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The Inverse Problem of Potential Scattering According
to the Klein-Gordon Equation

by R. Weiss and G. Scharf

Institut für Theoretische Physik der Universität Zürich, Switzerland

(6. V. 71)

Abstract. The inverse problem of constructing a spherically symmetric potential from its
scattering data is solved for the Klein-Gordon equation, following the approach of Marchenko for
the Schrödinger equation. This theory is well suited for the application to actual scattering
processes. The interaction potential can be calculated uniquely from the scattering phase shift and
the bound state data.

1. Introduction

The inverse problem for the Klein-Gordon equation was first considered by
Corinaldesi [1]. He developed a theory following the solution of the problem for the
Schrödinger equation given by Gel'fand and Levitan [2]. Essentially the same
results were obtained by Verde [3] using a dispersion technique. However, both these
theories are formal and unfortunately contain many diverging expressions, so that,
apart from the mathematical shortcomings, it is even not quite clear how the
algorithm for the actual calculation of the potential from the scattering data looks.
In addition, the connection between the scattering data and the quantities entering
in the Gel'fand-Levitan theory is rather complicated. Hence, this theory is not well
suited for the physical purpose.

An entirely different approach to the problem was given by Degasperis [4]. In
this method one determines the derivatives of the potential at the origin x 0 from
the scattering data. This can only work if the potential is analytic, especially at x 0.

On the other hand, the potentials occuring in reality are always highly singular at
x 0. Then neither the method of Degasperis nor the Gel'fand-Levitan theory can
be used. A theory which avoids these difficulties in the case of the Schrödinger
equation is the theory of Marchenko [5]. Here, the origin x 0 plays no essential role,
so that the potential may be singular. Furthermore, the scattering data enter quite
directly into the theory, consequently the algorithm for calculating the potential is

quite manageable. Indeed, the Marchenko theory of the Schrödinger equation has
been successfully applied to a-oc and nucleon-nucleon scattering [6].
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For these reasons, it seems to be quite desirable to develop an inverse theory of
the Marchenko type for relativistic potential scattering as well. In this paper, this is
done for the Klein-Gordon equation.—In the next section we prove a basic integral
representation for the solutions of the Klein-Gordon equation. This representation
contains the so-called orthogonalising kernels which are directly related to the
potential. In section 3 we derive an integral equation (the relativistic Marchenko equation)

from which these kernels can be calculated. Since the quantities in this integral
equation depend directly on the scattering data, this completes the solution of the
inverse problem. In Appendix I, the various properties of solutions of the Klein-
Gordon equation are considered, which have been used in the body of the paper.
Appendix II gives a high energy expansion for the solutions of the Klein-Gordon
equation. This is a very important tool in the proof and may be also of independent
interest.

2. The Integral Representation of the Functions f°(k, x)

We consider the Klein-Gordon equation for s-waves with a static potential

xp"(E, x) + k2 xp(E, x) (2 E V(x) - V2(x))xp(E, x) (2.1)

where E + yk2 + 1. Instead of the energy E we will use the momentum k as the
basic variable, which we generally take to be complex (k ki + i ki). Since E is a
double-valued function of k, the complex variable k varies on a two-fold Riemann
surface, cut from + i to + i oo and — i to — i oo. We distinguish the two sheets by
the sign a of ReE.

Let us define a solution f°(k, x) of equation (2.1) by the asymptotic condition

lim (e-i**f(k, x)) l. (2.2)

The equation (2.1) together with equation (2.2) is equivalent to the following
integral equation

oo

f(k, x) e*** +-r\dy sin% - x) (2 E V - V2) f(k, y) (2.3)

X

This equation is investigated in detail in Appendix I. If the potential satisfies

oo

dy y* | V(y) | < oo, i 1, 2

o

CO

j dy y* | V(y) \2 < oo, k 1, 2 (2.4)

0
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then equation (2.3) can be solved by iteration. The Bom's series converges absolutely,
defining the irregular solutions for all k with k2 > 0. Furthermore, we have the following

estimate

| f(k, x) | < conste-*»*, k2 _> 0 (2.5)

f°(k, x) is an analytic function of k in the cut upper half-plane and on the real axis,
except at k 0. But even at k 0 and k i, fa(k, x) is continuous in k. For real k

we have

f°(-k, x) f°(k, x) (2.6)

and for k ^ 0, f"(k, x) and/a(— k, x) are two linearly independent solutions of equation

(2.1). If, in addition to (2.4), we require that

V(x), V'(x), V"(x) are bounded and continuous, and

V(x),V'(x),V"(x),V'"(x) are E^O, oo) and tend to 0

for x -> oo (2.7)

then the following high energy expansion holds (see Appendix II)

>4^+^^+11J?MHfc(k,x) eikxe^jdyv
X

+ e***o(—\ (2.8)

with

ReE
e sign Rek

It is the main point of the inverse theory, that there exists an integral representation

for the irregular solution f°(k, x) of the following form

f°(k, x) q(x) e™* + dt(Ki(x, t) + E K2(x, t))e^, (2.9)q(x) e™* + dt(Ki(x, t) + E K2(x, t))eiu,

where the kernels Ki and K2 are independent of k and o; the function q(x) will be
determined in a moment. The appearance of this factor q(x) is due to the fact that for
| k | —> oo the irregular solution f°(k, x) does not approach eikx as in the case of the
Schrödinger equation (compare equation (2.8)). Indeed, if the kernels Ki(x,
K2(x, are well-behaved, the integral on the right-hand side of equation (2.9) must
vanish for | k | -> oo (k real) ; then the factor q(x) must correct for the asymptotic
behaviour oif"(k, x).
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In order to prove equation (2.9), let us consider the following Fourier integrals

2Ki(x,t)

T«o "J- oo

— f dkki(x,k)e-™ -1- (dk(f+(k,x) +f-(k,x) -2q(x) e™*)e-«<t (2. 10)

2 K2(x, t)

+ oo + oo

— (dkk2(x,k)e-^dM^1— f dk1r(f+(k,x) -f-(k,x))e-™. (2.11)
TL J A 7t J tlr
-oo -oo

Obviously Ki(x, k) and Kz[x, k) are uniformly bounded in k. Inserting equation (2.8)
and choosing

_*(*) cos [dy V(y) (2.12)

we have the foHowing asymptotic behaviour

CO

gilex C

2Ki(x,k)=—-i V(x) sin dy V

gtkx

k2
iV2(x) cos [dy V -( (dy V +^~-)sin i dy V +0^), (2.13)

gUex f eikx f / 1 \
2 K2(x, k) — 2 * sin I dy V + — V(x) cos \ dy V + 0 l — \. (2.14)

* X

This shows that Ki(x, k) and K2(x, k) are E2(— oo, + oo) in k. Since even Ki(x, k)

j/log (|Ä| +-2) and jtT2(^, k) |/log (| Ä | -+- 2) are E2(— oo, -f- oo) in k, we can apply
Plancherel's theorem in its stronger form [7]. Hence, equations (2.10) and (2.11)
define the kernels Ki(x, t) and K2(x, t) for all x and almost all t. Both Ki(x, and
K2(x, are E2(— oo, + oo), and from equation (2.6) we conclude that they are real.

Now, let us consider Ki(x, k) and K2(x, k) for complex k in the ordinary (uncut)
ß-plane. It foUows from the definition (2.10) that Ki(x, k) is analytic except possibly
at k i (the branch point of the cut £-plane). But since Ki(x, k) is bounded and
single-valued, the theorem of Riemann ensures that it is analytic also at k i. Using
the estimate (1.9) of Appendix I, we see that the numerator in equation (2.11) vanishes

as E for E -> 0. Hence K2(x, k) is bounded, single-valued and therefore, by Riemann's
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theorem, it is analytic in the whole upper halfplane. From the high energy expansion
(2.8) we get for fixed x

T1

J dki | Ki(x, ki + i ki) \2 0(e~2k**) (2.15)

and the same estimate holds for K2(x, k). In this situation, Titchmarsh's theorem
applies [8], giving

Ki(x, t) K2(x, t) =0 for t <x (2.16)

This proves the representation (2.9).
From the Fourier integrals (2.9) and (2.10) we can easily get more information

about the kernels Ki(x, t) and K2(x, t). Taking some fixed X > 0, we modify equation
(2.13) as follows

oo

aikx /* Mkx
2 Ki(x, h) — i V(x) sin dy V +'' ' ' ' Jk +iX w J J k2 + X2

oo oo oo

X I j V2(x) cos (dyV-(x V(x) + [dyV+ ^~^\ sin dy VXXX+ Mi(x, k) (2.13')

Here, every term is bounded for all real k and Mi(x, k) 0(1/^3) for large \k\.
Hence we get by Fourier transformation

oo

Ki(x, t) -i- V(x) sin f dy V e-W-*W(t - x)

X

oo oo

U V(x)+jdy V +-~^-) sin j dy V

X X

(2.17)

The remainder Mi(x, t) and its derivative (bjbt) Mi(x, t) are continuous and
E2(— oo, + oo) in t [9]; furthermore even (b2jbt2) Mi(x, t) is E2(— oo, +- oo) in t.
Hence Ki(x, t) and (bjbt) Ki(x, t) are continuous for t > x, (bjbt) R~i(x, t) and
(b2jbt2) Ki(x, t) are L2(t0, oo) in t, to > x. At t x Ki(x, t) must jump from 0 to

oo

Ki(x, x + 0) -i V(x) sin idyV (2.18)

+ — F2(%) cos \ dyV -

X — r'l'-1! +Mi(x,t)

where 6(z) i
0 for 2 < 0

1 for 2 > 0
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because of equation (2.17). A similar calculation shows that K2(x, f) as a function of t
has the same properties, but at t x jumps from 0 to

/K2(x, x + 0) sin \ dy V. (2.19)

From equations (2.18) and (2.19) we get the important relation

*.(*,*+0)
v ;

K2(x, x +0)
v '

from which the potential can be calculated if the kernels Ki(x, t) and K2(x, t) are
known.

The representation (2.9) is valid even for complex k with k2 > 0. In fact, Ki(x, k)
is analytic in the upper halfplane and vanishes for | k | -> oo. Then using Cauchy's
theorem in equation (2.10) we have for k2 _> 0

+ oo

2 Ki(x, t) —— I dki(f+(k, x) +f'(k, x) - 2 q(x) g**)e-*"
2 n J

-oo

and similarly for K2(x,t). RecalHng equation (2.15), we can apply Plancherel's
theorem again which proves equation (2.9) for all k in the upper halfplane.

3. The Relativistic Marchenko Equation

Let us now consider the regular solution cp"(k, x) of equation (2.1), defined by
the following boundary condition

r(k, Q) Q <^f ' *>

bx
(3.1)

Obviously cpa(k, x) is real for real energies, and we have cp»(— k, x) cp°(k, x). Under
the same conditions as for f"(k, x), the function cf(k, x) is analytic in k for fixed x
in the whole cut Ä-plane (see Appendix I). If, in addition, the conditions (2.7) hold,
then we have the following high energy expansion (see Appendix II)

oo

cf»(k, x)=~sm(kx-e[dy v\ (l +~(V(Q) + V(x)))j

X
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Defining the Jost function fa(k) by

f(k)=f(k,0), (3.3)

we have for real k

2 i k cf(k, x) f>{- k) f"(k, x) - f(k) f(- k, x) (3.4)

The S-matrix element and the phase shift ô"(k) are given by

Sask)=^~L=e2i^. (3.5)

Using equation (2.8) for x 0 we get the following high energy behaviour for S"(k)

S"(k) e-2i>Jdyv + o |—] (3.6)
o \k2 J

The fact that the high energy Hmit is not 1, as in the case of the Schrödinger equation,
but

OO

S°(oo) e-2iefdyV (3.6')

causes considerable modifications of the Marchenko theory.
Generally bound states also will be present.lt is a rather peculiar feature of the

Klein-Gordon equation that complex binding energies may also occur. This can
easily be illustrated in the case of a square-well potential [10]. On the other hand, if
the potential is suitably restricted, one has no complex eigenvalues. Conditions for
this have been given by Veselic [11]. We always consider this situation. The bound
state energies correspond to the zeros kg oif"(k) in the upper halfplane. It foUows by
standard arguments [12] that these zeros are located in the interval (0, i], where the
only possible limit point is i. For simplicity, we suppose that k i is no zero. As in
the case of the Schrödinger equation [13], the derivative of the Jost function with
respect to k can be expressed in the following way

HK) ^iiL/"(*., o)n„, '=-A-,
][k°? + 1 àx

oo

Nn 2Jdx(]/kf + l-V(x)) (cf(kn,x))2. (3.7)

o

The normalization constants Ng do not vanish, consequently the zeros are simple.
If the function fa(k) vanishes for k 0, a virtual level is present ; since the wave
function Ç5CT(0, x) is not normalizable, k 0 is not a bound state. It follows [13] from

equation (3.7) that the derivative f°(0) is not zero, hence f"(k) goes to zero proportional
to k. Furthermore, from the results of Veselic it follows that i cannot be a Hmit point
of eigenvalues, consequently the number of bound states is actually finite.
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Now we are able to prove the relativistic Marchenko equation which completes
the solution of the inverse problem. From equations (3.4) and (2.9) we get for any
fixed y > x > 0 and aU real k

2 ik }.'* eihy Sa(k) q(x) e«(* + y) — q(x) <H*(*-y)
f>(k)

oo

+ S"(k) f dt(Ki(x, t) +E K2(x, t) eik« + *> (3.8)

X

oo

- f dt(Ki(x, t) A-E K2(x, t))e-W-y).
X

From this we compute the following integral :

+ oo + oo

1 ^ f „ 2ik <p°(k, x) „ 1
x „ C „ S"(ä) A-— T, dk—-r- r}' e'ky q(x) y dk—rrl-e^ + y)

Anaéii) E f(k) 4jtïwVJ E
— oo — oo

+ oo oo

+ ~z\dk s°p- \dtKi(x-') ^((+y)
T" 5Ï CT J Sir J

-CO #

+ co oo

+ -1— 27 f rfÄ(S«(Ä) - S"(oo) f <ft i_"2(*, t) <?«('+y) (3.9)

-oo *

+ oo oo

- —— 27 I <& e*57 I dt K2(x, t) e-»'
-oo X

+ co oo

+ -— 27 s"(°°) f ^ eihy f ^ ^2(*> 0 em ¦

— CO X

Recalling equation (3.6) we see that both the functions Sa(k)jE and S"(k) — Sa(oo)

are E2(— oo, +'oo) in k. Therefore the functions E«i(2) and F,2(z) defined by

+ oo

Fsl{z) _ t^ jdk nreikz • (3'10)

— oo

+ oo

F,2(z) ~Z [ dk(S°(oo) - S"(k) e^ (3.11)
^ ft a J
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are L2(— oo, + oo) in z. Using the definitions (3.10) and (3.11) in equation (3.9) and
applying the convolution theorem and Plancherel's theorem we get

-r ^

dk
2ik cpa(k, x)

y iky q(x) Fsi(x + y)

OO txj

+ (dt Ki(x, t) F,i(t + y) + (dt K2(x, t) Fs2(t + y) + K2(x, y) (3.9')

X X

Let us now evaluate the integral on the left-hand side of equation (3.9') by means
of Cauchy's theorem. The integrand is meromorphic in the cut upper halfplane; its
only singularities are simple poles corresponding to the simple zeros of the Jost
function f°(k). The corresponding residues can be obtained from equation (3.7). Then,
we get for the integral along the contour r

T ®

u
CS

(see the Fig.), summed over both sheets of the cut ß-plane

/i
where

in?)
2ik cp°(k,x)

dk^^elky Zeikfymf°{K>' (3.12)

Mn 2 j" dx(En - V(x))(f°(k°, x))2 N°(f°'(kn, 0))2.
o

Inserting the integral representation (2.9) we arrive at
oo

/i 27-^ (q(x) «««•+*» + dt(Ki(x, t) + En K2(x, t))e*W+ A
n,a tMn \ J ' (3.12')

On the other hand the contributions to the integral (3.12) come only from the real
axis. The integrals along the cut cancel each other. The contributions from the circles
around the branch point * and the semicircles around k 0 tend to zero in the limit
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of vanishing radius. The integrals along the large quarter circles vanish in the limit
of infinitely large radius because of (3.2). Hence, defining the functions

Fi(z)=F,i(z)+Z^fr7^i (3-13)
K, CT lvl n

F2(z) Fs2(z) +27 -*_- E„ e«# (3.14)
n, CT "In

we get from equation (3.9')

q(x) Fi(x + y) + K2(x, y)
CO CO

+ (dtKi(x, t) Fi(t + y) + (dtK2(x, t) F2(t + y) 0 (3.15)

X X

This is one of the two relativistic Marchenko equations we are going to derive.
To get the second equation we start again with equation (3.8), but without

dividing by E. First let us consider

£ES°(k) \E\(S+(k)-S-(k)y.
a

From equation (3.6) we have the following asymptotic behaviour

27 e s»(k) *(s+(oo) - s-(oo)) + o (i),
hence XoE Sa(k) — k(S+(oo) — S-(oo)) is E2(— oo, + oo) in k. Using the explicit
values (3.6') we write equation (3.8) in the following form

272ik ^'^ e*y =2J(S"(k) - S"(oo))«*(* + y) q(x)
a f(k) a

oo

+ Z(S"(k) - s"(°°)) (dtKi(x, t) eW + y)

X
oo

+ [ZESa(k) - MS+(°°) - S"(°°))J I dt K2(x, t) eik« + y) (3.16)

X

OO oo

-27 dt Ki(x, t) e-W-y) + 2 cos2 j dz V e^+y)
X X

CO oo

X cos \ dz V — 2 cos dz V e-ik^-y>

X X
CO oo

+ 2 cos2 f dz V j dt Ki(x, t) «*<»+#

0 x
oo oo

- 2 ik sin2 dz V dt K2(x, t) eik«+ v-.
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The last integral in equation (3.16) can be integrated by parts. Using equation (2.18)
we get

2sin2 dzV sin \ dzVeik<* + y)

o

', I dz V sin I i

0 x

oo oo

+ 2sin2 dzV dt dK^X'f) eW + y) (3.16')

0 x

Let us write the left-hand side of equation (3.16) as

co oo

27 2 ik ^r~ e'ky 2 cos (2 (dzV- dzV\eiks*+y)

0 X

00

- 2 cos f dz V e-^'-yt + h(x, y, k) (3.17)

X

where

h(x, y, k) eik^+y- 0 — J + e-ik(*-yî 0 I —

for large k because of equation (3.2). We insert equations (3.16') and (3.17) into
equation (3.16) and integrate over k. Applying the convolution theorem and Plan-
cherel's theorem again, we arrive at

+ 00 00

- —— j dk h(x, y, k) q(x) Fs3(x+ y) + dt Ki(x, t) F,2(t + y)

-CO X

CO

+ (dt K2(x, t) Fs3(t +y)+ Ki(x, y) (3.18)

X

where

+ 00

Fsz(z) - -1- dk[2]ES°(k) - k(S+(oo) - S-(oo))] (P* (3.19)
* ft J a

— 00

As before the integral on the left-hand side of equation (3.18) can be evaluated by
means of Cauchy's theorem. By exactly the same arguments as above we see that this
integral is equal to the integral along the contour F, or equal to the contributions of
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the poles of h(x, y, k) in the upper halfplane. Since the first two terms on the right-
hand side of equation (3.17) are holomorphic, we get finally

f-oo

I dk h(x,In J
y,k)

Z~^T [?(*) *<(* + y) En + dt [EnKi(x, t) + E2K2(x, t)] eik^+y)\

x
Thus, defining

F3(z) Fss(z) +27-r\rE2n e*t>, (3.20)

we obtain the desired equation

q(x) F2(x + y) + Ki(x, y)
oo ©

(dtKi(x,t)F2(t+y) ++ dt Ki(x, t) F2(t + y) + \dt K2(x, t) Fs(t + y) 0 (3.21)

X X

The two equations (3.15) and (3.21) determine the kernels Ki,K% in terms of the
Fourier transforms E_,E2,E3. They correspond to the nonrelativistic Marchenko
equation and wiU therefore be caUed the 'relativistic Marchenko equation'. They have
been derived under the assumption 0 < x < y. However, a discussion similar to that
for the kernels Ki and K2 shows that the Fourier transforms Ei(2), F2(z) and Fs(z)
are continuous for z > 0. Since also the kernels R~i(x, t) and K2(x, t) are continuous for
t > x, we find that the relativistic Marchenko equation is vaHd even for y x, if
for K~i(x, x) and K2(x, x) we take the Hmits from above Ki(x, x + 0), K2(x, x + 0).

The solution of the inverse problem is now given by the foUowing procedure:
One first computes the Fourier transforms Fi(z), i 1, 2, 3, from the scattering data
by means of (3.10), (3.11), (3.19) and (3.13), (3.14), (3.20). All these quantities are
well defined. For any x where the function q(x) does not vanish, the relativistic
Marchenko equation can be used to calculate the quantities

for y > x. Then the potential V(x) is determined by one of the equations

V(x)=2i^ (3.23)
K2(x, x)

or

V(x) -4- a.rctgK2(x, x) (3.24)
dx

which follow directly from equations (2.19) and (2.20). Since K2(x, x) tends to zero
in the limit of large x, equation (3.24) will then be more convenient. The values Xo where
q(xo) 0 present no difficulty : Here we have f%jdyV n[n + (1/2)], and because the
potential is continuous, it easily can be determined.
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Appendix I
Properties of Solutions of the Klein-Gordon Equation

Although the methods in this section are standard, we will, for completeness,
give the proofs of the various properties of solutions of the Klein-Gordon equation,
which we have used in connection with the inverse problem.

At first, let us consider the Volterra integral equation

co

f(k, x) e»* + — (dx1 sinÄf/ - x)(2E V(x') - V2(x'))f°(k, x') (1.1)

X

with complex k ki + ik2. We take one fixed sign of ReE and omit the index a;
all considerations hold simultaneously on both sheets of the cut ß-plane. We solve
equation (1.1) by iteration

oo

f(k,x) =£fn(k,x); (1.2)
n= 0

fo(k, x) elkx

CO

fn(k, x) — f dx' sin%'.- x) (2 E V(x') - V2(x'))fn-i(k, x') (1.3)

X

Using the estimate

| sin£x| < C e\kJx—L+4— (1.4)
1 ' 1 +| £| * vy

one finds

\fn(k, x)\ <H**I*^"-_4»(A,*) (1.5)
n\

with
oo

A(k, x)=( dx' «(1*.!-*^
X

f(2 | E | | V(x') | + | V(x') \2). (1.6)
J X -J- j K j X
x

Hence, if the potential satisfies

CO

J\fc*.|FW|.<oo (1.7)

o

for n 1 and i 1, 2, then A < oo. Consequently, the Born series (1.2) converges
absolutely, defining the irregular solution f(k, x) for all k in the upper halfplane
k2 > 0. Since the convergence is uniformly in k in every bounded region in the upper



1 f(k, x)\ <e~

re

|*„|* eAC

oo

A < dxx(2
0

| £ | | V(x]
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halfplane, f(k, x) is a continuous function of k for fixed x. We note in particular the
continuity at k 0 and k i.

From (1.5) we get the following estimate

(1.8)

V(x) |2).

Furthermore, let us estimate the difference of the two values of f°(k, x) in the
neighbourhood of k i. Iterating the equation

CO

/+(£, x) -f-(k, x) -^- dx' siny^' - x) V(x') [f+(k, x') +f~(k, x')]

X

OO

- ~ (dx' sin^' - x) V2(x') [f+(k, x') - f~(k, x')]
X

n times, we see that all terms containing/"1" +/- are proportional to E, but the single
term with/+ — /~ tends to zero as Ijn for n -> oo. Hence

|/+(A, *)-/-(*,*) | 0(j £ |), E-^0. (1.9)

One can proceed in the same manner as above with the equation

oo

g(k, x) 1 + -J— dx'(e2ikl*'-*) - 1) (2 E V(x') - V2(x'))g(k, x') (1.10)
2 % k J v

X

for

g(k,x) e-»*f(k, x) (1.11)

and finds that the corresponding Born series is absolutely converging under the same
conditions.

Differentiating equation (1.2) with respect to k, we obtain a series for (bf(k, x)jbk).
This series converges uniformly in k in every bounded region in the upper halfplane
excluding k 0, if the condition (1.7) is fulfilled for n 1, 2 and i 1, 2. Then
f(k, x) is an analytic function of k in the cut upper halfplane, excluding k 0.

Next we turn to the integral equation

cp(k.

X

x) ~sin£ x + ~ dx' sinA:^ - x') (2 E V(x') - V2(x')) cp(k, x')
k k J
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for the regular solution cp. Setting up an iteration as above and using the same estimate
(1.4), we find that the Born series converges absolutely, provided the integral

X

A'(k, x) j dx' 1+*'x, (2 | E | | V(x') | + | V(x') |2) (1.12)

is finite. Hence, if the condition (1.7) is fulfilled for n 1, i 1, 2, then the regular
solution cp(k, x) can be defined in this way for all k. Under the same conditions, the
Born series corresponding to the equation

x

x{k'x) Yïk(1 ~ e~2ikx) + Tîk j dx'{1 ~ e~2ik{x~x,))

o

X (2 E V(x') - V2(x'))x(k, x') (1.13)

for the function

X(k, x) e~ikx cp(k, x) (1.14)

is absolutely converging.
Usually the regular solution cp(k, x) is defined by means of the boundary condition

<p(k,0)=0, cp'(k,0) l.
Since this boundary condition is independent of k or E, and since the energy E enters
analyticaUy in the Klein-Gordon equation, we conclude by a general theorem [14],
that for fixed x, <p(E, x) is an entire analytic function of E.

Appendix II
High Energy Expansion

To derive a high energy expansion for the irregular solution f(k, x) and the regular
solution cp(k, x) we start with the integral equations (1.10) and (1.13) respectively.
For a moment, let us consider a Volterra integral equation of the following general
form

X

g(x) u(x) + dx' [Hi(x') + H2(x, x')] g(x') (HI)
a

with the assumption that the Born series corresponding to this equation is absolutely
convergent (see Appendix I).

It is our object to sum up the Born series to all orders in Hi and successive orders
in H%. We get the following result

g(x) [1 + Ao + {An + Ai2 + Au + An) + • • •] u(x) (II.2)
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where the ^4's are integral operators arising in the following way:

* X Xx

Aq u \ dxi Hi(xi) u(xi) + dxx Hi(x±) dx% H\{x£) u(x%) -\— *

a a a

x xx— dx\ Hi{x\) u(xi) + dx% H\(x%) u(x2J dxi Hx(xi) + • • *

a a xt

x x

dxi Hi(xi) exp dx% H\(x%) u(xi)

a xx

x

dxi A(x, xi) u(xi), (II.3)

a

x

An u dxi H2(x, xi) u(xi),
a

x x

Ai2 u dxi H2(x, xi) dx2 A(xi, xi) u(xi),
a a

x x,

Am u dxi A(x, xi) dx2 H2(^i, xi) u(xi)

a a

x x, x,

Ai4 u dxi A(x, xi) dx2 H2(xi, xi) dx0 A(x2 xi) u(xi)

To realize the higher orders, a symboHc notation is very useful: Let us write:

Ao (x xi)

^4n (x — xi) Ai2 (x — xi xi)

Am (x xi — x2) An (xxi — X2 xi)

Here a line xk — Xk+i represents a kernel H2(xk, Xk+i), two unconnected variables
Xk, Xk+i stand for A(xk, Xk+i), defined by equation (II.3). The expression arising in
this way has to be integrated over all indexed variables

x =3: %i «5 *2 ' ' ' «£ %k 3? at for x 3* a
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respectively. For example, the second order terms are

^21 (x — Xi — xi) A22 (x — xi — x2 x3)

A23 (x Xi — x2 — x3) A24 (xxi — X2 — X3 x4)

A25 (x — xi x2 — xi) A2a (x — xi x2 — x0 x4)

A21 (x xi — x2 x0 — x4) A2o (x xi — x2 xs — Xi xi)

Finally, in the wth order all possible terms with n lines occur. Looking at the above
examples, the rules for writing these terms down are evident.

Now let us return to the Klein-Gordon equation. The high energy expansion for
f(k, x) can be derived from equation (1.10). To zeroth order we get from equation (II.3)

00 Xi co

(1 + .4.) 1 1 - f dxi W(xi) exp dx2 W(xi) exp dxi W(xi) (II.4)

with

W{X)= Yir^(^EV(x)-V2(x))

and therefore

(II.5)

A(x, x') W(x') exp f dxi W(xi) dx' A(x, x') 1 - exp f dxi W(xi) (II.6)

XX X

In the first and higher orders, integrals of the following form appear

OO CO

dx2 H2(xi, xi) dx% A (x2, xi) — 1

— \ dx2 e2ih^-xt) W(xi) exp dx» W(xi)

X, X,

An integration by parts yields

00 00

—r— W(xi) exp dxz W(x3) — ——- dx2 e2ih^-xi1
2i k J 2i k J

X, X,

00

X (W'(x2) - W2(xi)) exp f dx3 W(xi).

(11.1)
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The remaining integral, if compared with (II.7), is of higher order in ljk. Let us assume
that the potential V(x) and its first N derivatives VW(x) are piecewise continuous
and satisfy

V<»i(x) e £i(ö. °°) n E°°(0, co),

V(.n'(x) -> 0; x -> oo, n 0,1,. N (II.8)

Then, in all orders we can integrate by parts N times. The remaining integrals are
o(ljkN) by means of (II.8). Summing up the integrated terms and expanding E in
equation (II.5) in powers of ljk, we obtain

g(k, x) f(k, x) *-«• exp. e j dx' V(x') 27™ + o (j^J
X

e lim —¦, (II.9)
|*j-»co «

where the coefficients an(x) are independent of k. The terms arising from the «th
order in equation (II.2) are at least o(ljkn) because n exponentials have to be
integrated by parts.

Having established the existence of the expansion (II.9), the actual values of the
coefficients an(x) are most easily found by substituting into the Klein-Gordon equation.

This leads to the following recurrence relation

K»+i)/2] /_L\ g ida'n+i — i e Vy I 2 an+i-2i + —- V an + e Va„ + —-«„ ' —-
i~fx \ IJ 2 2 dx

Using the boundary conditions

«o 1, «ji(oo) =0, n > 1

the coefficients can be successively calculated. The values up to second order are

oo'

«0 1, «i — V(x), a2 i^r dx' V(x') + -| V2(x) + i ~ V'(x)

X

This gives the following expansion for the irregular solution

CO

f(k, x) exp* I k x + e <fe V j

CO

xU+{{ V(x) +±-(i±-jdzV +~V2(x) + *-! V'(x)^j +••¦]. (11.10)
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From equation (ILIO) further quantities of interest can easily be calculated, for
instance

oo oo

e2"w=:%r=exp(-2^J&F)[1-ï(|&F+^F'(o0+'"^
0 0

oo oo

ô°(k) -ojdzV-^(^jdzV+~ E'(0)) + • • • (11.12)

o o

An expansion of this kind for ô(E) has also been obtained by Verde [15], but his
result is not correct.

Now we turn to the high energy expansion for the regular solution cp(k, x). In
this case, we start from equation (1.13)

X

X{k' %)
~2~Jk

(1 ~ e~2ikX) + j dx'tHi(x>) + H*(x> *')] X(k, *') ¦

The appearance of the exponential in the inhomogeneous term u(x) causes a modification

of the above procedure. The terms arising from 1/(2 i k) in u (terms of the first
kind) have a ^-dependence as discussed above. The terms of the second kind arising
from [1/(2 i k)] e~2ilcx are complementary to them in the following sense : Ifwe substitute
in a term of the first kind Hi by iY2 and vice versa, and operate on [1/(2 i k)] e-2ikx
instead of 1/(2 i k), we get a term of the same order of k; for instance, the term

X X

— dxi H2(x, xi) —— e-2«* ——-- dxi <5-a*(*-*i) W(xi) e~2ikxi
J 2i k 21k J
o o

X

e-2lkx f^ïv\dXlW^
0

contributes to the lowest order. The terms of the second kind can be partially summed

up in successive orders of ljk in a similar way as we have done above with the terms of
the first kind. It is not necessary to carry this out in detail, because, if the existence
of the expansion for complex k is established, we can use our results for f(k, x) to
write this expansion down explicitly: For real k we get from equation (11.10)

X

cp(k, x) ~j [/(- k) f(k, x) + /(A) /(- k, x)] j sin (k x - e J dz v\
o

x f1 +Tk(V{x) ~ F(0)) +^(y F2(0) +¥ V2{x) +TF(0) v{x)) 4

x x

+ JLco8(a* - 8 jJgV)[~(- J dzV +^(V'(x) - V'(0)jj + • ¦

0 0

and this must hold for complex k, too.
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