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On the Logarithmic Power of Kernel Integrals

by J.-P. Eckmann?)

Institut de Physique Théorique, Université de Genéve

(30. VII. 70)

Abstract. Sufficient conditions are given under which the asymptotic behaviour of integrals
is described by pure power counting, excluding therefore logarithmic powers.

1. Introduction

Weinberg’s theorem on the asymptotic behaviour of complicated integrals [3]
has been used lately quite often in estimates on kernels of biquantized operators, or
bilinear forms (for references, see [2]). The original theorem gives only results for the
asymptotic behaviour in powers of the variables, leaving open a possible occurence
of powers of logarithmic terms. Fink [1] has discussed and solved this problem in
Weinberg’s terminology and he applied his results to self-energy graphs.

In this note we use Fink’s argument for a wide class of functions occurring in the
kernel estimates mentioned above. It is hoped that this should clarify the question
of when logarithmic terms do occur and when they can be excluded with certainty.

In section 2 we state the results in a simple and nonspecialized language which
should allow a very quick decision in any particular case, as to whether logarithmic
terms will appear or not. In section 3 we prove these results in the form of a more
general theorem. Here we use the terminology of [1] and [3]. We have omitted the
definitions in order to avoid unnecessary repetitions, and the reader is asked to look
up the definitions in the papers of Weinberg and Fink. As a corollary of the theorem
we give an upper bound for the logarithmic power for the case where it is not zero.

2. Formulation of the Theorem

We will describe the asymptotic behaviour of the functions by means of the
following definition:
Defimition: We shall say that the real function f(£) behaves like &* if f satisfies:
For some b > O there exists a M = M (b, f) < oo such that

\f(R)| <M |k|* for || =0
If f (k) behaves like £* we write f(k) ~ k*2).

1) Work supported by the Swiss National Science Foundation.

%) f(k) ~ k> implies, in the terminology of Weinberg, that f is of class 4,, with asymptotic
coefficient «(R1) = o.
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Theorem 1: Let &y, ...k, peR". Let

L[ — H}‘ Za ki+ a;00)
[]f 2 i |k + a0 P+ ¢)

j=m+1 1=1
where fi(R) = [;(|k|) ~ k%, 1=1,...m'; a;; =0 for j=m+1,. , =0, .0
and ¢; = 0,7 =m+1,...m
If I'={iy,...1,} is a subset of {m + 1, ...m'}, 0 < g < m' — m, denote by P,
the set of variables occuring in fi, ... fi, which have a coe]‘fzcwnt i different from zero.

Let N; be the number of such variables. For any subset | = {jl, gy of {1, ... m},
0 <r <m, let Ay be the following matrix
aiflﬂ vt a‘fln

A; = , and define

Ajg---Aj,p
By,; as the matrix obtained from A; by striking out the colummns corresponding to the
variables in Py. Suppose that the following inequality holds for all pairs of subsets I, |
satisfying v + q > 0 and N; + rank By,; < #n

r q
D i+« +v N +vrank B, ; > 0. (1)
k-1 =1 _

Then, if G(p) = ij)l = [d'ky ... d°k, g(ky, ... k,, p) exists, one has

G(|p)) ~m§°‘i o

and theve are no logarithmaic terms.

Remark: The relation (1) measures the connection between the coefficients «; and
the linear dependence of the arguments of the function. We will state this in a more
compact form in Theorem 2.

Examples: Let u(k) = (k2 + m?)12, m > 0, ke R".

1. Let g(ky, ky, ) = p (By — p)* p (ks — P)P u (R — ky)”. Then (1) amounts to
o, B,y > —w.

2. Let g(ky, ko, p) = p (ky — 9)* p (ko — D)0 (ky — Ro)” o (ky + ko)® o (Ry + 2 ky)".
Then (1) amounts to e, B, 9,0, e > —v,p + 0+ & > — 2.

3. Letg(ky, ke, p) =pu (fy — £)* p (Ry— P)'BH (fy — ko) o (Ry — 2 kg)° (/u(k1) + /‘(kz))e-
Then g can be majorized by a function of the class described by the theorem,
(k) + p(k))® < (&1 | + |ky| + m)® - const and (1) amounts to «, fB,7,0,e > —,
y+o+e>—2v

3. General Formulation and Proofs

We shall generalize now the class of functions considered, by introducing the
following definitions. We consider functions of the variables %, ... %k, € Rl Let

Falkor - k) = I( 2 k) @)
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where 4 is the one-dimensional subspace corresponding to the vector (a,, ... 4,) € R,
A = {ay, ... a,}. Let f(k) ~ k*. It will be convenient to write U = {&,, ... k,} and
to say that 7,(4 U) ~ A* if and only if U is not orthogonal to 4; (4 € RY). We want
to generalize this to higher-dimensional A’s. Let

fay, ... ap® =H X len(0)]) . 3)

where all g, are obtained from one g as in (2), where g(k) ~ &7, h(k) ~ k" and
A4 = {A4,, ... A4} is the subspace spanned by A4, ... 4. [tis clear that (A U) ~ 2’
if and only if U is not orthogonal to 4.

Definmition: Let C be the class of functions obtained by repeating the above construction
(ie. take in (3) also g,; where dim 4, > 1). -

Example: (u(ky) + ... + u(k,))* k; € R" is a function in C: Indeed u(k;) = (k3 + ...
+ k2, + m2)12 is in C and hence also the sum of u’s to the power a.

With these definitions we restate Theorem 1 in a more general and more compact
form.

Theorem 2: Let R+ be the space of the variables (ky, ... k,). Let g(ky,...k,) = g(U) =
IIf ) (U) where the functions f [ arein C; they ave derived from functions f9, i =1, ... m;
i=1 "' ¢

and | L(?(l U) ~ A% whenever U is not orthogonal to the linear subspace L;. Suppose
that for any subset {i,, ... 1.} of {1, ... m} the following is true:

q
If dim{L, , ... Liq} o thenjgl:aij > —dim{L, , ... Liq} ; (4)
w

Then, if G(ky) = [dky ... dk, g(ky, ... k,) exists, one has G(k,) ~ ko<,
are no logarithmic terms.

Remark: The case where (4) is not always fulfilled is discussed at the end of the paper.
Proof: We proceed by several lemmata, using the terminology of Weinberg and Fink,
without restating the precise definitions. It is always to be understood that the

asymptotic powers etc. are taken with respect to the function g, satisfying the hypotheses
of the theorem.

Definition: Let A ={L, ,... Liq}. Then S, is defined to be the orthogonal complement
of 4 in R+,

In the following lemmata we always assume that the L; have been renumbered
in such a way that 4 = {L,, ... L }. Let S be a linear subspace of R**1 and define,
as in [3], «(S) to be the asymptotic power corresponding to S.

Lemmal: Let A={L,,...L} and let L;¢ A, i=q+1,...m. Let SC R+,
S orthogonal to A and let L, be not orthogonal to S, 1 =q + 1, ... m. Then

o(S) + dimS < «(S,) + dim S, .
Proof: 1t is easily seen that for any T C R™, «(7) = Z* «;, where Z* extends over
all 7, 1 <7 <<m, such that L, is not orthogonal to T. Therefore a(S) = a(S,) =

y+1 + ...+ o,. It is clear that dimS + dim4 <# + 1, and as dim S, + dim4 =
n + 1, the lemma is proved.

We come now to the central lemma, in which we use the condition (4) on g.

% + A There
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Lemma 2: Let S be a linear subspace of R, 0 << dimS < n + 1. Then

*(Sy) +dimS, > «(S) + dim S .
Proof: Note that S, = R+l Let first S= S, with 4 ={L,,... L}, L,¢ 4, i=
g+ 1,...m. Then

a(Sy) +dimS,; —al(S,) —dim S, =

=+ ...+, +m+1) -,y — ... —a,— (n+ 1) +dim4 =

=y + ...+ o, +dim{L,,... L } >0, by (4).
(Note that automatically dimA4 < n.) The case of a general S is now an immediate
consequence of Lemma 1, and hence Lemma 2 is proved.

Let I be a linear subspace of R**! and let, as in [3],

o;(S) = max a(S’) + dim S’ — dim S

SJ
AL S =5

be the asymptotic power of g with respect to S after integration over /. A([)S’ is the
projection of S” along I onto a complement E of I. Let P; be the projection onto the
orthogonal complement of /.
Lemma 3: Let I; denote the space {k;} @ ... D{k;},1=1,...n%). Then

ocIf(PI], Sy)=a(S,) +dimS, — dimPIj S g »
Proof: Write S; = P; S, . By definition

i
ocI?_(Sj) = max «(S) + dim S — dim §; .

A1) S=5;

By [3], Appendix (B), as I is disjoint from S;, S = S, = S; + [; is a possible choice

for S. By Lemma 2, if SC S, and S + S, then a(S) +dimS <a(S,) + dim S, .

Therefore the maximum is attained for the choice S= S, . This proves the lemma.
Before we can look at the question of logarithmic powers, we need two further

technical lemmata.

Lemmad: Let S C S; and dimS < dim S;. Then

Proof: By definition,

oc,},(S) + dim S = 211(2};){5’:5 «(S’) + dim S’ .

By Lemma 3,
Note that dim S” << dim[; + dim S < dim{; 4+ dim S; = » + 1, by [3], Appendix (B)
and by hypothesis. Therefore, by Lemma 2,
o(S") +dim S" < ocI?,(Sj) + dim S;
for all S” with A(I;) S" = S. QED.
We attack now the question of possible logarithmic powers, for which we have

to determine the number of ‘maximizing subspaces’ ([1], sect. F).

3) {kj} ={(0, ... 1, ... 0)} with the 1 at the j+1 — st place.
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Lemma 5: For all | = 1, ... n, the maximum
0= ﬂn(a{lg,(}) §=5; OL*’7‘-1(5) + dims

18 attained for S = S;_;, and for no other S.
Proof: By equation IV.10 in [3], Q is equal to oc,f.(Sj). By [3], Appendix (B),
SCS;+{k}=S5;_,,50 § =S5, ,is indeed a possible choice for S, and necessarily
all the other choices of S with A({%;}) S = S, fulfil S C S;_,. Now by Lemma 4, if
SC S;;,and S # S, then xr, _408) +dim.S < ocjj_l(Sj_l) + dim S;_;. The maximum
in (5) 1s therefore attained only for S = S;,. QED.

We prove now Theorem 2 by using Theorem 4 of Fink. Indeed, our g is in his
class B,4,. By definition,

ar ({ko}) = En(ax) s a(S) +dimS — 1.

The maximum is attained for S = S, = R*+!, and

% ({ko}) = Slaz +n.

Consider now the integrations in the order %,, ... k. By Lemma 5 the maximizing
subspace for the %, integration is S,_;, and p,, the dimension number relative to
S, = {ky} after integration over I, %), equals one. Now proceed by induction: The
basic observation is that each p; has to be taken with respect to S; which was the
maximizing subspace for the preceding integration (over %;,). Using now Lemma 5
again, we see that ?p;, the dimension number relative to S; after integration over I,,,
equals one for 1 ==, n —1,...1. Hence all p;, =1, 7' = 1,...n and inserting in
Theorem 4 of Fink [1], we get Theorem 2.
By following the steps of the proof of Theorem 2, we arrive at the

Corollary: If s is the number of dimensions d for which

q
Qo =—dim{L, ,...L,}=—d (> —n)
=i ] 1 q

for at least one choice of 1y, ... 1,, then
G (ko) ~ kg 121 ik (log|ky|)®, if it exists.

Proof of Theorem 1: As f;(k) = f;(| k), it is of course in the class C. Note that

p has to be considered as a one-dimensional variable |4 | = k,. The rest is an easy
consequence of Theorem 2.
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