: (4m_V, +24m Uy + AR?) . (32)

0
The nuclear potentials Uz and U, can be eliminated by using (12) to obtain

PRI | 2 oy N
Ur= (g + ¥ B - @m_ R

Having obtained the RIV, either numerically or in the approximation described
above, we then have to calculate values for the X's, vs, Y’s and t@’s. Usmg (20)
and (24) and matching value and derivative at 7, we obtain

tan 70) — Fo(—n, k-7) Ri-No:( ) — Fo(—mn, k- 7)’ RI—A;()
i Go(—7, k—7) REL(1) — Go(—m, k-7) RZS(r) |, _,,
x _ R™ (7)
* costl ) Fo(—mn, k—7) + sintl) Go(—n, k=7) |, _,, (33)

Analogous expressions are obtained for zf~) and X 4 by replacing R, by R™;,. Ina
similar way using (25) and (27) we obtain

o DR ko ] REV'0) — [Bo 7 ialka T REX0)
> (ko 7 my(ky 7)] RGN (7) — [ko ¥ mo(ke 7)) RGN(Y) |, - 7o
. RS ()
i cost [ky 7 fo(ko 7)] — sinzly) [ke 7 mo(kg 7)] |, - 7o (34)

) and Y ; being obtained by replacing R} by RLY. The notation suggests the obvious
generahsatlon tol £ 0. :
Having obtained the values for the X’s, Y’s and 7’s the S-matrix elements can
be calculated directly from (30) and (31). Alternatively values can be obtained for the
eigenphases 73 and 7; and the mixing parameter @ as defined in Ref. [1]. We have
from Ref. [1]

Stor + Stor = €778 4 #¥71 | | . (359)

Vi(82ir3 —_62511) 5 ta;lw

+ higher order terms.

SFor = Stor = (€*7%3 — £2*%1)  (35b)

If we define A’s and &’s by

) =85 + A7) T = 85 + 4P
)=, + A7) 9 =6, + 4P
1 2
Koy, = V—g (= ag_)) Y,= 3 1+ 8:(30))
X /2 (—) 1 (0) i
p=— 5 A+d?) V=| 5 1+ EE (36)
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then from (30) and (31) we obtain the first order results

A=) (0)
Stor + Syor = €4°% (1—]—2i $ +32A3 )
2 A=) (0)
R (372)
S0 =@ k_ m, )1/2+ 28g_)—28§0)+8g_)“—8(10) ey A(g-)+2Ag0)+ZA(1—)+A(10)
TOT = 3 I 3 3
{ 2133[1 4 7 ( Al ))] 2“51 [1 ]} (37b)

Since the decomp051t10n of a complex number into the sum of two complex numbers
each of modulus 1 is unique, we have on comparing (35a) and (37a),

A=) 42 A40)
T3 == 63 + 2 + 3
3
2 A-) L A
By=fy +—1 T (38)
Using (38) and comparing (35b) and (37b) we have
k_my \ 12 2 X X
tan o = /2 [(komf) = 1] +VT [2 (&) — &) + () — &)
2 (A0 — Al = (A4) - AD) ] (39)
~ tan(d; — dy)

APPENDIX I

Differential Cross Section in Terms of S-Matrix Elements

The connection between the S-matrix elements and the differential cross sections
proceeds in a similar way to that outlined in Section 3 of Ref. [1]. The asymptotic
form of the radial and isotopic part of the wave function for a &~ p incoming state
of given / value is

l 1 .
[Sin (k_ y — '—“ZE— 0'1 o 77 In 2 k__ 7) e T(Sl_j:_ _ 1) e@(k_flﬁ/2—61+?71n2k_f) |_>:|
1 k_ mo 1/2 o . ) - .
T SO— i (kor — Imt[2) 0 Al1
+ | () stz e 03 (AL1)
where the S7, ° are the full S-matrix elements i.e. such that
S(c):rc = 55:0"} :
Defining the quantities
—— 1 —_— —2i0
fi =57 (Sa - e
0 — Llso— —ig;
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the same treatment as in Ref. [1] shows that the scattering amplitude can be written
in the form

ol — 1 c! ! —
=8, F, + ?2[(1 + 1) fiim +1f2 1 P, (cosh)
L

’ 1 ot ol
g = - DU~ 171 P (eost)

. ) is the point charge pure Coulomb scattering amplitude and # is the normal to the
scattering plane.
In terms of /<~ and g¢’ - the differential cross section is given by
do
aQ__,

It should be noted that the usual treatments of n~ p charge exchange scattering
approximate the expression

1 [ k_my\Y? Go-

2 \ kym_ L
in equation (Al.1) by the charge independent limiting value in neglecting the mass
differences and putting # = 0. Making this approximation the mass difference effects

are only allowed for in the kinematical factor which comes in, if one goes from
the amplitude to cross section. One then can write

do Vo
~ — |2 0— |2
dgg_*():v_uf?\’ | +|gN 1

Here v, and v_ are the relative c.m. velocities of the #° # and i~ p systems; f?v—
and g% are the purely nuclear amplitudes, neglecting all isospin violating effects
[ B

=7 P+ e |2

APPENDIX II

Symmetry and Uritarity of the Full S-Matrix

As a check on our calculation we show explicitly that the S-matrix we obtain is
symmetric and unitary.

a) Symmetry
Since #, and wu 4 are two independent solutions of the same differential equation
their Wronskian is independent of » and from (20) we have

Wlw,, ug] = k_sin (r) — tfg“’) ‘
Using (24) then gives
ko X, Xgsin(rl)— <) = WR™, , R™), _,.
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Similarly
kO Ya Yﬁ sin (ng) _‘Tt(g(g) =W [Réi\! ’ Rﬂﬁ jf =1,
and so from (30) we have

Dror - (Sror ¥ 5?3’1") =
214 L W [R™ , RN RIN RIN ) A2.1
* ( k_ kO ) (m_ [ ﬁ:]f ) mo [ Ou 08 dr=r, ( )

However, Rl and R} are regular solutions of (8) for » < 7,.
Using this system of coupled differential equations one obtains

1 1
— W [RIY,, R™] +%W[R£§,RIN]—O , 0<r <r,.

Thus the right hand side of (AZ2.1) vanishes and so
Stor = Stor - (A2.2)

b) Unitarity
We have to prove the three relations

| Szor P+ | Stor [2=1, (A2.3)
| S7or [* + | Szor P =1, (A2.4)
© Stor 53‘0; + S[’.)fOO*T ST OT =0. (A2.5)
Writing (A2.3) in the form 4
l Dror - STOT ‘ Dror I - I Dror - Stor |?
we insert the explicit expressions from (30) and (31) to obtain
Ry m—
4 k(i = V2 Yisin?(rl® — o)) = —4 X, Y, X, Y, sin(z}]) — 7§7)) sin(z) — 7).

Thus we must prove

o k_ .

;@;Y Y, sin (7% — 0))~|-_—X X gsin(r —)_Tg N =0

but this follows at once from the results of the previous section.
To prove (A2.4) we note from (30) that

(D TOT STOT) = (DTOT' S;o}) (A2-6)

and so (A2.4) follows at once from (A2.3) which we have just proved. Finally we use
(A2.2) and (A2.6) to rewrite (A2.5) as

(Dror * Stor) “ 2 Re (Dyor * S7or) = 0.
However, from (30), we see that Dy, S;3r is pure imaginary and so this relation is
also proved to be true.
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