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On the Uniqueness of the Hamiltonian and of
the Representation of the CCR for the Quartic
Boson Interaction in Three Dimensions

by Jean-Pierre Eckmann!)?)
Brandeis University, Waltham, Mass.,
and Konrad Osterwalder3)

Courant Institute of Mathematical Sciences, New York University, New York

(4. V. 71)

Abstract. Glimm has constructed a Hamiltonian for the (: ¢¢:)241 interaction with space
cutoff, using a truncated version of the formal wave operator in order to define a domain for this
Hamiltonian. For a wide class of such truncations we obtain unitarily equivalent representations
of the canonical commutation relations in the sense of Fabrey. We establish unitary equivalence
of the closures of the Hamiltonians obtained for many different truncations.

I. Introduction

In the constructive approach to quantum field theory one often encounters
complicated limiting procedures involving the choice of some technical parameters.
It is natural to ask to what extent the final results depend on such quantities. In [4]
Glimm constructed a Hamiltonian for a quartic boson selfinteraction with space
cutoff in three dimensional space time. He used a truncated version of the formal wave
operator in order to define a domain for this Hamiltonian. In this paper we show that
for a wide class of such truncations one obtains unitarily equivalent representations
of the canonical commutation relations (CCR) in the sense of Fabrey [3] and even
unitary equivalence of the Hamiltonians. It seems that this class of truncations ex-
hausts almost all the possibilities for which Glimm’s construction goes through.

1) Supported by the Office of Naval Research, N00014-70-SC-0418.
2) On leave from the University of Geneva, Switzerland.
3) Supported by the National Science Foundation, Grant GP-24003.
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In order to deal rigorously with infinite quantities one introduces an approximate
Hamiltonian H, with a momentum cutoff o:

Ho = Ho+ [ : 48306 Me) dos + M, + E,, (B)
where Hy 1s the free Hamiltonian, ¢s(x) is the cutoff free boson field at time zero:

Bole) = [ ee ity 1n(a(— 1) -+ alt) ok,

k)] <o
w(k) = (m2 + kU2, m>0.

The expressions M, and E, are mass and vacuum energy renormalization terms
respectively and will be given in section II.

The space cutoff function /(x) will be held fixed throughout this paper and is
supposed to be smooth and of compact support.

By Vi, 7=0,1,...,4, we denote that part of the interaction term
[: @3 :(x) A(x) d2x which creates exactly j particles.

Our procedure is to start with a simplified Hamiltonian [5], [6]

H, = Ho + Vag + Voo - counterterms, (1.2)

and we shall see later that it exhibits already all the interesting properties of the full
Hamiltonian (1.1).

In section IIT we define a large family of truncations TG( f, g) of the formal wave
operator that belongs to (1.2), the truncation depending on two parameters f and g.

The operators T4(f, g) are called ‘dressing transformations’. Following the ideas of
Glimm [4] we show that each of these dressing transformations defines a limit H (f. 8)
of the simplified Hamiltonian as ¢ goes to infinity, which is a densely defined sym-
metric operator in a Hilbert space s (f, g) disjoint from the Fock space. Furthermore
each of these spaces ¥} (f, g) is a representation space for an non-Fock representation
W(f g | ¥) of the Weyl relations, W(f, g | ¥) being a certain limit of &%), with'y an
element of a suitably chosen test function space (section VI and [3]). In section IV we
construct a natural unitary mapping from 7 (f.g) to s (f', g'), for different (f,g) and
(f',g"). This mapping is called natural because it is constructed as a limit of the
1dent1ty map in Fock space. We show that it yields the unitary equivalence of the

representations W (f.g|») and W (f',&"| v) of the Weyl relations.

In section V the construction of section III is repeated for the full Hamiltonian
H,, equation (1.1), i.e. we construct dressing transformations 7,(f, g) leading to
limiting Hamiltonians H(f, g), densely defined in a Hilbert space #(f, g), which is a
representation space for a non-Fock representation W(f, g | ¥) of the Weyl relations.
Again by natural unitary mappings we prove the unitary equivalence of W(f, g | v)

and ﬁ/( /. g| ¥). This is an extension of results of Fabrey [3].
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In section VII we use the natural unitary mappings to show that the closures of
H(f, g) and of H(f’, g') are unitarily equivalent for different (f, g) and (f’, g'). These
results can be interpreted in the following way:

All Hilbert spaces J (f, g) and #(f, g) may be identified, using the natural unitary
mappings. We call this space #ren. This involves the identification of all the represen-

tations W( f.g| ) and W(f, g | v) with a representation W(y) in .#er. Furthermore we
can define a Hamiltonian H with domain U 2(H(f, g)) C Fren, 2(H(f, g)) being the
(£:8)

domain of H(f, g), now a dense set in #ren. 1%Ve set H |gue) = H(T, g).

Thus we end up with a Hilbert space #ren, a representation W(y) of the Weyl re-
lations and a densely defined Hamiltonian H, and the truncation parameters have
been eliminated. Furthermore we see that we can obtain ¢, and W(y) already with

the very simple dressing transformation T,,( £, g) for any (f, g). It would be interesting
to find more abstract criteria which characterize S, and W(y). If we want to
construct in #,¢, a dense domain for the Hamiltonian H, then a more complicated
dressing transformation 74(f, g) is needed. Now we could go on, constructing dense
domains for powers of H using more and more sophisticated dressing transformations.
What we would like best is a dressing transformation which yields a dense set of
analytic vectors for H, to prove that the closure of H is a selfadjoint operator. In
fact, as recent results of Masson and McClary [8], [10] show, it would even be suffi-
cient to construct a dense set of semianalytic vectors for H. Then if H is shown to be
semibounded, the essential selfadjointness of H is a consequence.

I1. Notation and Definitions

Let F denote the Fock space of free bosons with mass m; a(k) and a*(k) the
annihilation and creation operators for a particle with momentum £, respectively.
An operator of the form

Wmn= Hu* ki dkiﬂa li dliwmn k],...,km, l1,...,ln) (21)

1=1 1=1

is called a Wick monomial (with numerical kernel wmz). dk stands for @2k. In modi-
fying Friedrich’s perturbation theory, Glimm has introduced the operation I,
which associates to a Wick monomial W, the Wick monomial I'(W ). For m > 0,
L'(W mn) is defined by

Wmn :fna* ki dkinali dli(z# ) IWmnkl,...,km,ll,...,ln).

t =1
We also define | Wma | to be the Wick monomial (2.1), but @ma(1, ..., Ia) is re-
placed by its absolute value | wmn | (k1, . . ., Ia).

Let Wmn and W be two Wick monomials as in (2.1) with numerical kernels
Wmn and w,, which are symmetric functions of their creation and annihilation
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variables separately. According to Wick’s theorem the product Wi, Wy can be
expanded as follows.

min(n,m') '
Won Wit = 3 (’:)( ) j Tk dna ] (ki)
r=20

=1 t=r+1
% H a(l;) dl; Ua(li k@ — &) dki dl;
i=r+1 =1
Wnn(RL, oo oy Bmy by Dn) W (BL, o R By ) (2.2)

This expansion is the Wick expansion, and a single term in the sum X™#m) op
the right of (2.2), but without the factor (%) (%) 7! is called a Wick term, occurring
in Wy Wyew. The rth term in this sum is denoted by Wum W, it is a sum of
(*) () »! identical Wick terms. We also define L

4

Wmn Waizn “ZWmn W:;zn - Wmn W;;;n - :Wmn W::;'n’:-
I r>0 L_MJ

Inductively we extend these definitions to products of more than to Wick mono-
mials.

Wick monomials and Wick terms are usually represented as graphs. A Wick
monomial Wy, is drawn as

m lines nlines .

Each Wick term in (2.2) is represented by the graph of Wux to the left of the graph of
W v - Those lines whose variables have been identified by [T; _ ; (kt — ;) are connected.
They are called internal lines, the other lines are called external lines. Let

W = vﬁa* dknal, dliﬂdp,, wlky, ..., kel b, p1, e, B)

i=1 =1 =1

be a Wick term. Then we define a fruncation of W by replacing w(k1, ..., p:) by
w(ke, ..., p:) x(R1, ..., ps), x being a characteristic function.

A truncation of a sum of Wick terms is defined by truncating each Wick term
separately. We now turn to the model under consideration. The expression [ : ¢4 :(x)
X h(x) dx has an expansion

4
3 Vi 2 fa* (Ba) . .. a*(ki) alkira) . . . a(ka) viglkr, . . ., ka) dRy . . . dka.  (2.2)
+ =0
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Here % is in the space 2 of Schwartz and

4\ 4 .
(1’) Ufu'(kf)_l”zh(kl + ot ke — R "—k4)
i=0
By o0 Bl =1 .
\0 otherwise.

By = we denote the Fourier transform; u(k) = (k% + m?)l/2,

We now give the explicit definitions of the two Hamiltonians which we shall
consider later.

Hy = Hg +ZV,;6+M 1 E,,

=0
H‘; :Ho + Voa + V4a ”‘I‘Ma +-§6-
M,, E,, M,, E, are the counterterms, whose definition is motivated by perturbation

theory, see e.g. [6].
The mass counterterms are defined by

~

My = 2m, f a* (k1) a(ks) w(ks) V2 u(ke) -1/ (hxh) (ks — ks) dky dks

|ki| <o

My = m, f t(a* (k1) + a(— k1)) (a*(k2) + a{— ko)) @ p(kr) V2 (ko) 1/

|kl <o

~

X (h*h) (ky -+ k) dky dks

m0=96[l_37

40/3

O(p1 + p2 + $3) (Z; M(Pi))_l

The scalar counterterms are given by
Es = (¢, Voo I'(Vag) o) ,
Eo = Eo — (I'Vas) o, Vao I'(Vas) o) .

Here ¢o denotes the Fock vacuum.
We shall also use the notation

As = [[ I(Vag) do[[* = (I'(Vao))* I'(Vas) -
[

4

The fact that A, = O(Ing), that is the divergence of A, as ¢ — oo, is the reason for
a change to a non-Fock representation of the CCR.

The graph representing A, is € . A graph which does not contain & as
a subgraph is called a skeleton graph.
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We shall often use the following standard domain %, in Fock space. 2y is defined
to be the set of all vectors in Fock space which have a finite number of particles
(i.e. the m-particle component equals zero for » large) and which have compact
support in momentum space.

III. Dressing Transformations for a Simplified Hamiltonian

As was shown [5], [6], the ultraviolet divergencies of H, are formally compensated
on the range of a formal dressing transformation

fformal,o' = exp——l (V) = expW, . (3.1)

For a rigorous construction of a domain for H, as o — oo we use a truncated version
of (3.1). The aim of this section is to define a class of such truncations, each of them
leading to the definition of a limiting Hamiltonian H,.

Let f: N—> R+ be a strictly increasing, nonnegative function on the natural
numbers N, and define f(N) = {f(:);7e N}. Let g: N - Nu {0} be a map of the
natural numbers into the nonnegatlve integers.

For g € f(N), 0 > 0 and f~1 the inverse function of f,

Tolf ) =TT expWpa, (3.2

izfe) &)

where

expx —Zxk/k' for n>0.
K=o
Furthermore

4

— Wiie = I'(Vfie) = f a*(k1) . .. a*(kd) (Z‘H Lvgsig(Rr. . k) dRy. .. dRy,

I=

[y

Vsglkr, ..., ka) if max | k| €[f(7), G + 1)
Vaia(kr, . . ., Ra) = bt

0 otherwise.

In the following we refer to the momentum %, | i | € [f(§),f(j + 1)), as the ‘maximal
momentum belongmg to Wryjs .

Note that Tga( f, g) is that part of wam; + which contains at most g(j) factors

Wyis. One can easily verify that ng( f, g) is a truncation of Tfo,mz s in the sense of the
definition of section II. Namely, for ¢ > f(1) we have — (Vi) = — I'(Van) +
252 Wf,a and the Wy,’s commute one with the other.

By T@m( f, g) we denote the nth order contribution to TQG( f.8). The purpose of this
chapter is to establish sufficient conditions on the functions f and g such that Tgo'( 1,8
1s a dressing transformation for H,.
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Definition. For any d > 0 we say that f and g satisfy condition Cs, or (f, g) € Cs,
if there is a constant % > 0 such that for all 7 > 7:

Cl. f(d) > i,
gli) < f(0)°
C3. aslnf(r) < g(v),
C4. fo + 1) < f(1)™,
with a1, . . ., a4 satisfying

AL g > 2010
&o

A2 ag< O B0

[ +§ 2 °

2

€o
200 +90)
A4. as > 1,

A3. as >

A5. a3 <1 4 min{l, gpA1e-360+9},

The positive constants g and A are fixed and given by the model. They will be
specified below.
The main result of this section is:

Theorem 3.1. Let (f, g) satisfy Cs for some d > 0 and suppose g, o' € f(N). Then
with Too = Tos(f, g) as defined in (3.2) and ¢, w € %o the following holds.
1. 1im (T $, Tyop) o = (Toh, T y)r (3.3)

exists.

1l. The expression (3.3) defines a positive definite scalar product (-, -)r on

(Toulfr§) $: b€ 20, 0 € f(N)> = 3(f, ¢) , (3.4)

(> denoting the linear hull. 2(f, g) together with (-, -)r is a prehilbert space, whose
completion SF(f, g) is a separable Hilbert space.

1. I Ho'Tgo' ¢ ||2 e~ 4a is uniformly bounded in 0 < o < co, and
lim Tga o, H, ng y) e~4o exists and defines a symmelric operator H (f, g) with domain

o—r o0

9(f, &) c A/, g)-

Proof: We have to verify I-//]. The proof follows step by step Glimm's procedure [4].
We sketch only the most important estimates which are needed. Property / is
a consequence of conditions C1 and C2 on f and g, which guarantee that the trunca-

tion omits enough terms from the divergent series of 7 fyrmat, s to make the remaining
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series convergent. Thus the main tool to prove property / is a o-independent upper
bound on

| (Tealf, €) b Taolf, 8) ¥) 640 . (3.5)

Glimm’s analysis shows that (3.5) is majorized by

22%’%‘ (¢l ] Sam|lw]), (3.6)

Hy 1 Sy,

where the sum }s,,, runs over all Wick terms Sy, in the expansion of #! m! f'g,m( f.8)*

T yom(f, g) whose graph is a skeleton graph.
By sam(pest, pint) we denote the numerical kernel of Sum; Pext(pins) stands for
all the variables belonging to external (internal) lines of the graph of Sam.

Lemma 3.2. (Glimm [4, Theorem 2.2.1]; [2], [9]). There exist positive constants
eo and K, independent of o, o, f or g, such that for all & < &,

”HM =gl H,M I Snm(Pe:ct, ?bint) | dpint |l2,ext o8 Kot = (37)
Pi€Pext Pi€bint
By || - ||2,ex we denote the Lz norm with respect to the momenta p; € pez:.

Remark. The constant & used in the definition of condition Cs is chosen to be
the maximal possible value of &; & = 1/6, by inspection.

Suppose 7 € N has been chosen such that for all s > 7 the s-particle components
of ¢ and y respectively are zero. Then for fixed #» and m the number of Wick terms
Sum contributing to (3.6) is bounded by

i' i-(4n)(4m)((4%_81) (4m —sa) /2 < 240 (4 m) | (4m) )12, (3.8)

5, =0s5,=0 S1 S2

Note that each term in the sum on the left-hand side of (3.8) counts the number of
Wick terms which annihilate (create) s; (se) particles. Furthermore in (3.8) we have
used

4n
2(48%):24”-

s=0
By the Schwarz inequality we get as bound on (3.6)
Cs, ,,,224<n+m) (4 n)! (4m) )2 (n) m)-2

X max ”nM(Pz)_zJ l snm(Pext, jbmt) | dpint ”2, ext » (39)

Sum  Pi€bext

where Cg,y is a constant dependmg on ¢ and y only. The definition of the truncation
of Tfo,m; o implies that T oo(f, g) contains Wy, at most g(j) times or, in other words,

that ng(f, g) contains at most &(z) = 3%, g(j) maximal momenta with absolute
value smaller than f(z).
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Let ¢(p1, . . ., pan) be the numerical kernel of ﬁm( f.8); f1, ..., pa the maximal
momenta, and suppose that | 1| <|p2| <--- <| pa|. Then the above statement
says that

| e+ | = f00) - ' (3.10)

Now we use the condition Cs: for ¢ large,

— 3750) <2g +Z’f “ byCz,

i=1 i=1 f=t+1
< 1 f(t)% < f(i)=t Ya by C1, (3.11)
< f(¢)®/2, for some &1 < &0, by Al and AZ2.

Inequalities (3.10, 11) give, for large ¢,

| pey+1 |52 = fl)52 > E(i + 1), or

| pa|®/2 > n for large n .
Finally we choose an # > 0 such that &(1 4 %) = ¢ < & in order to get
| pn |52 > nt+7) ,  for large u . (3.12)

Using Lemma 3.2 and (3.12) we finally get

max ||Hﬂ( j | Sum(Pext, Pint) | dpint ||2,ex < max ”H:“ —2+4 €2

Spm  Pi€bent Sum Pi€bext

Hﬂz(}bi)s | Snm(;bext, f’int) | dpint ”2, ext (1’!-' m!)—(H“’?) Kln—l—m (313)

Pi€bint

< Kn+m(n!m!)-0+2  for large #, m,

and thus by modifying K, for all #, m > 0. Thus (3.9) converges uniformly in g and ¢
and is therefore the desired finite bound for (3.5).

Remark 3.7. In some later calculations we will know that at least one of the
momenta in Sum(Pest, pine) is restricted to absolute values larger than some given
number 7. Then we can improve (3.13):

max ||H,U(Pz) _2J\ | Snm(]bea:t, Pint) l dﬁint ”2, ext

Sum  Di€Pext

< Kn+m(n| m!)—(1+ n/2) z—(en/4)  for all n, m > 0. (314)

Property //, the positive definiteness of the ‘renormalized’ scalar product, is essentially
a consequence of conditions C3 and C4 on f and g. They guarantee that the truncation

of T foymat, o 1S not too strong, whereas C1 and C2 were designed to make the truncation
strong enough.
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Lemma 3.3. Let Age = || Wio o ||> = 4! || wsis |]3 -
Then there exists a constant A, independent of f, | and & such that

G+ 1)
A <Al Y T2
fio = A5

The proof of this lemma is straightforward. The above constant 4 is used in the for-
mulation of condition Cs.

Lemma 3.4. If (f, g) satisfy condition Cs for some 6 > 0, then
lim lim []expAgsexp—Age=1. (3.15)

fo—>00 0—>0c0 > 7, g(f)

Proof: If we set b; = e();p/lﬁa exp — Ayjo, then
(i

)80 + 1
0<bi<l and (1—1¥&) < (Agi)®0

T ) + 1)

(3.16)

Thus
=10 ?>.'I'o
(qua gH+1 .
< 21
_S_ +1)| , using (3.16)

1>1o

¥ ( e Allnf(j + 1) — Inf(j)] )gm“
g()
by Lemma 3.3 and by Stirling’s formula

<

3

127,

el gli) +1
<)) [;3_ (a2 — 1)] , by C3 and C4

=

< )] e & +1 by A5 [see inequality (3.30) below]

=1

<L M g s *27—“1“3 , by Cland C3

1217 i1

IV

< oo, foranyjo>1, by Al and A3.
This bound combined with the fact that lim Ay, exists establishes Lemma 3.4.

g—> o0

The remainder of the proof of property // follows from Glimm’s arguments, see
[4, p. 35] or [3].
The essential tools in the proof of property /// are bounds, uniform in ¢, on

|(Ho + Vio) Teolf, ) |2 e (3.17)
and on

|(Vos + My + Ey ) Toolf, £) ¢ ||2 e~ 4o. (3.18)
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We only indicate how one gets the bound on (3.17). The methods for the bound on
(3.18) are identical. For the remaining steps in the proof of /// we refer again to [4].
Using the definitions (3.2) we obtain for p € f(N), ¢ < o,

Vie = V4 + 2 Vigiws

izf" el

and

|(Ho + Vao) Toolf, §) b || €402 < || Toolf, g) Ho || e~4o2
+ 1| Vie Toolf, &) $ || o2 (3.19)

(Wio)8t
+ 2 || Vage——— b JT expWyod || ez,

i >T0) g0 iz
P

The first two terms on the right-hand side of (3.19) are bounded uniformly in ¢, by
the arguments used in the proof of property I The remaining terms come from the

sum of [Ho, Teg f.9)]¢é and XYi>sve Vasio TW( f,g) ¢ and have to be estimated.

First we observe that due to the definition (3.2) the following inequality holds:
| Vasio | < constf(j + 1) [ I' Vi |

= constf(j + 1) | Wps |, (3.20)

with a constant that does not depend on f, j or . Therefore it suffices to look for a
bound on

(e0)!)> (fG + V)| Wa \g‘”“ﬂexpl Wio| $|2 e, (3.21)

1571 g4)

and to show that Y; }/(3.21) converges.
As in the proof of property / we find that (3.21) is majorized by

2 &) +1 g(f) + 1\2
(€)= (1 + )2 3ty (V77)

nm L=

X (gf) +1 — &)1 AFD 1 ey
Spmt

(3.22)

where the sum J}'s,,, runs over all Wick terms Suu: in the expansion of

n!m! (H exp | Wfid')::th oider I W}‘;'o ,t ! ijcr lt (H exp | Wﬁa I)mth order »

i 7 g(d) i#) gli)

whose graph is a skeleton graph. As in (3.8) we find that the number of such Wick
terms is smaller than

24(n+ m+ 2t) (( (n +¢ ) (4 (m + ?) ) )1/2 (3.23)
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Using Lemma 3.1 and inequality (3.14) we get with the aid of (3.23) the following
bound on (3.22):

) .
%WWYNM+4WZL§”W“ Gmf1YMn+1*W
X AFFI e~ Mo KF 2 ((4(n )| (40m + 9)1)12 (3.24)
X ((n +8)! (m + t))-A+n fl5)-tn

for some 9 > 0 and a constant Cy4 that depends on ¢ only. Here and in the sequel K

denotes a finite constant which, however, may change its value from one inequality
to the other.

We use the inequality

(@ + b)! < 2a+b g! p! (3.25)
to decouple # and m from ¢:

(4(» 4 1))! < Kn(n!)s Ko(t])4

for some fixed K.

After the summation over #» and m which obviously converges, we are left with
the following bound on (3.24):

- 2 ({4 SR AR 3.26

wmm+n0wum§Kw»q“+ngﬂm (3.26)
By C2 and C4,

(g() +1)2 (f1 + 1))z < 2f(j)*s+=), for large . (3.27)

Let # be the smallest integer such that f()2a( +a)-tm < constj—3. Such a fo always
exists due to C1. Then (3.26) is majorized by

) (7)2a4(1 + a2) Afy(j)_klut g(j)+1Kf( ) )t t (3.28)
const )284(1 + as s -+ constj—3 Nl )
t:zﬂ:” gi) +1— ) 7t=%:,(1 7

The first term in (3.28) is smaller than

5 e M(Inf(7 +1) — Inf(f)) )g(ﬂ+1_t
t 2a,(1 + a)az1g(s) ’
cons t_E Y ( A

by C3, Lemma 3.3 and Stirling’s formula, and thus smaller than

§°7 (2l + a0 A 1 1t (80 )gm (3.29)
const g2l tadas ¢ 2(gy — 1) azl)si) +1-t| =2~ ; .
téo( ( 4 ) 3 ) (g(]) _ tO

by C3 and C4. By A5, A3, A2, and using the value & = 1/6 of Lemma 3.2, we get
g2l +aa" ¢ J(gy — 1) agl < €221+ a2+ )] 21+ Oles g} (ag — 1) (2(1 + 0) )
)]

< 654(1+ ) A 851(6!4 —_ 1) < e-2, (330)
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Therefore (3.29) can be bounded by

to
const ) 'e~280) + 111 < const -2 < const (f(1))~2* < constj~24% < const -3+,
=0

for some ¢ > 0, by C3, C1, Al and A3.

As the second term in (3.28) is obviously bounded by constj-3 for large § we finally
conclude that (3.28) and thus (3.21) is bounded by constj~(2+ ), too. The ccnvergence

of 3 [/(3.21) is then obvious and establishes the uniform boundedness of (3.17). This
concludes the proof of property /// and thus the proof of Theorem 3.1.

IV. Natural unitary mappings

In the preceding section we showed that any (f, g) € Cs define a Hilbert space

S (f, g) and a limiting Hamiltonian H (f, g) which is densely defined in S (f, g). Now
we proceed to construct unitary operators which map one of these Hilbert spaces
onto another (Theorem 4.4). We call them ‘natural’ because they emerge in a natural
way from the identity map in Fock space. They also give the connection between the
different limiting Hamiltonians as will be seen in section VII.

Let (f«, go) € Cs, 2 = 1, 2 for some 0 > 0. Then we define the mapping
U=Ulfags, fr&1) from 9(A,g)c #(fi,g) into F(fs, ga) by

U Tool 1 81) ¢ = im Ty o2, 83) Topin (i &1) ¢ (4.1)

n—roo

for ¢ e 20, p€fi(N). Note that Tom(f1, g1) ¢ = Om € 20 Whenever e 2o and
n < oo. We shall prove that the closure of U, which we denote again by U, is unitary,
using the following

Lemma 4.1. (Fabrey [3], Lemma 4.2). Suppose that for each ¢e€ 2o and each
01 € f1(N), o2 € fo(N) there exist O1n and Oz2n € 2o and 7v1(n), T2(n) = 0 such that

lim 1im || Too(fi, g1) ¢ — Toymolfe, g2) O2n ||2 640 = 0 (4.2)

N—r 0 O—>r 00

and

lim lim || Toulfo, g2) ¢ — Trymolfi, g1) O1n |[2e~%0 =0 . (4.3)

N—> 00 0O—> 0

Then the closure of U(fz gz, f1 g1) as defined in (4.1) is unitary.
The following lemma establishes the assumptions of Lemma 4.1 for a special case.

Lemma 4.2. Let (fy, go) €Cs, . = 1,2; 6 > 0, and suppose that fi(N) > fo(N). Then
for every ¢ € Do, and each g4 € f4(IN) the equations (4.2) and (4.3) hold if we set

T1(n) = 12(n) = feo(n) , “4.4)
Bin = Toupn(f2, 82) 3 020 = Toupn(fir 1) 6 - (#.5)
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Proof: We will prove (4.3) only; the proof of (4.2) is analogous. We have to show that
for any & > 0 there is an N(¢), such that for all # > N(¢), uniformly in ¢

n-1
| I] exp Weiod — [] exp Wy Il exp Wi d ”2 e~ (4.6)
i 217 e) &) 127 fm)] &) i=73'(e) &)

is smaller than e.
By []» we denote the ‘vth order term’. With M = M(o)= max {7 | Wy # 0},
Whaje = Waj and J(n) = f11( fa(n)) we have

Ly=[[exp W — [ exp Wu

i=n glf) iZJ(n) &)
JGi+1)-1 JG+1)-1
=[Teso (W) ~IT (I exp Wu-) “7)
120 g} \i=J(f) 1=n i=J) &)

3 il U5, AT e )

Yy M 20 =2 Lea(l) \e=J() =J(1) &)

It is now important to note that for
v < () = min{gs(7), g(JG)). . . .. &(J(G + 1) — 1)} one has

JG+1)-1 JGi+1)-1
[exp p) WHJ = [ JT exp Wu] . (4.8)
8(7) 1=J(7) ¥ 1=J(1) &) ]

Therefore in each nonvanishing term ot the expression (4.7) for L, there is at least one
] = n with »; > ¥(j).
Now the expression (4.6) can be rewritten:

n—1

(4.6) =|| Lo ] expWa |2 e~
i=12'(e) &)

= (¢, f’;f,(n)(fz, g2) L¥ Ly Top(f2 £2) p)edo =11+ I>. (4.9)

We describe the decomposition Iy + Is, which is obtained by partltlomng the space

of variables of the numerical kernel of each Wick term of 7* L* L T in the following
way. In [;, the momenta larger than fz(») occur in the /-components of the Wick
term only; the complementary region applies for I2. Note that in I1, all contributions
from L, occur in the A-components only.

By the methods of the previous section, we bound /2 by

ZUsL1s14D,

where }'s runs over all Wick terms S in the Wick expansion of T% L¥ L, T whose
graph is a skeleton graph and whose kernel s(q1, . . . , g¢) vanishes unless at least one
of the variables has absolute value larger than fa(n). Using Remark 3.1 and inequality
(3.14) we conclude that there is some 7 > 0, such that uniformly in ¢

Is < constfa(n)=" . (4.10)
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In order to estimate I; we have to use the representation (4.7) of L, and equation
(4.8), i.e. we have to take advantage of cancellations in L,. We can write

Iy = || Topuon(far g2) ¢ |2 640 - Ca, (4.11)

and || Torum(f2, g2) ¢ ||2 e~4fm is uniformly bounded in # by Theorem 3.1 (Pro-
perty /). Furthermore

Cn = e=Ma=45,m)(ho, L¥ Ly o) a, (4.12)

where the subscript A indicates that one has to take only those contributions to L¥ L,
whose graph consists of A-components only, by construction of I;.
We certainly increase the value of (4.12) if we replace L, by

22 (exp| Way| — expl Waj|) Hexpl Weil , (4.13)
i=n »(j) i=n

1]

which means that with As; = Ay,jo,

M
Cn < 4 e~o-4py nﬂZ (expAz; — exps;)) Hexp/lz,;

i=n »(7)
M Aop)7i) +1
42 (exp — As;) (expAz; — expAs;) < 42 —(ij)—|. (4.14)
f=n »(7) j=n + 1) :
By definition, we have
y(f) = min{g=(7), g1(J (7)), - - - ,gl_(](?' +1) —1)} and thus
y(j) > min{as; Infa(f), as1 Infi(J (7))} ,
for some a5, a >———80— by C3
3,1, @32 2(1 T 5) , y ,
= min{as, a3z} Infz2(f), by the definition of J . (4.15)

Inequality (4.15) and the assumption (fy, g«) € Cs, x = 1, 2, ensure that (fz, y)
satisfy conditions Cs with a possible exception of C2. But as was shown in the proof
of Lemma 3.4, C1, C3, C4 and A1-A5 are sufficient to guarantee that for fixed » the
sum in (4.14) is finite and thus goes to zero as # tends to infinity.

Therefore I; + I» = (4.6) tends to zero as # goes to infinity, uniformly in o.
This ends the proof of (4.3) and thus of Lemma 4.2.

A next step will be to eliminate the assumption fi(/N) > f2(N) in Lemma 4.2.
Let (fx, g«) € Cs, 2 = 1, 2 for some 4 > 0. Then we define (uniquely) a function f:
N — R+, strictly increasing, such that f(N) = fi(N) u f2(N). Let for « = 1, 2,
J«(¢) = min{j | fu(f) = f(?)}. We define g: N - N u {0} by

g(i) = min{gl(;fl(i)), gz(]z(i))} ; (4.16)
We write (f, g) = ¢ ((f181), (f22))-
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Lemma 4.3. Let (fy, go) € Cs, 0 = 1, 2,8 > 0. Then (£, g) = ¢ ((f/1 81), (f2 g2)) satisfy
condition Cs, too.

We postpone the proof of Lemma 4.3 and discuss its consequences. It follows
immediately from the definition of (f, g) that fi(IV) c f(I¥) and f2(N) c f(INV). Therefore
by Lemma 4.3 we can apply the Lemmata 4.1 and 4.2 to conclude that

U(fage, /r181) = U(fage, fg) U(fg. frgr) (4-17)

is a unitary map from ;‘(fl, g1) to 5 (f2, g2). Finally, we consider the most general
case and we suppose that (fx, &) € Cs,, & = 1, 2, for some 61, d2 > 0. Note that for

Joli) = 2, golf) = 12, we get (fo, go) € Cs for all 6> 0. Let (fao, gao) = ((f= ), (/o £0)),
o = 1, 2. Then the equality

U(f2 g2, /1 81)
= U(f2 g2, f20 g20) U(f20 g20, Jo g0) U(fo go. f10 g10) U(fr0 g10, f1 &1) (4.18)

shows that U(fz g2, f1 g1) is unitary since each of the factors on the right of (4.18) is
We state this result as

Theorem 4.4. Let (fu, ga) €Cs,, 00> 0,0 = 1,2. Then U(f2 g2, f1 g1) s a unitary

operator on s (f1, &) to 5 (f2, £2).
We now prove Lemma, 4.3.
Let a1y, . . . , 44e be the constants for which (f, g») satisfy C1-C4,a = 1, 2. We
check C1-C4, A1-A5 for (f, g) = ¢((L &), (feg2));
f(i) > max{fi(f2(5) — 1), fa(ja(d) — 1)}
> max{(1(f) — 1)™, (j2(f) — 1)=}, by C1,
1; min{ay, a5} i .
> (—2— — 1) > ¢m, for large i .

We have used 71(¢) + 72(¢) > ¢ and we define a; such that
2(1 + 0) &' < a1 < min {a1, a12}. Then C1 and Al are verified for (f, g).

g(7) = min{g(71(2)), g2(72()) }
< min{A(j2(6))*, falf2(G) )=} , by C2
< (min{ A, AlG)} )
= f(¢)*,
where a2 = max{az1, a22}. This proves C2 and A2.
Inf(i) = min{Infi(11(9), Infa(ja(i))}
< min{gi(1(f)) asit, g2(j2(¢)) asz'} , by C3,
< g(t) - az?

where a3 = min{as1, as2}. This proves C3 and A3. Finally, since f(N) = fi(N) U f2(N),
by C4 f(i + 1) < f(¢)%, where as = min{aa, as2}. This establishes C4 and A4, A5
for (f, g) and ends the proof of Lemma 4.3.
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V. The Complete Interaction

In this section we give the modifications which are needed to carry over the
results of the previous sections to the case of the full Hamiltonian (1.1). First we
define a family of dressing transformations T'(f, g) which lead to Hilbert spaces #(f, g)
in which the limiting Hamiltonians H(f, g) are densely defined. We then construct
the natural unitary operators on one of the #(f, g) to another in the sense of section IV.

We need some definitions: V3, is the truncation of Vs in which vag(k1, . . ., k)
is replaced by zero if the momenta %;, k2 belonging to the creation operator satisfy
| Br| + | k2| < 2(| ks| + | kal]). We set AF* = M2 — Vie I'(V4s), and furthermore for

l__3.__l _
7 €N, Vsjo, Vajo, Ajs are defined by restricting the momentum of largest magnitude
| 2| created by Vi, V2s and A3* respectively to the region where | k| € [24, 2/+1).
For the following definitions, see also [9]. Let Y be the set of all functions ¥ which
map N into Z.
Then we set

Xoo(f. 8) = Xpo={2:x€Y, forallieN, 0 <=x(1) <g(y), and

%) =0 if f({) <p orif fi) >0o}. . (5.1)
For x e Y we define xx e Y by xx(:) = #(?) — dir and xeY by x() = g@i) — ().
Let furthermore (j1,...,im) =™ € (N)™; /= ®, and let

k-1
Jo=Joe=1{im:210 >0, (Y )¢ <ju,k=23,...}; withé<1.
i=1

We shall keep & = 3/4 fixed and omit it in the following.
We now define Sw(f, g | ™, x) = Sw(j™, %) by
{lifxso,

0 otherwise,

Seo(1?, %) =

S-m(?.m; x) _ F((V3jma “‘I‘ Véimg —_— A}’:a) S_w(jm—l’ X))

=2 T((Vsipa + Vaipo) Wyix Sealf™, 54)) (5.2)
| ]

o9 1
— E & (; VZima Wﬁ;‘r I/Vﬁgr Sw(?'m-ll xixis)) ’
im0 \2 L

and finally for g1 € f(N), o2 >0,

T o,0.0(f, 8) :2 H (exp W) Zsac(?‘m: x) . (5.3)
e Xgg i=fe) Bi)  MeTy,

This is the definition of the dressing transformation for the full Hamiltonian (1.1).
This definition insures that Wp, occurs at most g(¢) times in T 0,6(f, g). We note
that for g1 = g2 = 0 and f(z) = 2¢, g(1) = ¢, & = 3/4, Equation (5.3) 1s an explicit
definition of Glimm’s original dressing transformation [4, p. 26]. |
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By modifying Glimm’s proofs [4] in the sense of our Theorem 3.1, we arrive at the

Theorem 5.1. Let (f, g) € Cs for some 6 >0, pr€f(N), 2 =0, Too0(f 8 = T.
defined as above. Then T satisfies for all ¢, p € Do:

L im(T, ¢, Top) =40 = (Too b, Too ) (5.4)

g—>» 0o

exists.

II. The expression (5.4) defines a positive definite scalar product on

2(f,8) = Toerolf. ) $: b € D0, 1 €/(N), 02 =0 (5-5)
IIL. || Hs Ts ¢ ||2 e~ 40 is uniformly bounded in ¢ < oo and im (T ¢, Ho T ) e~ 4o
defines a symmetric operator H(f, g) on 2(f, g). o> o0

2(f, g) together with (-, *)r is a prehilbert space, whose completion we denote by
S/, 8)-

Next we want to compare #(f, g) with 5 f, g). We need the following extension
of Lemma 4.2:

Lemma 5.2. Let (f,g)€Cs,0>0. For each ¢e %o, each 1€ f(N), p2 =0,
there exists O1n, O2n € Do such that

lm lim || To,e,0(f, 8) ¢ — i:f(ﬂ)o(f: g) b1 |[2e4 =0 (5.6)
and
lim 1im || Toolf, &) $ — Tyinsomolfs €) Oan |[2 =40 = 0. (5.7)

N—> 00 O—> 0O

Proof: The proof is completely analogous to the one of Lemma 4.2. We only give 01,
and 6zy.

n-1

bin=2" ] (expWgo) Z St fon(i™, %) & » (5.8)
xeX, fin) + =S er) Z(9) ime],,
n-1 ‘
Oon — [T expWpa . 59)
= f"(e:) 8(d)

Lemma 5.2 suffices to obtain the natural unitary operator mapping #(f, g) onto
3, 9. A

This combined with the natural unitary mapping U(fz g2, fig): F£(f, &)
> (f2, go), established in Theorem 4.4, defines a natural unitary ma,pplng of £(f1,&)
onto J(fz, ga) for (fu, g«) € Co,, 0 > 0,0 =1, 2.

An explicit definition of this unitary map V(fa g2, i g1): £(f1, &) = £(f2, g2)
can be given for fu,(N) D fo,(N) by

V(f282,/181) To0,00(f1, 81) ¢ = lim Tinro(f2, g2) Opy 047 » (5.10)

H—> 0O
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where ¢ € 2o, 01 € f1(N), T = 1(n) = fo(n) and

n—1
brer=2, [ (€xpWiw) D) Seli™ %) ¢ . (5.11)
xEXQlt(fbgl) i=f7'(e1) #x(9) jme]@g

The proof of this statement is again a straightforward application of the arguments
introduced in section IV. Of course the choice of Ti:o(f2, g2) Op,0,r to approximate
the vector V(f2 g2, f1 81) To0,0(f1 £1) @ is very special, but it will be helpful in section
VII, where we shall compare two Hamiltonians H(f1, g1) and H(f2, g2).

VI. Equivalence of (Non Fock) Weyl Systems

It was shown by Fabrey [3] that on the spaces 5 (f..8), ft) =, > 1, glo)
strictly increasing but polynomially bounded, one gets representations of the CCR
which are not unitarily equivalent to a direct sum of Fock representations. Further-
more, he proved that two such representations, given in the form of exponential Weyl
systems, are unitarily equivalent provided the f’s are equal and the g’s are different
in only finitely many points.

A slightly different discussion of the representations of the CCR in the (¢4)s model
is given by Hepp in [6], [7]. He starts from Glimm’s original ‘renormalized’ Hilbert
space Jren, Which in our notation is the closure of (Tyoo(f, g) %0, 0 = 0, f(z) = 27,
g({) = 1) in the (lim(, -) ¢~45)1/2 norm. This space may be too small for the desired
representation of the CCR; e/ is not known to be a unitary operator on ... Hepp
constructs a larger space # D Jren, using the Gelfand Neumark Segal construction
and then obtains a non-Fock representation of the CCR on 4. It is straightforward
that # can be identified with a subspace of .#(f, g) and that Hepp's representation of
the CCR is a subrepresentation of the one constructed by Fabrey. An easy calculation
should show that # = #(f, g) and that the two representations are the same.

It is the purpose of this section to establish the existence of exponential Weyl

systems on all spaces #(f, g) and S (f, g) for (f,g) € Cs, d > 0, and to show that all
of them are unitarily equivalent.

Definition. (Weyl [11], Chaiken [1, def. 1.1]). A Weyl system is a map y — W(y) from
a complex inner product space #" to unitary operators on a complex Hilbert space #
such that

W(y1) W(yz) = exp[271i Im{y1, y2)] W(yr + v2) (6.1)

and for each y e o, W(t y) considered as a function of the real variable ¢ is weakly
continuous at £ = 0. Our inner product space is given by

o = {ye LARY: || 4y ||o < oo}, (6.2)

and the inner product is {y1, y2) = [ y1(k) (2 u(k)) 2 y2(k) dk. We choose & = 2, in
view of a later application of Lemma 3.2. We remark that we also could take any
# > &o/2, but this would require a slight modification of Lemma 3.2., which we do not
want to give here.
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For y e o let

$() = [ ulk)=12 [y(k) a*(k) + y(k) a(k)] dk (6.3)

then by setting W (y) = 0, # = #, the Fock space, we get the Fock representation.
The (non-Fock) representations W(f, g|v), vy € # on the Hilbert space #(f, g)
will be defined by

(TQ19z°°(f’ g) & W({, gl V) Tg000 ([ 8) "I’)T
= lim(Ty,0,0(f, &) ¢, W () Tyie0lf, 8) v) 649, (6.4)

g—> 00

and correspondingly we define the representations V’I}( f.g|y) on s (f, 2)-
The results of this section are summarized in the following two theorems.

Theorem 6.1. Let (f, g) € Cs for some 6> 0. Then W(f, g|y) and W(f,g|v), as
defined in (6.4), are Weyl systems.

Theorem 6.2. Let (fu, gx) € Coy, 0a > 0,00 = 1,2. Then W(f1,g|v), W(f2, g2| ),
W(f, g |y) and W(fe, go | y) are all unitarily equivalent.

Remark. The unitary equivalence will be established using the natural unitary maps
introduced in sections IV and V. First we prove a technical lemma.

Lemma 6.3. Let (f, g) € Cs for some 6 > 0, y € #". Then the limits

Iim( Ty, 0009, (y)™ T@ieéa‘»") e~4a, (6.5)

llm“ (ﬁ(y)m T91930(f’ g) (P ” 8dAa/2 | (66)
exist and (6.6) 1s bounded by

Kmim!)12 || w2y ||z (6.7)

for a constant K which depends on ¢ only. The limit (6.5) defines an operator ¢(f, g | y)™
on 9(f, g). X X

The same statements hold if we replace Ty by Tos and 2(f, g) by 2(f, g), and
we denote the operators thus obtained by gf;(f, g | v)m.

Proof: The existence of the limits (6.5) and (6.6) is proved by the methods of sections
ITI and V. To obtain the bound (6.7) we conclude as in the proof of Theorem 3.1 that

H d()™ Ty 0.0(f.8) @ “2 e~4o gz Z(I ' ]' | S”l”zl | ' I) ) (6.8)

where the sum }'s, , runs over all Wick terms Sy,», in the expansion of

(Towo)m(fs &) ((y)m)* (#()™) (T oie0)m(/, ), whose graph is a skeleton graph.
Using Lemma 3.2 and the Schwarz inequality in the contracted variables be-

tween T*...T ... and (¢(y)™)* (¢(y)™) we obtain
(@] Sl | @l) < Cp Kmtmtm|| u2y|[3mm! ne!)-C+n (6.10)

for some 7 > 0.
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The number of Wick terms Sy,s, is bounded by
Kmtmat+m(n | nal)2m!, (6.11)

and (6.10, 11) combined with (6.8) give the desired bound (6.7). Now Theorem 6.1
is proved as Theorem 2 in [3]. To establish Theorem 6.2 we prove first the unitary

equivalence of W(f1, g1 | y) and W(fs, gz | ¥) for (fa, g) € Cas, 8 > 0 and A(N) 3 fa(N).
We assert that

W(fi, g |y) = U(fage, frg) Wite 2] %) Ulfege, /o 1) (6.12)

with the unitary operator U(f: gz, f1 g1) as defined in (4.1). We use the following
abbreviations:

U=U(foge, frge); Wl gu | ¥) = Wia|9);
fw(fa: gOC) = fgu(m)) V;(fa, gm) — J?(O(), o = 1, 2 .

Choose a sequence of vectors fg(n)oo(l) bn € é(fl, g1) such that

|| W@ |9Y) Towll) @ — Tomoo(l) @nllr =0 as #n—oo. (6.13)
|17 = (- )r=Tlm(-,-) e

We now write
(Tyeo(@ 9. UWA| ) Towal1) @)r — (Teeol2) 9, W(2] 9) U To(1) @)r |
<1im |(Tye(2) 9, UW(L] 9) Tow(1) 9)r — (Teol2) 1, €90 Too(1) ) =42 | (6.14)

o—r 0

+1im |(Tyo(2) 9, W2 9) U Toeoll) 9)r — (To(2) , €690 Too(1) @) e~ ] .

G—> 00

We give an upper bound on the first term on the right of (6.14),

im 5im |(Tye(2) v, U W1 9) TolD) 9)r — (Feo(2) 9, TatmolD) @n) e=4]

#—> 00 G—> 00

+lim lim |(Tya(2) p, (640 Toull) ¢ — Tomall) gn)) e=o| < (6.15)

n—> 00 O—> CO

0 + lim lim || f‘_,,,,(z) v || e~ 402 || eitw) i.a(l) @ — fg(n)a(l) @n || 6462 = 0.,

In the same way we show that the second term on the right of (6.14) is equal to zero,
and thus the left side of (6.14) vanishes for all g, ¢'; @, w € Zo.

As 93( /2, g2), the set of vectors of the form Tyo(2) v, w € Do, and finite linear
combinations of them, is dense in .# (fe, g2), assertion (6.12) is proved.

For all other cases the unitary equivalence is established in the same way if in
(6.12) we use the natural unitary operator which maps the Hilbert space of one Weyl

system onto the Hilbert space of the other. All these unitary operators have been
constructed in sections IV and V. This ends the proof of Theorem 6.2.
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VII. Unitary Equivalence of the Hamiltonians

As we have stated in section V, each (f, g) € Cs can be used to define a Hamil-
tonian H(f, g) as a symmetric operator in J(f, g). In this section, our main result is
the following connection between these Hamiltonians.

Theorem 7.1. For any (fx, ga) € Csy, 02 > 0, o = 1, 2, the closures
H(fo, ) of H(fw 8x) " F(fo ) a=1,2

are unitarily equivalent.

Proof: As in the proof of Theorem 6.2 it is sufficient to prove the assertion for
(fa, 8a) € Ca, 6 > 0, /1(N) 3 fa(N) or f1(N) c fa(N).

Our main ingredient is the following lemma, in which we make use of the approxi-
mation (5.10, 11) in the construction of the unitary operator V(f:gs2,f1£1) on
F(fr, g1) to H(fe, go).

Lemma 7.2. Let (f,, g.) €Cs, 6 >0, o = 1,2 and suppose fL(N) cfe(N)
[or f2(N) c fi(N)]. Let b, w € Do, par €f1(N) N fo(N), paz € R*. Finally let 0y, o,,- be defined
as 1 (5.11). Then with v = t(n) = fa(n) [or T(n) = fi(n)], one has

lim(TQuQ,ga (f2 ’ g2) L Ha(Ttho(fz’ g‘?') 69119127 - TQuQuU(fl ’ gl) ¢)) 8_/10' —0 )

as n—oo. (7.1)
Furthermore
1‘iInS’up” HO' T“20(f2’ g2) e@n@u" ”2 e~o ’ (7’2)

1s bounded uniformly in t, and

limsupl | Hﬂ' TQuE'uﬂ'(fl ’ gl) ¢ “2 e~ 4o (7'3)
is finaite.

We postpone the proof of Lemma 7.2 and prove now Theorem 7.1. Since
H(fs, g2), @ = 1, 2 is symmetric, it is closable. Now (7.1)—(7.3) say that for ¢ € 9o,

Vo1 Toneno @ is in the domain Q(E (f2, g2)). We have written Va1 = V(f2 g2, f1 &1).
(7.1)—(7.3) imply also

H(fe, &) |voomuen = Ve H(f1, 1) Vit -

In other terms,

Vor H(f1, g1) Vai c H(fe, ge) ,

or

H(fi,q) cVa H(fz, g2) Va1

and therefore

H(fi,g) VA H(fe, g) Var. (7 4)
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Exchanging (f1, g1) and (fz, g2) we get

H(fs, g) < Vs H(fy, 1) Vi (7.5)
and combining the two inclusions (7.4), (7.5) we complete the proof of Theorem 7.1.

Proof of Lemma 7.2: We first note that (7.1) and (7.2) do not follow from our earlier
estimates for the following reason : In Tr(fa, g2) 0oy, 0., We approximate Ty, o,,0(f1,81) ¢,
but since T and 6 are of the form expW,’s followed by an S factor, we find that in
Treo(f2, g2) Boy o the Sos of Tres(fa, g2) and the expVy's of 0,0, are not in the
same order as in Ty, o,0(f1, 1) ¢.

Therefore the cancellations of the infinities of Ho on Tir(f2, g2) Oonenr Will not
be as good as they are one on Ty, e,0(f1, g1) ¢. The particular choice of Op,, g, (see
Equation (5.11)) ensures thatl the additional uncancelled Wick terms give rise to
convergent kernels whose contributions go to zero as T — oo. It will be crucial that
the W;’s in the S part of 6,0, are more strongly truncated than the Vs's, V3’s etc.

Wefinally remark that (7.3) isknown from Glimm’sanalysis [4],see also Theorem 5.1.

The calculations leading to (7.1) and (7.2) are long. We present here as an example
only the calculations in connection with the cancellation of the V3s-part of Hs in (7.1),
and of this term only those contributions in which V3, is not contracted with the
expW; part of Ty, 0.0(/f1, 81), Topona(fo, g2) O O, 0,-. In this example, however, the
reader will find all the interesting cancellation and convergence arguments which are
necessary for the complete calculation. For the terms arising from Vs, see also the
calculations in the proof of Theorem 3.1, property ///.

We define V3 as that truncation of V3, in which the maximal magnitude of the
created momenta lies in the interval [g, 5 8

Let 01 = P11, QP2 = P12, let ! —fl (Ql) and let Xgoé) = Xgo'(fa, gcc) oqd = 1 2 (see
also (5.1)); S@(j%, x) = Swe(fx, g« | 7%, x). We start by writing down Ve To,0,0(f1,£1) ¢:

Vso Toyeuo(fr, 81) ¢ :2 -Uexp Wio Z Ve S53(7%, x) ¢ (7.6.1)
xex ) 1 =17%() jkejo
&0
X U expWyis ) Vo) SE(*, %) ¢ (7.6.2)
xEX(l) i=1 x\z) 1kefg

210

~+ terms where V3, is contracted with Wys of exp Wry,q.

%(1)
Our next term is Vs Treo(f2, g2) Op, v Define my by 7 = fu(ma), & =1, 2.
Ve Trvo(f2, g2) O, 0,0 = Z T expWiis 2 Vo) SP(7%, %) Oy, 0,7 (7.7.1)
X(Z) & =ty x(1) jke]r"
+ Tovio(f2, g2) Z llexprw D Vsow) SEA(E, %) b (7.7.2)
xz-:X 1) % § e]
H eXp sziUZ I:V3(072)’ S((‘f’)(jk’ x)] 691 0:T (773)
rex (?) i = my %(1) i*e]

-+ terms where Vs is contracted with Wys of exp Wy,
or with Wy of expWiyis. x(4)
%(9)
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We now need the following parts of Ho T,0,4(f1, g1) ¢ to cancel the infinities in
(7.6.1) and (7.7.2).

-2 U EXPWﬁwZ Vo Seo (7574 %) ¢ (7.8.1)

ax® St kg,
2”‘21"

—Z Uexp Wis Z’ Vi SON(7%1, %) ¢ . (7.8.2)
e EO R

The corresponding quantity from Ho Tres(/f2, £22) 00,z 1S

MZ I ; exp Wiyis 2 Vora SEH2, £) By, 5z (7.9.1)
xEX(Z) 7 =my z(7) § e_] 2
wy—-1
Tevolfar g2) 3, [ ] expWiis 3 Vijyr SEM(1E, %) ¢ . (7.9.2)

We now combine (7.6.«) with (7.8.), (7.7.a) with (7.9.at), « = 1, 2 and find cancella-
tions in ije o We obtain

(7.61) + (7.8.0) = 3 [JexpWyio 37 Vi SO, 2) 6, (7.10)

xeX“L i =1 i)

where Y runs over the set {j*,j: ¥ € J,,, 20 > 72,7 < (J¥_17:) &}

First we observe that ||(7.10)[|2 e-4s is uniformly bounded in ¢. This follows by
a standard argument by Glimm [4]: one has to use the fact that in 3", 7 < (X¥_, 7¢)%.
Furthermore as 2/ = 12 = (7(n))? = ( fa(n))2, all terms in (7.10) contain at least one
momentum larger than (1:(%))2. Thus by Remark 3.1, inequality (3.14), the contribu-
tion of (7.10) to (7.1) is O(z(n) ) for some 5 > 0. Next we compute

(76.2) +(7.82) =3 []expWyis 3 Viey Sk (i*, %) ¢ (7.11.1)
reX (9137 t=1 %03) jks-]gz
+ Z 1 f expWpis D" Vsm Sa(i®, %) ¢, (7.11.2)
rex (D) i=17%(0)

0,0

and Y'" runs now over the set {j*, j: 7% € J,,; 02 <7 < (X¥_17i)¢}. The sum (7.7.1)
-+ (7.9.1) contributes 0(z(x) 1) to (7.1) by the same argument as above.

(772) - (792) t*o' fg, g2 2 l[ exp Wflw y Vg(oez) Sﬂ-g(j X) ¢ (7121)

x€X 1) =13 i EJQ

Troolfe, g2) 3) ]]eXprw D Ve SEA(R, %) . (7.12.2)

reX | (1) 1=1 %)
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The terms (7.11.1, 2), (7.12.1, 2) give finite contributions to (7.1), but they are
not necessarily small. Nevertheless we assert that the contributions of (7.11.1)—
(7.12.1) and of (7.11.2) —(7.12.2) go to zero as # approaches infinity. For a proof
we note that those Wick terms in (7.11.1, 2), (7.12.1, 2) which have large momenta
(> (n)) in the skeleton contribute individually O(z(%)=") to (7.1). To Wick terms in
(7.11.1) and (7.11.2) who have only small momenta in the skeleton there is always a
term in (7.12.1) and (7.12.2) respectively with exactly the same skeleton (and the
same skeleton part of the numerical kernel). Thus in the difference of two such
corresponding terms we have to consider the difference in the high momentum part
of the A-factors only. Differences of this kind have been discussed in the proof of
Lemma 4.2. It has been shown there that these expressions go to zero as #n goes to
infinity.

The remaining term is (7.7.3). There are no other terms for cancellation. Again
we observe first that the contribution of a single Wick term in (7.7.3) to (7.1) is finite
(for all ¢ < o0), because with V3. there is always at least one other vertex in the

_skeleton graph (because ot the commutator), and creating at least one momentum
larger in magnitude than all momenta created by V3(02). Then by ‘power gymnastics’
[see Equation (7.14) below] the assertion follows. Secondly, we have to make sure that
the summation over all contributions of (7.7.3) to (7.1) converges uniformly in ¢. This
is shown with the arguments we have used in the proof of Theorem 3.1, property /.

Finally, as each skeleton occurring in the contribution of (7.7.3) to (7.1) con-
tains at least one line with momentum larger in magnitude than 72, inequality (3.14)
ensures that the contribution of (7.7.3) is in fact O(7(n)~7). This concludes the dis-
cussion of the terms (7.6 — 7.9). For all other contributions to (7.1) or to (7.2) we can
use the same arguments, with one exception:

‘The exceptional term appears in the discussion of Vis Tro(fe, g2) Oo,0,7, Where
one will get expressions containing commutators:

2 Wia, SE*, )] - (7.13)
Fe Ty
They show up in terms analogous to (7.7.3). It is for these expressions we have made
the very special choice of Trrteo Og,0,- in (5.10, 11). By definition V4r creates only
momenta smaller in magnitude than 7, while there is always at least one vertex in
ke SB (4%, x) which in (7.13) is contracted with V. and which creates a mo-

mentum larger in magnitude than 7%/2 = 72¢ (see definition of J,¢ in section V).
Consider for example

[V a00), Z ' Vije] = @z .
21> 12

The expression || Q= ¢o ||2 has as graph
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The momenta belonging to the lines 1-5 have absolute value smaller than 7,
while one of the lines 6, 7, 8 has momentum % with | 2| > 72. Thus we can multiply
the numerical kernel of QF Q. by

ke
T

>1 (7.14)

(‘power gymnastics’) and then convince ourselves (and possibly the reader) by power
counting that || Qx ¢ ||? is finite and in fact goes to zero for T going to infinity.
This ends our discussion of (7.1)—(7.3).
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