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First Order Perturbation Calculation
for the Dynamical Correlation Function of a Classical Gas

by P. Petalas

Seminar fiir theoretische Physik, ETH, Ziirich

(9. 6. 71)

Abstract. For a classical gas with a finite twobody potential the dynamical correlation
function has been evaluated to first order in the interaction. An extrapolation of this result is
discussed for gases with more realistic interactions.

Zusammenfassung. Fir ein klassisches Gas von identischen Teilchen, ohne innere Struktur,
welche durch ein beschrinktes Zweikorper-Potential wechselwirken, wird die dynamische Korre-
lationsfunktion in erster Ordnung der Kopplungskonstante berechnet. Das Resultat wird auf
Gase mit einer realistischeren Wechselwirkung extrapoliert.

1. Introduction

In the theory of real gases and liquids various approximations and expansions for
the static two-particle correlation [1, 2] have been given. Recently several approaches
to a theory of the dynamical correlation have been discussed [1], [3-7]. The present
paper proposes a perturbation expansion of the dynamical correlation function and
evaluates the term linear in the interaction.

We consider a classical gas of identical particles without internal structure. We
assume that the interaction between the particles is given by a finite two-body
potential.

The dynamical correlation function for such a system is defined as:

G(r,t) = Ga(r, t) + Gs(7, t) ,

0 Ga(r, t) = — <Z o(r + ri(0) — r5(t))> (1.1)

Y

0 Gs(r, 1) = {6(r 4+ r:(0) — rs(2)> .

Here ( - - - ) is the canonical statistical average in the thermodynamic limit. N is the
number of particles in the system, r;(f) the position of the particle j at time # and g
the particle density. The function Ga(7, ¢) is the distinct part and Gs(r, ¢) the self part
of the dynamical correlation function.
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The intermediate scattering function is defined by:

Ig,) = o f & &2t [Glr, 8) — 1] (1.2
Therefore

Iig,f) =+ el— 4,0) ela, £ — 27 0 8(a) (1.3
with

N
= 2 g‘&qf.,,(t) .

1=1

The Fourier transformed of I(g, £) with respect to time is S(g, w):

I(g,t) = fdw e’ S(g, w) . (1.4)
The development of (g, #) with respect to time:
t 2n
= 3 Qualg) LI (1.5)
n=0 )

involves the (2 #)th moment of S(g, w):

(o]

Qan(q) = fda) S(g, w) w2 .

— 00

For a classical gas the odd moments vanish, since S(g, w) = S(g, — w) [1].
For n > 0 the equations (1.3) and (1.5) together with the stationarity condition
(see e.g. [8], pag. 154) lead to:

an _‘_—“<| dtn q:

The moments can be calculated with this equation in terms of the potential and
the static correlation functions:

=0

1 N!
0% gs(ry, ..., 1) = o V=31 fdsrsﬂ ... dSry e—FH: (1.6)
N — 1
where
1
QszdEs?’l...dBf’Ne“ﬁHl) ﬁzk—’f

and where H; is the potential energy. Thus £ and £24 have been calculated in [1] and
£2¢ in [9]. Appendix II gives the expression for £25. The rather cumbersome derivation
of this result has been omitted. Note that the expression for {23 contains correlations
up to four particles, which are not readily known.
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In the following we shall assume that the interaction potential between the
particles U(r) = 4 u(r) has the properties:

a) U()eLi(Rs) and LimU(y) = 0.

7T—00

b) In the interval 0 = 7 < oo the first derivative of U(#) exists. This implies that
U(r) is finite. Actually it turns out that the result depends on the potential and not
on its derivatives, so possibly only the finiteness of U(r) is essential.

We further assume that for sufficiently small 4 f# the dynamical correlation has
the expansion:

G(AB, 7, t) = GOr, t) + A B G\(r, t) + O((A,B )2)
and that:
I(28,9.t) = I°Q, t) + A I'(g. t) + O((Ap)?)

and similarly for S(A 8, ¢, w).

Obviously Gz, t) is the dynamical correlation function of the ideal gas. The
purpose of this work is to compute the first order correction, i.e. 4 8 G(r, ¢), as well
as its Fourier transformed Ap S!(g, w). This will be done in Section 2. Section 3
discusses possible extrapolations of the result. In Appendix I we also calculate

ABIg, 7).
2. The First Order Correction

We shall now calculate 4 8 Gl(r, ¢). It is convenient to consider first 4 § I'(g, ¢)
i.e. the first order contribution to:

1
Tt =537 | " el— 2,0 0la. 042 — 270 8(g

with d£2 the volume element of the phase space and

Ly = fe‘ﬁH agq .
The Hamiltonian of the system is:
H=H, + H,
where
N g2
Pi
Hy =
° 12:2: 2m

is the kinetic energy and

.
Hi=2 Y U(r—rnl)

k#1

10
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the potential energy. The Liouville operator L is given by:
N [ 0H oH
I ( 0 0 ) —(H,},

e apk ark N brk ()pk
where { ., . } is the Poisson bracket. Thus if 4(x) is a function of the coordinates of
the system at time £:

M(x(t)) = e h(%(0)).
Let Lo be the Liouville operator to the unperturbed Hamiltonian Ho. Then

r

I(g, t) = e~PH o(— g, 0) e g(q, 0) 42 — 2 7 ¢ 6(q)
Zy N |
1 il
= eIt [e=PH o(— g, 0) e g(q, 0)] 42 — 2 7 0 6(q)
Zy N |
1 A
— e~ PHoe=Pth) o (— g, 1) [e-T e (g, 0)] A2 — 27 @ b(q), (2.1)
Zy N |
where
W(x(t)) = e h(x(0))
From:
d
e [6~Lozgu] — gALot(L _ Lo) elt
ot
follows

0
;Lo et e(q 0)] = e~ {Hy, e (g, 0)}

Thus the partial differential equation holds:

0 ~
(6™ e o(q, 0)] = {H(t), e e (g, 0)}

The solution is:

e~ el (g, 0) = (g, 0) +fdt1{ﬁ1(tl)’ 0(¢,0)}

+ [ an [ dn (i), (Fue), olg, 03} + - 22)
0 0

as can be verified by partial differentiation with respect to ¢.
The first order contributions to I(g, ) arise from the first two terms of this

series. The term g(q, 0) substituted into (2.1) leads to an expression which we designate
by A.



Vol. 44, 1971 First Order Perturbation Calculation

947
We introduce the symbol =

= b states that the first order term with respect to 4 in a equals that in &
With this convention:

1 A A
AL = | g-BH. g-pH,D) o

e ~ q.1) elg, 0) d2

ﬁH L
ZNN fe — q,0) el g(q, 0) 42

L
= ) e—BH p—igqr; pilq, i+ (¢/m)pj] a0 .

For 7+ = 7 the integral over configuration space cancels with the corresponding factor

in Zy. In A therefore only terms with 7 =+ j contribute to the first order. Hence with
the definition (1.6) and r = r; — r3:

A 2 _(N Z_ 1) f e—BH gila, ri-13) gilt/m)aps JO

N

s ( 4 :;; it )_3/2 0 J ga(r) eiar a3 f ¢~ (BI2m)p} giltimapy d3p, |
Now (see e.g. [2], pag. 64):

g(r) =1 — ABu(r) + O((A5)?),
so that

AL — gBU(g) e-wizmprr (2.3)

where U(g) is the three dimensional Fourier transformed of the potential U(r) = 4 u(r)
Let us now consider the second term of series (2.2):

t

~ Y OOmt) o
dt {Hi(t), o(q, 0)} = | at e
f 1 {Ha(t), o(q )} f 1k; opx aﬁce
1]

0
¢

) h
- fdtl D el (_. 7,—) (g, grad Um(tl))
KFL
0
with

5 i
Unlh) = U (r;c — ) — ;}(Pk "‘Pl)) -

Inserted into (2.1) this term leads to an expression B:

f - (3N,
B L (2:;m) ( /2)_1“ fdtlj\dgg—ﬁHo 2@, th—r2)

N zzl kqﬁi

; 2 s
W eiltimap; (-— 7 _'r_nL) (g, grad Uni(tr)) .
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Since U(#) vanishes at infinity, only the terms with ¢ = / differ from zero. Thus the
linear terms of both 4 and B belong to Ga(, £). From the evaluation:

t

_ ~(312)

—_ (NVN 1) (2 ’;m) fdtl f 4O ¢-BHo gild, 1)
‘ 0

: .t 5
% eilt/maps ( e g El) (q, grad U12(t1))

¢

:9( p )3 f it f d3py d3py e~ (B12m) b1+ 1) f d¥r 1"

0

o b h
Wemgpa | . 4 s —_—
X eg¥timlap, ( 7 ) (q, gradU (r (Pr pz))) "

We put

§:f—%(p1—pz)

and after partial integration:

2am

¢
~ 3
B & 0492 U(g) ( b ) fdtl f d3p1 d3ps e~ (Bl2m) (b} + p2)
0

¢ eiltm) (@ Di-Dy) gilt/map, L
m

Integration over momenta gives:
- ¢
U
BL —pg? W(f) f dty b, e~ (@HI2mB) o (g (t—t)*/2mB) | (2.4)
0

AB I(r, t) is the sum of the righthand sides of (2.3) and (2.4). It has the form:

ABINg ?) = — e B U(Q) fg. ¢)
o A B G(r, t), being its three dimensional Fourier transformed, is a Faltung:
ABGir, &) = — ﬁfd%" ur)flr —rl. ),

where

fir,t) = (2 1)3 fﬂq e=i7r (g, 1) .
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We shall now calculate the function f(r, #). Since it depends on | r| only, it is
sufficient to determine the one dimensional Fourier transformed F(z, f):

Fi.0 == [dgewfig.s.
from which f(r, t) follows through:
fr,t) = ————F(r,1). (2.5)

F(r, t) separates into the contributions from A and B:
F(r,t) = Fa(r,t) + Fp(r,?). (2.6)

We easily get:

Fa(r,t) =

| =

(2 70 m B)1/2 = CnBI2) (2.7)

Similarly (2.4) leads to:

t

Far, t) = _( ! )1/2 2 h _ g (mBr2) B+ -h1" | (2.8)

2ampB) or j at [ + (¢ — h)2]H/2
0

The integral
t
h
T=\|dt
j NCENEADE

0

=Vl + -

mf r?
y= 2 ’

becomes after the substitution:

— ;
y=hn ? ’
12 £2
T=1\|d y e~ Y&t + @21 | i dy 1 e— Y2+ (#[2)]
Y f2\1/2 2 72\1/2
=2 (2 y? + ?) -2 (2 v + E)

The first integral vanishes, since the integrand is an odd function. By the transfor-
mation:

2[4 12 5 2\ -1
=2f1-3(e+3)7]
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the second integral is found to be:

- tfdx f 1 es32-1)
4 . xl/2 (1 s Ax_)

with

2 r\2
s==7 :mﬁ(z) . (2.9)

For the derivation in (2.8) we note that:

2 2mﬁ_c)v+(2mﬁ)2

o2 2 ds g2 0s2

Developing the exponential in the integrand we get:

1

0 ¢ 1 t 1 3 s
— = e g~ e (S/Z)x——-— s e
25~ zt‘”fdxx/z‘3 g ¢ (2’2’2)’
0
where
a@a +1) 22
=1 — L b
1Fi(a, b; 2) —|— z—}— b6+ 1) 2!+

is the confluent hypergeometric function. Analogously:

g t 1 3 s t 1 3 s
: T—=——¢s,F — ) — — _e—s/2 — e s 1 |l—, —:—
ds? 2! ‘(2 2’ 2) st TRt (2’2'2)’

so that
02 1 7\2 1 3 s
—_— - —8/2 _ _ —s/2 e
arzT tmﬁe [1 Zmﬁ(t) e 1F1(2 5 2)] (2.10)
Combining (2.6). (2.7), (2.8), (2.9) and (2.10) we obtain:

F(r,t) = (2mﬁ)1/2 1 e~ (mB[2) (r]t)*

7T t

X [1 —mB (;)%-mmzwm* JFi (_; =% T‘B (7) )] (2.11)

and finally with (2.5):

flr,t) = Z(Zﬁ) ?S_e—mﬁ(r/tw

oo )2 3 ) e

+J(7) F(z ;'mzﬁ(t))]'
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The function f(r, ) has the following properties:
a) It is normalized

f & fir, 1) =1, | (2.13)

as follows from (2.3), (2.4) and (2.5).
b) Asymptotically for m p(r/t)2 <€ 1
mB\32 1
fen =6 (55 ﬁ) .

2n B

c) f(r,0) = &(r) .
d) For certain ranges of the variables » and t the functlon fr, t) is negative as 1s
seen from Figure 1 and (2.5). .

For the evaluation of the linear correctlon to the structure factor:

[oe]

1851g.0) = — ¢ Ul | atefia.n).

-0

it suffices to note that f(r, ¢) (see (2.12)) is of the form:

1 r
=La().
fir = (5
From this follows that f(g, ) depends on ¢ and ¢ only through the product ¢ ¢. This

symmetry implies that the Fourier transformed of ]?(q, £) with respect time F(w, ¢) is
obtained from the function F(r,f) calculated in (2.11) by the substitution » — w,
t—gq,le.:

1B SHg @) = —0f U Flo, ).
The function ¢(n/2 m B)1/2 F(w, q) = Z((m /2)'/2 w/q) is shown in Figure 1.

Z(=)

1

0

Figure 1
Z(a) = exp(— a?) [1 — 2 a2 exp(— a2) 1F1(1/2, 3/2; a2)], where o = (m 8/2)1/2 (w/q). The function
F(w, q) = (2 afow 1/2) Z(a) is a factor in the first order correction of S{g, ). .
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3. Extrapolations

The correction to the dynamical correlation function of the ideal gas, which is
linear in the interaction, has been calculated. We have found that this correction
affects the distinct part of the dynamical correlation function only, while the self part
remains the same as that of the ideal gas.

The correction of the intermediate scattering function has the form:

ABINg. ) = — 0B U(g) flg. 1) -

We shall extrapolate this result writing (the symbol £ means equality in the frame-
work of an extrapolation):

ABINg 1) = ga(q) flg. 1), (3.1)

where

é@=efﬁwwwwr~uéh@ﬁﬁ@.

This extrapolation leads to the correct zeroth and second moment for arbitrary
potentials [see (I.1) and (I.2)].
Transformed into configuration space equation (3.1) becomes:

18600 = [ o fgtr) — 0 7 — 1.0,

or with (2.13)
14+ ABG\(r,¢) e——ffd‘*r’ g f|r—r|.1.

To reach an explicit expression for S(g, @) we make the further assumption that the
self correlation function is that of the ideal gas. We then obtain:

1/2 1
S(g, w) = S%g, w) + 4B Si(g, w) = (ﬂ) g~ (mB[2) (w]g)?
2n q
e

s iafomafs) (37 )

The qualitative behaviour of ég(q) for a real gas is shown in Figure 2. In Figure 3 the
function:

1 3
Y(G.): 6‘“'{1 + h [1 s 2“2 e—d’ 1F1 (E 5 ? 5 az)]},

is plotted for various negative values of 4 = 2 §2(q). The function Y(«) and hence

S0 + A4 St have a peak in their o dependence for small values of ¢ for which

2 g'z(q) < — 0,3. As % and therefore ¢ decreases the peak moves to the right and
becomes narrower. Since the peak is localized very nearly at the value of a which
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corresponds to the sound velocity of the ideal gas («a = 9,11), we conclude that this
extrapolation contains the onset of sound motion. However, this extrapolation which
is based on the unperturbed self part of the correlation function does not show a
quasi-elastic peak. '

g,(q)
N -
-1
Figure 2

The distinct correlation function (schematic).

Y{o)

1

0 ’ P

Figure 3 o
S(g, w) is according to the extrapolation: S(g, w) = (afw 71/2) Y (x).

Of course these extrapolations are speculative. The valid part of this work
consists of the calculation of the first order correction of the dynamical correlation
function and its Fourier transformed. '

The computation of higher order corrections and partial summations may be an
approach to an understanding of systems with realistic interactions. Sucha calculation
should, however, be preceded by a systematic study of the general term of the per-
turbation series. A diagrammatic representation in analogy to the perturbation theory
of the quantum statistical Greens functions might be appropriate.

™



954 P. Petalas H.P. A,
Appendix I: 4 5 I'(qg, )

We found in Section 2 that the first order correction to the intermediate scatter-
ing function has the simple form:

ABINg ) =— 0B U@ flg 1) .

We shall now prove that the following expansion holds:

ﬁ%n:-ifﬁw(iz)nggj, (L1)

n=20
where for # = 2 and

a) n even

an=—[n— YN +2 30— 2n —v—

v=(2,4,..., )

with 2n — 1)1 =1:3-5-..-(2n —1)and (— ! =1.
b) # odd
age =2 (v — 1! 2n—v— 1!

v=(2,4,..., n—1)

and for x = O or 1:
g = —1r
as = 0. (I.2)

This will be shown by calculating the Fourier transformed of fzq, t) with respect

to time, which in section 2 was found to be F(w, ¢). To this end we bring f~(q, t) into
a form which permits the evaluation of the Fourier transformed.
The Gamma function I'(k) is defined by:

[0}

g} = f dx e~% xk-1,
0

As I'(1/2) = a1z and I'(k + 1) = &k I'(k) we have:

2k 4+ 1 2k —1)!!
F( 2 “) =TT )

for ke Z% = {0, 1, 2, .. .}. Therefore
Se—1)@n—v— 1)

v={(24,..., 2h)

_ ﬁ Z fdx e~ x(v-1)/2 (dy gy y”—(ﬂ"‘ 1)/2
T y=(2,4,..., 2h) o
0 0
2n 3 1 — (x y—l)h
=2 ax | gy e—tx+9 guz yn-32 L4
0 Q



Vol. 44, 1971 First Order Perturbation Calculation

From (I.2) and (I.4) a2, becomes for » odd with » = 2:

(o=} o0

n+1 1/2 yn—1/2 __ 4n/2 vyn/2
2 dx P | e-(x+ ¥y 3 * L
7 vy —x

aAzn —

2n+1 fde dy e+ x1/2 yn- 1/2-
y— X

This formula yields also for # = 1 the correct value:
do = 0 .

Analogously for # even, » = 2 the equations (I.3) and (I.4) give

don = —‘fdxfdye (#+9) (x y)(n-1)/2
o
1/2 yn—1/2 _ x(n+1)/2 4y(n—1)/2
dx P | dy e-*+9) [x L » = v Y ]

2n+1 1/2 n—1/2
fdeJ.dye wen 2V
¥ =Yy

For n = 0 (1.5) reduces to:

—fdxpfdye Ft+9) ==
4 y—x

1
— —_fdxfdy e—(x+y (xy)--l/2 = — ]_’
A

0

which is the right value for ao. Thus we see that (I.5) is valid for all n € Z%.

Combining (I.1) and (I.5) we finally obtain:

(o] (o]

" 2 (x y-1)1/2 [ ( 2 ) 1/2 ]
)= ——|dyP | dee x+y | e /2]
faty = =2 [ay P [[dwe-ttn EX0 2 cos lge (-Z2) ™
0 0
Note that Limf(g, {) = 0.

t—>c0

We shall now compute F(w, g) the Fourier transformed of ﬂq, 1)

1 - L~
ﬂu@=§;fwr@mw.

955

(L.6)
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Hence
— (x y e
F(w: g) = H;‘ dyP dx 3_(x+y)7;_;m[6(w +(Zy1”2) —I— (S(CU —q_yIIZ)] s
0 0
with

o)

or after substituting z = « ¥%/2 and integrating over z:

(e o]

2 x1/2
Flw,q) = — %—ae—(wla)l P j dx EF”W ,
0 = - x
0.4

We now consider the integral:

oo (s—e)l/2 oo
x1/2 . x2 x2

P | dxe= = Lim2 dx e—* + | dx e *

X—S8 .0 x2 —s x2 — s
0 0 (s+ e1/2
oo (s-—s)llz oo
2 & 2 1 2 1
=2 |dxe* +2se¢Lim dx eo-= + | dx es-*
Py %2 —s x2 — s
0 0 (s+ 8)1!2

oo (s—-s)l/2 o0

1
1 1
n1/2~233-8fdyfdxey“‘”2)+233-8Lim[fdx = —|—fdx 5 ]
sl 22— s 22 — s
0 0
1

. (s + &)1/2
1
=n/2|1 —ses | dyew

\ y1/2
0
2
= m1/2 [1 —Zse—lel(? , ?;s)] ,
where we have used:
(s—e)1/2 oo
1 1
Lim dx -+ fdx == ),
e x2—s %% — s
0 (s-ieajl2

With these results F(w, ¢) is found to be:

Flw,q) = (2 ’Zﬁ )1/2%(3‘(’"’3/2) (w/g)?

w \2 1 3 mﬁ w \2
- — — (mpB[2) (wfq)® N I e "
X[l mﬁ(q)e qul(Z’Z’ 2 (q))]

Since the function F(w, q) is obtained from the expression (2.11) of F(r, ) by the
substitution » — w, ¢ — ¢ this completes the proof.
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Appendix II: The 8th moment

The exact expression for the 8th moment is an example which may be used to
‘test considerations on the moments. Since the derivation of this expression is straight-
forward but rather tedious, we only state the result.

D4(g) = 105 ('}fﬁ )4 s ”‘;4 fd31’ g2(7)

g* 0*U(r)
f3 Oxt

g® 02U(r) 93(Ur)
g2 o0x? 0x3

{ 210 /qff: azan ) 1 (30 cosqx +27) L

+ (91 + 35cosgx) L [OZU(T)

ﬁz axz

+4 (1 — cosq x) q; [62;(;) ] 412 (1 — cosq %) Z: [63;;(:) ]2}

] + 72(sing x) =

2
+ % ddr a3’ ga(r, r')

@ ¥UE) 2U)
p2 0w x?

+6[7singx —sing(x —x')

6Qq4 02U (r) 02U(r")
T2 daz 0x'2
g2 o3U(r) 3U(r)

3 [cosglr — ) — Zeosgx +1] =~

0x2 0x'2

+ 2 [3 4+ 2 cosg(x — x') — 2 cosq ' “3COqu]qﬁ [bZU()]2 02U (r")

¢ 2U@) 2*U() »*U(r—r)
Hisesfw —1) B ox®  ox?  o(x— #)?

0® ! gat I glt
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