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Bemerkungen
iber quantenmechanische Entropie-Ungleichungen”

von Fritz Baumann

Seminar fiir theoretische Physik der Eidgendssischen Technischen Hochschule, Ziirich

(24. VII. 70)

Abstyact. In a first part we check the validity of a conjecture of D. Robinson and D. Ruelle,
concerning the quantum entropy. The partial results obtained tend to confirm it.

The second part deals with a generalization of an expression for the skew information defined
by E. Wigner and M. Yanase; it is shown, that for Quaternions an important convexity property
helds.

1. Einleitung

Von zwei Klassen von Entropie-Ungleichungen wird im folgenden die Rede sein.

Die erste Klasse hat sich aus den Bemiihungen ergeben, eine wichtige Vermutung
von D. Robinson und D. Ruelle [1] iiber die quantenmechanische Entropie, nimlich
deren strenge Subadditivitit, zu beweisen.

Anlass zur zweiten Klasse gibt eine Konvexititseigenschaft der schiefen Infor-
mation nach der Definition von E. Wigner und M. Yanase.

Bei den Beweisen haben wir uns mit der Wiedergabe der leitenden Ideen begniigt
(ausfiihrlich sind sie in [2] zu finden), denn diese Zusammenfassung bezweckt vor
allem, auf die noch bestehenden, erheblichen Liicken aufmerksam zu machen.

2. Die Robinson-Ruellesche Vermutung

Einem positiven Operator P aus der Spurenklasse mit Spur 1 iiber einem Hilbert-
raum $) wird die Entropie S(P) = —Sp P log P zugeordnet. Diese kann bekanntlich
aufgefasst werden als Mass fiir die Unkenntnis des durch P eindeutig festgelegten
Zustandes aus einer Algebra von Observablen. Das kommt etwa im Trennungssatz
zum Ausdruck, welcher besagt, dass die Entropie eines aus zwei Teilsystemen zu-
sammengesetzten quantenmechanischen Systems beim Vernachldssigen der moglicher-
weise vorhandenen Korrelation zwischen beiden Teilen zunimmt. Die Robinson-
Ruellesche Vermutung kann aufgefasst werden als Verallgemeinerung dieses Satzes
und bezieht sich auf den Fall, dass § = $, ® $H, ® £, das Tensorprodukt von drei

1) Auszug aus der ETHZ-Dissertation (Nr. 4503) des Autors.
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Hilbertrdumen ist. Sei P,,; der gegebene Zustand, P,, die partielle Spur iiber §,
({z, k, 1} = {1, 2, 3}), P, die Spur iiber §, ® $,, dann lautet die Vermutung:
S(P1 @ Pyy) — S(Prgg) = S(Py ® Py) — S(Prg) (1)

Weil die Entropie unkorrelierter Systeme additiv ist, kann (1) leicht umgeformt
werden zu

F(Pyyg) = — S(Prag) + S(Pry) + S(Pyg) — S(Py) = 0. (RR)
Im Gegensatz zur klassischen statistischen Mechanik, in welcher die dquivalenten
Ungleichungen (1) und (RR) Giiltigkeit besitzen (ein Beweis findet sich in [1]),

konnten sie bisher fiir den quantenmechanischen Fall allgemein nicht bewiesen
werden [3]. Es existieren lediglich Teilresultate.

3. Ein Spezialfall von (RR)

Unter der Voraussetzung endlich dimensionaler Hilbertriume befassen wir uns
zundchst mit einer Ungleichung, die ein Spezialfall von (RR) ist. Allerdings fehlt uns
der allgemeine Beweis; deshalb formulieren wir die Aussage als
Vermutung: Sei $ ein endlich dimensionaler (komplexer) Hilbertraum, 4, ein

positiver Operator tiber §, ke {1, ..., m}, € {1, ..., n}. Dann gilt:

_%YS(AH)+;S(§Ak1)+25($1‘4k1)—S(%‘Akl) =0. (2)

Als Verallgemeinerung eines bekannten Theorems {iiber die Entropie endlicher
Wahrscheinlichkeitsvektoren (etwa K. Jacobs [4], part II, § 10.4) kommt (2) eine
selbstindige Bedeutung zu.

(RR) fithrt unter folgenden Annahmen auf die Ungleichung (2):

es sei dim$); endlich, ¢ = 1, 2, 3; es existieren Orthonormalbasen {u,} von §,
und {w, } von §,, so dass (4, @ v @ w, Pissu, Qv @w,) = O4p 0;p N(v, 4y, v"),
fiir alle v, v € §,; 0 << 4, € £(H,), N ein Normierungsfaktor.

Fiir den Beweis kénnen wir uns auf strikte positive 4,, beschrinken, denn diese
bilden einen offenen, konvexen Kegel, auf dessen Abschliessung die Entropie eine
stetige Funktion ist. Nun ist es leicht méglich, mit Induktion auf die Aquivalenz von
(2) mit der Konvexitdt der Funktion

A(4, B) = S (4 + B) — S(4) — S(B) ] 8
0<Ae($), 0<Bel($), J

in beiden Argumenten zu schliessen. Ausgeschrieben bedeutet dies: (2) ist dquivalent
mit:

A(1/2 (A; + A,), 1/2 (B, + By)) < 1/24(A4,, By) + 1/24(4,, By) , ] “
firalle 0 < A,e &%), 0 < B,e 2(§), i=1,2. |

Nach dem tiblichen Kriterium formen wir die Bedingung (4) um in eine Aussage iiber
das zu A(.,.) gehorige zweite Differential. Unter Verwendung der Integraldarstellung
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der Entropie S(4) fiir 0 < 4 € £($) mittels der Resolvente, findet man nach zwei-
maliger Ableitung, wenn X = X* e £($) das Inkrement von A bezeichnet:

825 (A) (X) = —q(4; X) = — fdt Spit+ATX(+ 41X | (5)

Aquivalent zu (4) ist nun offensichtlich:
g4; X) +q(B;Y) — g4+ B; X+ Y) =0,

6

fliralle A >0, B> 0, X = X* Y=Y%, &

Aus (5) ergibt sich fiir ein ¢ > 0 unmittelbar ¢(¢ 4; ¢ X) =t g(4; X); daher ist (6)

wieder eine Konvexititsaussage fiir ¢(.;.) und besitzt genau dann Giiltigkeit, wenn

das zweite Differential von ¢(.;.) eine positiv-semidefinite Bilinearform in den

Inkrementen ist. Dies ist der Fall fiir dim$ = 2, hier stimmt also die Vermutung.
Fiir hohere Dimensionen steht ein Beweis noch aus.

4. Diskussion von Extremalstellen

Wie steht es mit (RR) in der Nihe des «klassischen» Falles, in welchem P,
in einer Produktbasis diagonal ist ?

Uns interessieren hier Umgebungen von Punkten, in welchen in der Vermutung
das Gleichheitszeichen gilt. Ausgangspunkt bildet das

Lemma 12): Die Robinson-Ruellesche Vermutung (RR) ist richtig, falls P, ® 1,
und 1, ® P,; kommutieren.

Der Beweis ist elementar, die Behauptung ldsst sich auf die Kleinsche Ungleichung [6]
zurtickfithren. Diese liefert uns zusitzlich Nullstellen des in (RR) definierten reell-
wertigen Funktionals F auf der konvexen Menge der Zustidnde:

[P, @15, 1, & Pyg] = 0 vorausgesetzt, gilt:

F(Pigs) =0 Z P1oy 1, @ Py @13= P, @1,°1, @ Poys.. (7)
Damit F(.) ein positives Funktional ist, muss es sich bei den in (7) angegebenen Null-

stellen um lokale Minima handeln. Ob dies allgemein zutrifft, ist eine noch offene
Frage; beweisen konnten wir das

Lemma 2: Zustinde P, ,; zu einem Hilbertraum §; @ $H, & 9, die in einer Produkt-
basis auf Diagonalform gebracht werden kénnen- und die zusétzlich
P 1, @ Py ®13= P, ®1; -1, ® Py ertiillen, sind Nullstellen und zugleich
lokale Minima von F(Piy3) = — S(Pigs) + S(Pqa) + S(Pas) — S(P)-

Selbst fiir diese stark eingeschriankte Klasse von statistischen Operatoren P, fithren

die Minima-Bedingungen zu sehr unhandlichen Ungleichungen, welche sich aber

wieder zu einer Konvexitidtsaussage reduzieren lassen. Diese besagt, dass die Funktion

B, 1157, y) = 22[ad bl + Yl h dpl — (x+ 92 (@4 0) 4 (b +d) i,
x,yeR; A, u, a, b, ¢, d alle positiv,

%) H. Araki und E. Lieb [5] haben die Giiltigkeit von (RR) unter schwicherer Voraussetzung
[P, X 1;, Py3] = 0 bewiesen.
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. logo —logt
(o, 1] = -~~---ﬁ

2

konvex ist in den vier Variablen 4, u; %, .

5. Die Ungleichungen von Araki und Lieb

Eine teilweise Bestatigung der Robinson-Ruelleschen Vermutung haben H. Araki
und E. Lieb in einem kiirzlich veroffentlichten Preprint [5] geliefert. Daraus zitieren
wir das Haupttheorem:

Satz: Sei Py4 ein statistischer Operator zu §; ® H, ® H;. Dann gilt:

— 5(Pra5) + S(Ppa) + S(Pag) = —log Sp2(Py)? = 0; (8)
falls P, @15 mit P,; kommutiert, stimmt die Ronbinson-Ruellesche Vermutung
(RR).

(8) 1st eine Abschwichung von (RR), wie man sich auf Grund der Beziehung
S(P) = —log Sp(P)? leicht tiberzeugt. Weiter folgt aus (8) der

Trennungssatz: — S(Pqy) + S(P;) + S(P,) = 0.
Ebenso ergibt sich aus (8) eine Abschiatzung der Entropie S(P,,) nach unten:

Korollar: Py, sein ein Zustand zu $; X 9., P, die partielle Spur in $,, ¢ + &,
i, ke {1, 2}. Dann gilt:

| S(P1) = S(Py) | = S(Prp) < S(Py) + S(Py) . ()

In weiteren Spezialfillen erweist sich (RR) als richtig. Mit Hilfe der Ungleichung (9)
kann unmittelbar das folgende Lemma bewiesen werden

Lemma 3: Falls P,,, oder einer der reduzierten statistischen Operatoren ein reiner Fall
ist (P% = P), so stimmt die Robinson-Ruellesche Vermutung (RR); ebenso gelten
die durch Permutation der Indizes daraus hervorgehenden Ungleichungen.

Abgesehen von der Bedeutung der Robinson-Ruelleschen Vermutung im Rahmen
einer Axiomatik fiir die quantenmechanische Entropie, wurde an ihrem Beweis
(bisher vergeblich) gearbeitet, um als Anwendung der Ungleichung (RR) eine Liicke
in der Theorie der mittleren Entropie in der Quantenstatistik [3] schliessen zu kénnen.
In diesem Zusammenhang sei erwihnt, dass H. Araki und E. Lieb die Existenz der
mittleren Entropie beim Ubergang zum thermodynamischen Limes von translations-
invarianten Zustinden quanten-kontinuierlicher Systeme mit der schwicheren
Ungleichung (8) beweisen konnten [5].

6. Verallgemeinerung einer Matrixungleichung von E. Wigner und M. Yanase

Es sei P ein Zustand zum Hilbertraum §, P* (x > 0) die »-te Potenz von P
und K ein selbstadjungierter Operator aus £(9), dann lautet die von F. Dyson vor-
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geschlagene Verallgemeinerung der von E. Wigner und M. Yanase definierten schiefen
Information von P relativ zu K:

I(K, P) =1)2 Sp[K, P*] [P*~* K] , 0
0<x=1/2. 1o

% = 1/2 entspricht dem Wigner-Yanaseschen Fall. 1,,(K,.) ist konvex im zweiten Argu-
ment [7, 8], und esist zu vermuten, dass auch I, (K, .) fiir 0 =< » < 1/2 diese Eigenschaft
besitzt. (Unter I,(K, P) verstehen wir den Ausdruck 1/2 Sp [K, P] [log P, K].)

Auch diese Vermutung ist bisher unbewiesen geblieben; uns gelingt nur der
Beweis im ersten nichttrivialen Fall, ndmlich fiir dim$§ = 2.

Hier kénnen wir fiir P und K die Spinordarstellung

P=xy"1+ (x,0); xy€R, xeR3,

K=~Fky' 1+ (ko); kgeR, keR3 (11)
verwenden. Dabei bilden die Komponenten von ¢ die Pauli-Spinmatrizen.

Da P die beiden Eigenwerte

M=12%+ ||x]| =€ und A, = x5 — ||x|| = 22 (12)

besitzt, ist x, > ||x|| d4quivalent zu P strikte positiv. Aus Stetigkeitsgriinden kann
man sich beim Beweis der Konvexitidt von I,(K,.) auf solche Zustidnde beschrinken.

Die Spur von (10) in der Eigenbasis von P ausgerechnet, fithrt mit der Definition
X = %1 — X2 zu folgendem, unitdr invarianten, Ausdruck:

I,(K, P) = LS C Xy " ((1 *) (13)

ist.

% - y- Tghy - (14)

Die Spinkomponenten x,, x;, %5, #3 sind lineare Parameter fiir P. Um die vermutete
Konvexitdt zu beweisen, untersuchen wir deshalb, ob die zweite Variation von (13),
respektive von (14), nach diesen vier Parametern positiv-semidefinit ist; dabei
bedeuten die Annahmen x, = 1 (Festhaltung der Spur) und & = ¢; keine Einschrédn-
kung der Allgemeinheit. Somit miissen wir

L(x) =2 (25 + %) | |2 (1 _ Ch"‘x._)
Chy
p=1210g TP o 2, (15)

1 |lx||
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respektive
To(x) =4 (g + ) %7 1, (16)
auf die Konvexitit in x,, x,, x5 priifen.

Auf Grund eines speziell auf die Struktur von 7, (x) zugeschnittenen Kriteriums ge-
lingt mit Methoden der komplexen Integration dieser Nachweis.

Fir Quaternionen ist also die verallgemeinerte schiefe Information 7,(K,.),
0 = % =< 1/2, im zweiten Argument tatsdchlich konvex.

Die angedeutete Beweismethode ist jedoch zu speziell, um auf héhere Dimensionen
iibertragen werden zu konnen.

Herrn Prof. Dr. R. Jost sei hier mein verbindlichster Dank ausgesprochen. Seine
Unterstiitzung und wegweisenden Ratschldge haben die meisten der oben skizzenhaft
angefiithrten Beweise erst ermoglicht.
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