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On the Logarithmic Power of Kernel Integrals

by J.-P. Eckmann1)
Institut de Physique Théorique, Université de Genève

(30. VIL 70)

Abstract. Sufficient conditions are given under which the asymptotic behaviour of integrals
is described by pure power counting, excluding therefore logarithmic powers.

1. Introduction

Weinberg's theorem on the asymptotic behaviour of complicated integrals [3]
has been used lately quite often in estimates on kernels of biquantized operators, or
bilinear forms (for references, see [2]). The original theorem gives only results for the
asymptotic behaviour in powers of the variables, leaving open a possible occurence
of powers of logarithmic terms. Fink [1] has discussed and solved this problem in
Weinberg's terminology and he applied his results to self-energy graphs.

In this note we use Fink's argument for a wide class of functions occurring in the
kernel estimates mentioned above. It is hoped that this should clarify the question
of when logarithmic terms do occur and when they can be excluded with certainty.

In section 2 we state the results in a simple and nonspecialized language which
should allow a very quick decision in any particular case, as to whether logarithmic
terms will appear or not. In section 3 we prove these results in the form of a more
general theorem. Here we use the terminology of [1] and [3]. We have omitted the
definitions in order to avoid unnecessary repetitions, and the reader is asked to look
up the definitions in the papers of Weinberg and Fink. As a corollary of the theorem
we give an upper bound for the logarithmic power for the case where it is not zero.

2. Formulation of the Theorem

We will describe the asymptotic behaviour of the functions by means of the
following definition:

Definition: We shall say that the real function f(k) behaves like k* if / satisfies:

For some b > 0 there exists a M M(b, /) < oo such that

|/(a) | <Af|£|a for \k\ >&.
If f(k) behaves like ka we write f(k) ~ k« 2).

x) Work supported by the Swiss National Science Foundation.
2) /(*) ~ *a implies, in the terminology of Weinberg, that / is of class Ax, with asymptotic

coefficient afR1) a.
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Theorem 1: Let kx, kn, peR". Let
m n

g(kx, ...kn, p) =[Jfj (2JaJ{ k, + aj0 p) -

7=1 i=1
mf n

fi fj (EaJ 11 ki I + ajo I i> I + cj)
j « m +1 i l

where ffk) ff\ k |) ~ Äaj, j 1, m' ; Uj, > 0 /or j m + 1, m', i 0, n
and Cj ^ 0, j m + l, m'.

If I {ix, iff is a subset of {nt + 1, mf, 0 sf q if m' — m, denote by P2
the set of variables occuring in f%lt fi which have a coefficient aJi different from zero.
Let Nj be the number of such variables. For any subset J {jx,... jf] of {1, m},
0 sf.r ^. m, let Aj be the following matrix

airo - - ¦ ahn

A j I ¦ • I and define

liro ¦ ¦ ¦ airn
Bj,j as the matrix obtained from Aj by striking out the columns corresponding to the

variables in P+. Suppose that the following inequality holds for all pairs of subsets F J
satisfying r + q > 0 and Nj + rank BItj if. n:

r q

E «fc + E*ih + vNi + v rank BtJ > 0 (1

A-1 k-1
Fhen, if G(p) G(\p \) J dvkx dvkn g(kx, kn,p) exists, one has

m'

G(\P\) ~PV?i
and there are no logarithmic terms.

Remark: The relation (1) measures the connection between the coefficients o^ and
the linear dependence of the arguments of the function. We will state this in a more
compact form in Theorem 2.

Examples: Let pi(k) (k2 + m2)1'2, m > 0, k e Rv.

1. Let g(kx, k2, p) ft (kx — p)a ft (k2 — p)ß ft (kx — kff. Then (1) amounts to
a, ß, y > —v.

2. Let g(kx, k2,p)=/j, (kx - PY pt (k2 - pfpt (kx - kf7 pi (kx + kf)6 pt(kx + 2 k2y.
Then (1) amounts to a, ß, y, ô, e > —v, y + ô + e > —2v.

3. Let g(kx, k2, p) fi (kx - p)api(k2 - p) V (kx - k2ffi(kx - 2kfô (pt(kx) + pt(k2)f.
Then g can be majorized by a function of the class described by the theorem,
(pt(kf + pt(kn)f < (\kx\ + \k2\ + mf ¦ const and (1) amounts to a, ß,y,o,eF — v,

y + ô + e> -2v.

3. General Formulation and Proofs
We shall generalize now the class of functions considered, by introducing the

following definitions. We consider functions of the variables k0, kne R1. Let

iAh>-K) t(Ea<k<)' (2)
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where A is the one-dimensional subspace corresponding to the vector (a0,... af e R"+1,

A {«„, an}. Let f(k) ~ ka. It will be convenient to write U {k0, kn} and
to say that fA(X U) ~ Aa if and only if U is not orthogonal to A; (Xe R1). We want
to generalize this to higher-dimensional ^4's. Let

U A A X{U) h(E\SAl(U)\) > (3)

where all gAi are obtained from one g as in (2), where g(k) ~ ky, h(k) ~ kv' and
A {Ax, Afjis the subspace spanned by Ax, Aq. It is clear that fA(X U) ~ Ayy'

if and only if U is not orthogonal to A.
Definition: Let C be the class of functions obtained by repeating the above construction
(i.e. take in (3) also gAi where dim At > 1).
Example: (pt(kf + ...+ pt(kr)y, k{ e R" is a function in C Indeed pt(kt) (kfx +
+ k2v + m2)112 is in C and hence also the sum of ^'s to the power a.

With these definitions we restate Theorem 1 in a more general and more compact
form.

Theorem 2: Let R"+1 be the space of the variables (k0, kf. Let g(k0,.. .kf g(U)
m

FtJ'f*1(U) where the functions f f1 are in Cl they are derived from functions /<*', i= 1, ...m;
i-i ' ' '
and ff}(X U) >~~j Xa> whenever U is not orthogonal to the linear subspace L(. Suppose

i
that for any subset {ix, iq) of {1, m} the following is true:

If dim{Lh,... Liq} y n then jj^. > - dim{L h ,...Lig}. (4)

i-i
E*i n.

Fhen, if G(k0) f dkx... dkng(k0, kf exists, one has G(k0) ^kn^x ' ' Fhere

are no logarithmic terms.
Remark: The case where (4) is not always fulfilled is discussed at the end of the paper.
Proof: We proceed by several lemmata, using the terminology of Weinberg and Fink,
without restating the precise definitions. It is always to be understood that the
asymptotic powers etc. are taken with respect to the function g, satisfying the hypotheses
of the theorem.

Definition: Let A {L{ ,...Li }. Then SA is defined to be the orthogonal complement
of A in R»+1.

In the following lemmata we always assume that the L{ have been renumbered
in such a way that A {Lx, Lff. Let S be a linear subspace of R"+1 and define,
as in [3], a(5) to be the asymptotic power corresponding to S.

Lemma 1: Let A {Lx, Lq) and let L($ A, i q + 1, m. Let S C R"+1,

S orthogonal to A and let L{ be not orthogonal to S, i q + 1, m. Then

cc(S) + dim S < a(SA) + dimS^

Proof: It is easily seen that for any T Q R"+1, ol(T) E* "¦>' where TJ* extends over
all i, 1 < i y m, such that L{ is not orthogonal to T. Therefore a(S) <z(SA)

¦y+i + + am. It is clear that dim S + dimJ < n + 1, and as dimS^ + dim^4

n + 1, the lemma is proved.
We come now to the central lemma, in which we use the condition (4) on g.
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Lemma 2: Let S be a linear subspace of R"+1, 0 < dim S < n + 1. Then

a(S0) + dimS0 > oc(S) + dim S

Proof: Note that S0 R"+L Let first S SA with A {Lx, Lq}, L^A, i
q + 1, m. Then

a(S0) + dimS0 - cc(SA) - dimSA
a.x+ + a,„ + (n + 1) - cxq+x - - a.m - (n + 1) + dim A

a1+ + 0Lq + dim{Lx, Lq) > 0, by (4).

(Note that automatically dim/1 ^ n.) The case of a general S is now an immediate

consequence of Lemma 1, and hence Lemma 2 is proved.
Let / be a linear subspace of R"+1 and let, as in [3],

<Xj(S) max oc(S') + dimS' — dim S

S'

A(I)S'=S
be the asymptotic power of g with respect to S after integration over 77 A(I)S' is the
projection of 5' along I onto a complement E of I. Let Pj be the projection onto the
orthogonal complement of /.
Lemma 3: Let Ij denote the space {kx} © © {kf), j 1, n3). Fhen

*ij(Pij S0) a(S0) + dimS0 - dimPj. S0

Proof: Write Sj Pt S0 By definition

Xi.(Sj) max oc(S) + dim S — dim S,-V J A (f)S^S1
J

By [3], Appendix (B), as i, is disjoint from S,, S S0 Sj + Ij is a possible choice
for S. By Lemma 2, if SC S0 and S 4= S0, then a(S) + dimS <a(50) + dim50.
Therefore the maximum is attained for the choice S S0 This proves the lemma.

Before we can look at the question of logarithmic powers, we need two further
technical lemmata.

Lemma 4: Let S Q Sj and dim S < dim Sy. Then

«¦i.(Sj) +dim Sj > a7.(S) + dimS, / 1, n

Proof: By definition,
onr.(S) + dim S max oc(S') + dim S

A(r:)S'-s
'

By Lemma 3,

OLjXSf + dimSj ; a(50) + dimS0

Note that dim S' < dim 27 + dim S < dim /. + dimSy n + 1, by [3], Appendix (B)
and by hypothesis. Therefore, by Lemma 2,

oc(S') -f-dimS' < a., (Sf + dimSj
for all S' with A(If S' S. QED.

We attack now the question of possible logarithmic powers, for which we have
to determine the number of 'maximizing subspaces' ([1], sect. F).

3) {kf {(0, 1, 0)} with the 1 at the j + l-st place.
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Lemma 5: For all j 1, n, the maximum
Q max a.,. (S) + dimS

AUk^S-Sj J1-A '

is attained for S Sj-X, and for no other S.

Proof: By equation IV.10 in [3], Q is equal to «/.(S,). By [3], Appendix (B),
S (f Sj + {kj}= Sj_x, so S Sj_.x is indeed a possible choice for S, and necessarily
all the other choices of S with A({kf\) S Sj fulfil 5 Q Sj-i- Now by Lemma 4, if
S r_ 5j_1andS =t= Sj_xthenccr. (S) + dimS <a2. (Sj_f + dimS^. The maximum
in (5) is therefore attained only for S Sj-X. QED.

We prove now Theorem 2 by using Theorem 4 of Fink. Indeed, our g is in his
class Bn+X. By definition,

ar ({kn}) max oc(S) + dim S — 1
J»U "" A(ln)S {k0]

The maximum is attained for S S0 R"+1, and
m

«¦i„({ko}) Ea-' + n-
i=l

Consider now the integrations in the order kn, kx. By Lemma 5 the maximizing
subspace for the kn integration is Sn_x, and pn, the dimension number relative to
Sn {k0} after integration over In_x4), equals one. Now proceed by induction: The
basic observation is that each pj has to be taken with respect to Sj which was the
maximizing subspace for the preceding integration (over kJ+x). Using now Lemma 5

again, we see that pj, the dimension number relative to Sj after integration over Ij-X,
equals one for j n, n — 1, 1. Hence all p, — 1, j 1, n and inserting in
Theorem 4 of Fink [1], we get Theorem 2.

By following the steps of the proof of Theorem 2, we arrive at the

Corollary: // s is the mtmber of dimensions d for which
i

JTa, -dim{Li LA -d (> -n)
i-i ' '

for at least one choice of ix, iq, then
m

G(kf ~ k0 i-i ' (log|£0|)s if it exists.

Proof of Theorem 1: As ffk) ff\k \), it is of course in the class C Note that

v (A, + rank BSJ) dim {L^, Liq, Lh, Ljf}
p has to be considered as a one-dimensional variable \p\ k0. The rest is an easy
consequence of Theorem 2.

Acknowledgement
It is a pleasure to thank Dr. W. Amrein for carefully reading the manuscript.

REFERENCES
[1] J. P. Fink, Asymptotic Estimates on Feynman Integrals, J. Math. Phys. 9, 1389 (1968).
[2] K. Hepp, Théorie de la renormalisation, Lecture Notes in Physics Vol. 2 (Springer, Berlin,

Heidelberg, New York 1969).
[3] S. Weinberg, High-Energy Behaviour in Quantum Field Theory, Phys. Rev. 118, 838 (1960).

4) See [1], sect. F.


	On the logarithmic power of kernel integrals

