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Perturbations and Non-Normalizable Eigenvectors

by William G. Faris

Battelle Institute, Advanced Studies Center, Geneva, Switzerland

(10. V. 71)

Abstract. A spectral representation of a self-adjoint operator acting in a Hilbert space is
given by eigenvectors of an extension of the operator to a suitable space containing the original
Hilbert space. A perturbation argument shows the extended operator has no eigenvalues that do
not belong to the spectrum of the original operator. The abstract result is applied to Schrodinger
operators — A4 + V.

1. Introduction

The spectral theory of self-adjoint operators may be treated without ever
mentioning non-normalizable eigenvectors. In fact, the spectral theorem may be
stated as follows [1].

Theorem. Let A be a self-adjoint operator acting in the Hilbert space H. Then 4
1s unitarily equivalent to a multiplication operator. That is, there is a Hilbert space
L*(M, u), a real measurable function « on M, and a unitary operator U:H — L2(M, u)
such that f is in the domain of A4 if and only if & U fis in L2(M, u), and such that
UAf=a U/

Here u is a positive measure and L2(M, u) is the Hilbert space of all measurable
complex functions 4 on M such that [ | A(p) |2 du(p) < oo. (Functions which are equal
almost everywhere are identified.) Such a unitary equivalence of 4 with a multiplica-
tion operator is called a spectral representation of A. The spectral theorem asserts the
existence but not the uniqueness of spectral representations.

Let ¢ be a Borel measurable function defined on the real numbers. Then ¢(4)
may be defined by the spectral theorem as the operator acting in H which is unitarily
equivalent to multiplication by é(«) [1]. This definition is independent of the spectral
representation.

Non-normalizable eigenvectors enter the picture only when one attempts to
describe the form of the unitary operator U. A suitable space K* containing H is
chosen. Vectors in K* which are not in H are called non-normalizable vectors. (The
norm under consideration is that of H, of course.) The self-adjoint operator 4 acting

in H has an extension to an operator 4 acting in K*. When 4 has continuous spectrum
U is given in terms of non-normalizable eigenvectors of 4.
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G. I. Kac has given an elegant criterion for showing that K* is large enough to
contain all the non-normalizable eigenvectors necessary for any spectral representa-
tion [2]. It is desirable to choose K* as small as possible consistent with this require-
ment, since this allows the widest class of perturbations and gives the sharpest
estimates on non-normalizable eigenvectors. Also, if K* is reasonably small, the

eigenvalues of A may give a good idea of the spectrum of 4. (In general, since A acting
in K* is not self-adjoint, it may even have non-real eigenvalues.) Here an abstract
perturbation theory is developed to show that K* does not contain unwanted non-

normalizable eigenvectors of A. This is applied to Schrodinger operators — 4 + V.
In this case the results may be interpreted as estimates on growth at infinity of eigen-
functions of the Schrédinger operator. (Such results have also been obtained by
partial differential equations methods [3].) Much stronger assumptions on the inter-
action would be needed in order to apply the theory of wave operators and scattering.

2. Non-Normalizable Eigenvectors

Let H be a Hilbert space. The inner product of g and fin H will be denoted (g, /.
The convention adopted here is that the inner product is conjugate linear in the first
variable and linear in the second variable. The norm of fin H is || f|| = </, f)V2

We wish to consider a situation where there is given another Hilbert space K
which is a dense linear subspace of H. If f is an element of K, the norm of f as an
element of K is written || f||x. We shall assume that the injection of K into H is
continuous. Thus there is a constant ¢ > 0 such that || f|| < ¢|| f|| &.

Let K* be the set of all bounded linear functions from K to the complex numbers.

Proposition 1. Let H be a Hilbert space. I.et K c H be another Hilbert space.
Assume that K is dense in H and that the injection is continuous. To each g in H
associate the linear function f — (g, f> in K*. Then this correspondence is injective,
and H may be identified with a dense subspace of K*, so that we have continuous
inclusions of Hilbert spaces K ¢ H c K*.

Proof: If g is an element of H, then |[<g, f>| < || gl || Fll < ¢l gl || fll=, so
the function which assigns to f in K the inner product (g, f> is in K*. If the inner
product (g, f> = O for all fin K, then g = 0, since K is dense in H. Thus each element
g in H determines a unique element of K*. We identify each g in H with the cor-
responding element of K*.

We wish to give K* the structure of a Hilbert space in such a way that the injec-
tion of H into K* is linear. If ¢ is in K* and fis in K, we write (y, f> for the value of
y on f. If y1 and ya are in K*, we define yy + 2 by <1 + we, > = {y1,f> + (w2, /).
If 9 is in K* and « is a complex number, it is convenient to define the product of a
with y to be given by (a g, f> = a* (yp, f>. With this convention, if y happens to be
in H this coincides with scalar multiplication in H. With the definition || ¢ ||&=
= sup{| <y, f>|:|| f||x < 1}, K* becomes a Hilbert space.

Note that we have || g ||x= = sup{|[<g, /O|:|| fllx <1} < ¢ sup{l(g,f>| /]| <
= ¢ || g||- Hence the inclusion of H into K* is continuous. It is also not hard to see
that H is dense in K*. This completes the proof.
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Warning: Having identified H c K*, it is no longer permissible to identify K*
with K.

Defimition. Let H be a Hilbert space and let K c H be another Hilbert space.
Assume that K is dense in H and that the inclusion is continuous. Then the triple
K c H c K* will be called a scale of Hilbert spaces.

From now on we shall assume that all Hilbert spaces under consideration have
a countable orthonormal basis. (This is equivalent to their being separable metric
spaces.) This allows us to consider only measure spaces which are o-finite.

We now recall the theorem of Kac [2].

Theorem 1. Let 4 be a self-adjoint operator acting in H. Assume that U: H — L2(M, u)
1s a unitary operator which gives a spectral representation of 4. Let Kc Hc K*bea
scale of Hilbert spaces. Assume that there is a Borel measurable function § which is
bounded on the spectrum of 4 and which does not vanish on the spectrum of 4 such
that B(A) is a Hilbert-Schmidt operator from K to H. Then there is a function ¢ from
M to K* such that for every fin K, Uf (p) = {y(p), f) for almost every ¢ in M.

For the convenience of the reader we sketch a proof.

Proof: U B(A) = B(a) U: K — L2(M, u) is a Hilbert-Schmidt operator. Represent
K as a space L2(N, »). Then there is an s in L2(M X N, u X ») such that for fin K,

B(a(p)) Uf (p) = [ s(p, q) flg) dv(q) for almost every p [4]. By Fubini’s theorem,
s(p, q) is in L2(N, ») as a function of ¢ for almost every p. Thus for these p we may

define (), f> = (L/(«(8))) [ (b, @) flg) ¥(g). w(p) is in K* by the Schwarz
inequality.

Remark. In practice the most useful choices of g are f(a) = (@ — 2)~* for some
integer £ = 1, 2, 3, . . . and z not in the spectrum of 4. Another possibility is f(a) = 1.
In this case the condition is simply that the injection of K into H is Hilbert-Schmidt.

Note. If f and g are in H, and f is in the domain of A, we have

& Afy = f Ug (p)* () UF (p) du(p) -

In particular, under the conditions of Theorem 1, if f and g are in K, {g, Af)

= [<g, w(p)> a(p) <w(P), f> du(p). (In keeping with the usage in physics, we have
written (g, p(p)) for {y(p), g>*.)

Definition. Let K c H c K* be a scale. Let 4 be a self-adjoint operator acting in
H with domain D. Let Do = {fin K N D: A fisin K}. Assume Dy is dense in K. Then

the scale extension A of 4 is defined as the operator acting in K* which is the adjoint
of A restricted to Do.

Explicitly, if g is in K*, g is in the domain of A if there is an & in K* with
<hy fy =g, A f) for all fin Dg. Since Dy is dense in K, % is uniquely determined and
we set A g = k. A is clearly an extension of the original self-adjoint operator 4.
Theorem 2 [2]. Let A be a self-adjoint operator acting in H. Let Kc H c K*. Let U

be a spectral representation of 4 and assume that there is a function ¢ from M to K*
such that (U f) (p) = {p(p), f) for almost every p in M. Assume that the scale exten-
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sion A of A is defined. Then y(p) is in the domain of definition of A and Ay (p)
= a(p) w(p) for almost every p.

Proof: Let fbein Do. Then {y(p), 4 f> = UAf (p) = a(p) Uf (p) = <x(p) p(p)./>
for almost every p. Thus for any countable subset of Do, {p(p), 4 f> = {a(p) v(p), >

for fin the subset for almost every p. Now the graph of the operator A restricted to Do
is a subspace of the direct sum of K with itself. Since a subspace of a separable metric
space is separable, the graph is separable. Thus there is a countable subset of Dy such
that for each fin Dy, there is a subsequence f, in the subset with f» — fand 4 f» — A4 f,
in the norm of K. We conclude that {(y(p), 4 f> = {a(p) w(p), f) for all fin Dy for

almost every p. In other words, for these 2, Jqp (p) = a(p) v(p).

3. Perturbation Theory

Theorem 3. Let K c H c K* be a scale of Hilbert spaces. Let 4 be a self-adjoint
operator acting in H. Assume that (4 — z)-1 is a Hilbert-Schmidt operator from K to
H for some z not in the spectrum of 4. Assume that B is a self-adjoint operator whose
domain contains the domain of 4 and such that A + B is self-adjoint with the same
domain as A. Then if z is also not in the spectrum of A + B, (4 4B —z) ' is a
Hilbert-Schmidt operator from K to H.

Proof: The two resolvents are related by
(A4+B—21=[1—(A+B—2"1B] (A —2z1l Let T be the closure of
1 — (A — B — 2)1B. Then its adjoint 7* =1 — B(4 + B — z*)~1. Since 4 + B
has the same domain as A, T* is defined on all of H. But any adjoint has a closed
graph. So T* is a bounded operator from H to H, by the closed graph theorem. Hence
T is also bounded from H to H. The identity (4 + B — 2)" = T(4 — z)~! thus
exhibits (4 4+ B — z)-1 as a Hilbert-Schmidt operator from K to H followed by a
bounded operator from H to H. |

Proposition 2. Let A be a self-adjoint operator acting in the Hilbert space H.
Let K c H c K* be a scale of Hilbert spaces. Assume that the scale extension of 4 to

an operator A acting in K* exists. Let A be a complex number which is not in the
spectrum of A. Then if (4 — 2)~! sends K into K, 4 is not an eigenvalue of 4.

Proof: Assume that (4 — 1) ¢ = 0 for some g in K*. If (4 — 1)~ sends K into
K, then the range of 4 — A restricted to Do is K. Hence {y, (A — A) f> =0 for f
in Do implies ¢ = 0.

Definition. Let T be a positive self-adjoint operator acting in H with bounded
inverse T-1: H — H. For 0 < s < oo, let K; be the domain of 7% with the norm
| flls = || T* f||- Then the family Ks;c H c K¥, 0 < s < oo, of scales is called an
analytic scale.

There are interpolation theorems which apply to analytic scales. We shall need
only the following special case [5].

Proposition 3. Let the spaces Ks;c H, 0 < s < oo, define an analytic scale. Let
R: H — H be a bounded operator and assume that it has a bounded restriction
R: Ky — K,. Then R: K; — K is bounded for 0 < s << a.
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Theorem 4. Let H be a Hilbert space. Let 4 be a self-adjoint operator acting in H
with domain D. Let B be a self-adjoint operator acting in H whose domain contains D.
Assume that 4 + B is self-adjoint on D. Let the spaces Ksc H, 0 < s << oo, deter-
mine an analytic scale and set K; = K. Assume that for some & > 0 and all s,
0<s< 1 B:Dn Ks — K, .is bounded. Thenif 1 is not in the spectrum of A or of
A + B, and if the restriction (4 — A)-1: K — K is bounded, then the restriction
(A + B — 4)1: K - K is bounded.

Proof: We have K = K; c Ksc Ko = H for 0 <{ s < 1. The space DN K; may
be given the norm (|| 4 f||2 + || /||2)¥/2, where || f||s is the norm on K.

Write (4 + B — ) = X2, (— 1) ((A — )L B)» (4 — A1

+(— (4 —AH1B)y(4d+B— 1
Consider the first # terms in the sum. Since (4 —4)7': K—DnNK and
B: K N D — K are bounded, each term is bounded from K to DN Kc K.

To treat the final term in the sum, we use interpolation. Since (4 — )1: H - H
and (4 — 2)~1: K — K are bounded, it follows from Proposition 3 that (4 — 4)~1:
K;s — K; is bounded for 0 << s <{ 1. Take 7 so large that 1/ << ¢. Then
B:D N K- — Ky is bounded, n=1,2,3,...,7. Since (A — 1) 1: Kyy—D NKy)
and (4 + B — 4)-1: H — D are bounded, the final term is bounded from H > K to
D nKcK.

4. Schriodinger Operators

Let H = L2(R3, dx). Let p = 0 be a real function on R® which is bounded and
never zero. Let K = L2(R3, g(x)~! dx). Then K c H, the injection is continuous, and K
is dense in H. So K c H c K* is a scale of Hilbert spaces. The nice feature of this case
1s that K* has a natural realization as a space of functions. It should be considered as
K* = L2(R3, o(¥) dx). Then if g is in K* and fis in K, {g,f> = [ g(*)* f(x) dx and
[<e. 1<l gllxe || /]l

In the following we shall require that ¢ be bounded away from zero on compact
sets. This ensures that the K, H, and K* norms are equivalent on any set of f with
fixed compact support.

Example. Consider the Laplace operator 4. A4 is a self-adjoint operator
acting in H and one spectral representation is given by the Fourier transform
F:H — L2(R?, (2m)-3dk). (F Af) (k) = — k2 Ff (k), so 4 is isomorphic to mul-
tiplication by «(k) = — 2. Assume now that p is in L!(R3, dx). Notice that for
fin K, (Ff) (k) = [exp(— 1k x) f(x) dx = (p(k), f>, where w(k) is the function
exp(i kx) in K*. The (k) are non-normalizable eigenvectors: Aexp(ik x) =
— k2 exp(t k x).

Definition. Let V be a real function on R? such that V = V' + V2, where V1 is
in L=(R8, dx) and Vgisin L2(R3, dx). Then V will be said to satisfy the Kato condition.

Proposition 4 [6]. Let H — L2(R3, dx). Assume that V is a real function on R3
which satisfies the Kato condition. Then — 4 + V is a self-adjoint operator acting
in H with the same domain as that of — 4.
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Theorem 5. Let ¢ > 0 be a function on R® which is bounded on R? and bounded
away from zero on compact subsets of R3. Assume that g is in L1(R3, dx). Let KcHcK*
be the scale L2(R3, o(x)~! dx)c L(R®, dx) c L2(R3, g(x) dx). Let V be a real function
on R3 which satisfies the Kato condition. Then for any spectral representation
U:H — L*M, u) of — A + V there is a function o from M to K* such that for each
fin K, (Uf) (p) = {p(p), f> for almost every p in M. The y(p) are (possibly non-
normalizable) eigenvectors of the scale extension of — A + V for almost every
in M.

Proof: If 2> 0, (z — 4)~' is an integral operator acting in H with kernel
(4n|x—y|)texp(— 22| x —y|). Now (4 | x — y|) L exp(— 22 |x —y|) o()1/2
is in L2(RS, dx dy). Hence it is the kernel of a Hilbert-Schmidt operator from H to H.
Next note that multiplication by p~1/2 is an isomorphism from K to H. It follows that
(3 — A)~' 1s a Hilbert-Schmidt operator from K to H.

If z > 0 is sufficiently positive, then — z will not be in the spectrum of — A4 + V
6]. Hence Theorem 3 implies that (z — A4 + V)-1 is Hilbert-Schmidt from K to H.
Thus Theorem 1 appliesto — A4 + V.

We now show that — A + TV has a scale extension. First note that the L2(R3, dy)
norm of (4| x —y|) Lexp(— 22| x — y|) is finite and independent of x. It
follows that (z — A)-1 gisin L*(R3, dx) for g in H. Hence the domain of definition of
A is contained in L*=(R3, dx). Now consider the space D; of functions in the domain of
A which have compact support. Clearly D is dense in K. — A4 sends D; into K.
Multiplication by V' leaves K invariant. On the other hand, since the domain of 4 is
contained in L*(R3, dx), multiplication by V2 sends D; into K. Thus — A + V sends
the dense set D; into K. This implies that the scale extension of — A4 + V exists and
hence that Theorem 2 applies.

Surprisingly, Theorem 5 does not imply that the non-normalizable eigenfunctions
are bounded. The exceptional set of p in M for which the y(p) are not eigenvectors in
K* will depend in general on the choice of the scale. Maslov [7] has given an example
of a bounded continuous ¥ for which the non-normalizable eigenfunctions for some
interval of energy are unbounded at infinity. Berezanskii [8] has given estimates on
their rate of increase.

In the following we write » = | % |.

Definition. Let V be a real measurable function on R3. Assume that V="V, + Vs,
where | V1(x) | < ¢(1 + 72)~¢/2 for some & > 0 and some ¢, and V3 is in L2(R?, dx) and
has compact support. Then V will be said to satisfy the condition of slight decrease.

Note that a function V of slight decrease satisfies the Kato condition. In addi-
tion it is a relatively compact perturbation of — A, so that the essential spectrum of
— A4 + Vis [0, oo) [9]. In particular, the spectrum of — A -+ ¥ contains the spectrum
of — A '

A particularly convenient choice of the function g defining the scale is p(x)
= (1 + #2)~%/2, s == 0. The condition that g is in L1(R3, dx) is satisfied provided s > 3.

Theorem 6. Fix s, 0 < s < oo. Let K, c H c K¥ be the scale L2(R3, (1 + 72)#/2dx) c
c L2(R3, dx) c L2(R3, (1 4 72)~*/2dx). Let V be a real function on R? which satisfies the
condition of slight decrease. Then the scale extension of — A4 4 ¥V to an operator in
K¥ has the complex number 2 as an eigenvalue only if 4 is real and in the spectrum of
the self-adjoint operator — 4 + V acting in H.
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Proof: Let T be the operator given by multiplication by (1 -+ #2)1/4, Then the
scale in the theorem is the analytic scale associated with T'; K, is the domain of 7%,
s =0.

In order to apply Theorem 4 we first show that for z > 0 or z not real, (z + 4)*:
Ks — K, is continuous, s > 0. Start with the case when s is an integer multiple of 4,
s = 4 k. By taking Fourier transforms we see that this is equivalent to showing that
(z — k?)-! is a continuous multiplication operator from D(A4%¥) to D(A4*). For f in
D(A¥), expand A%((z — k)1 f) as a sum of products of partial derivatives of (z— k2)-1
and of f. The partial derivatives of f can be estimated in L2 norm in terms of || 4% f||2
and || f||z. On the other hand, the partial derivatives of (z — £2)~! are all bounded
functions (since they are Fourier transforms of integrable functions). Thus we have an
estimate on || 4%((z — k2)1 f) ||2, which disposes of the case when £ is an integer. The
general case now follows from Proposition 3.

The other hypothesis of Theorem 4 follows from the assumption of slight de-
crease. Multiplication by Vi is bounded from K to K4 . for some € > 0. On the other
hand, V3 is bounded from D to K; for all s >0, since D c L*(R3, dx) and V; has
compact support. Thus V: K; N D — K, is bounded.

So if A is not in the spectrum of — A 4+ V, (—4 4+ V — A)1: Ks > K, is
bounded. The theorem then follows from Proposition 2.
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