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On the Uniqueness of the Hamiltonian and of
the Representation of the CCR for the Quartic

Boson Interaction in Three Dimensions

by Jean-Pierre Eckmann1)2)

Brandeis University, Waltham, Mass.,

and Konrad Osterwalder3)

Courant Institute of Mathematical Sciences, New York University, New York

(4. V. 71)

Abstract. Glimm has constructed a Hamiltonian for the (: <f>i :)2+i interaction with space
cutoff, using a truncated version of the formal wave operator in order to define a domain for this
Hamiltonian. For a wide class of such truncations we obtain unitarily equivalent representations
of the canonical commutation relations in the sense of Fabrey. We establish unitary equivalence
of the closures of the Hamiltonians obtained for many different truncations.

I. Introduction

In the constructive approach to quantum field theory one often encounters
complicated limiting procedures involving the choice of some technical parameters.
It is natural to ask to what extent the final results depend on such quantities. In [4]
Glimm constructed a Hamiltonian for a quartic boson selfinteraction with space
cutoff in three dimensional space time. He used a truncated version of the formal wave
operator in order to define a domain for this Hamiltonian. In this paper we show that
for a wide class of such truncations one obtains unitarily equivalent representations
of the canonical commutation relations (CCR) in the sense of Fabrey [3] and even
unitary equivalence of the Hamiltonians. It seems that this class of truncations
exhausts almost all the possibilities for which Glimm's construction goes through.

1) Supported by the Office of Naval Research, N00014-70-SC-0418.
2) On leave from the University of Geneva, Switzerland.
3) Supported by the National Science Foundation, Grant GP-24003.
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In order to deal rigorously with infinite quantities one introduces an approximate
Hamiltonian Ha with a momentum cutoff o:

Ha Ho + f : # :(x) h(x) d2x + M0 + Ea, (1.1)

where Ho is the free Hamiltonian, <f>a(x) is the cutoff free boson field at time zero:

cha(x) f e** /j(k)-V2(a*(- k) -+ a(k)) d2k

1*1 <o

ii(k) (m2 + k2)V2 m > 0

The expressions M„ and Ea are mass and vacuum energy renormalization terms
respectively and will be given in section II.

The space cutoff function h(x) will be held fixed throughout this paper and is

supposed to be smooth and of compact support.
By Vja, j 0, 1, 4, we denote that part of the interaction term

J: r\>% :(x) h(x) d2x which creates exactly j particles.
Our procedure is to start with a simplified Hamiltonian [5], [6]

Ha Ho + Via + Voa + counterterms, (1.2)

and we shall see later that it exhibits already all the interesting properties of the full
Hamiltonian (1.1).

In section III we define a large family of truncations Ta(f, g) of the formal wave
operator that belongs to (1.2), the truncation depending on two parameters / and g.

The operators Ta(f, g) are called 'dressing transformations'. Following the ideas of

Glimm [4] we show that each of these dressing transformations defines a limit H(f, g)

of the simplified Hamiltonian as o goes to infinity, which is a densely defined
symmetric operator in a Hilbert space J(f, g) disjoint from the Fock space. Furthermore
each of these spaces J(f, g) is a representation space for an non-Fock representation
W(f, g | y) of the Weyl relations, W(f, g \ y) being a certain limit of e^y\ with y an
element of a suitably chosen test function space (section VI and [3]). In section IV we

construct a natural unitary mapping from J(f,g) to J(f'', g'), for different (/, g) and
(/', g'). This mapping is called natural because it is constructed as a limit of the
identity map in Fock space. We show that it yields the unitary equivalence of the

representations W(f, g \ y) and W(f, g' | y) of the Weyl relations.
In section V the construction of section III is repeated for the full Hamiltonian

Ha, equation (1.1), i.e. we construct dressing transformations Ta(f,g) leading to
limiting Hamiltonians H(f, g), densely defined in a Hilbert space J(f, g), which is a
representation space for a non-Fock representation W(f, g \ y) of the Weyl relations.
Again by natural unitary mappings we prove the unitary equivalence of W(f, g \ y)
and W(f, g\y). This is an extension of results of Fabrey [3].
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In section VII we use the natural unitary mappings to show that the closures of
H(f, g) and of H(f, g') are unitarily equivalent for different (/, g) and (/', g'). These
results can be interpreted in the following way :

All Hilbert spaces J(f, g) and J(f, g) may be identified, using the natural unitary
mappings. We call this space Jren ¦ This involves the identification of all the representations

W(f, g | y) and W(f, g \ y) with a representation W(y) in Jren- Furthermore we
can define a Hamiltonian H with domain u ®(H(f, g)) c Jren, ®(H(J, g)) being the

(/,«)
domain of H(f, g), now a dense set in Jren. We set H |_^(H(/,S)) H(f, g).

Thus we end up with a Hilbert space Jren, a representation W(y) of the Weyl
relations and a densely defined Hamiltonian H, and the truncation parameters have
been eliminated. Furthermore we see that we can obtain J'ren and W(y) already with
the very simple dressing transformation Ta(f, g) for any (/, g). It would be interesting
to find more abstract criteria which characterize Jren and W(y). If we want to
construct in J'ren a dense domain for the Hamiltonian H, then a more complicated
dressing transformation Ta(f, g) is needed. Now we could go on, constructing dense
domains for powers of H using more and more sophisticated dressing transformations.
What we would like best is a dressing transformation which yields a dense set of
analytic vectors for H, to prove that the closure of H is a selfadjoint operator. In
fact, as recent results of Masson and McClary [8], [10] show, it would even be sufficient

to construct a dense set of semianalytic vectors for H. Then if H is shown to be

semibounded, the essential selfadjointness of H is a consequence.

II. Notation and Definitions

Let F denote the Fock space of free bosons with mass m; a(k) and a*(k) the
annihilation and creation operators for a particle with momentum k, respectively.
An operator of the form

Wn
r m n

J~Ja*(kt) dk(TJa(k) dU wmn(ki,. km, h, In) (2.1)
J i=l » 1

is called a Wick monomial (with numerical kernel wmn). dk stands for d2k. In modifying

Friedrich's perturbation theory, Glimm has introduced the operation r,
which associates to a Wick monomial Wmn the Wick monomial r(Wmn). For m > 0,

r(Wm„) is defined by

r m n m

r(Wmn) l~Ja*(ki) dkt]~Ta(lt) dU (Zl1^))'1 wmn(ki, km, h, ...,/»)
J 1=1 i 1 i 1

We also define | Wmn | to be the Wick monomial (2.1), but wmn(ki, ln) is
replaced by its absolute value | wmn \ (ki, /»).

Let Wmn and Wm'nj be two Wick monomials as in (2.1) with numerical kernels
wmn and wln'n1 which are symmetric functions of their creation and annihilation
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variables separately. According to Wick's theorem the product Wmn Wm'n' can be

expanded as follows.

min(n,m') I m.\ I fy,' \ C rn m'

WmnW'm.ni=Z \r\ \ ]Ja*(ki) dkiYJa*(k'i) dk'i
r=0 \r / \ r I J » 1 i r+l

X fja(k) dU TJa(l'i) dl't JJô(k'i - U) dk'i dk
i — r+1 ~i l 1 1

¦Wmn(kl, km, h, /„) w'mini(k'x, km', /i, ln) ¦ (2.2)

This expansion is the Wick expansion, and a single term in the sum J™^,™') on
the right of (2.2), but without the factor (r) r\ is called a Wick term, occurring
in Wmn Wm'w ¦ The rth term in this sum is denoted by Wmn Wm'n', it is a sum of
(") r! identical Wick terms. We also define '——'

yVmn rr m'n' /, rVmn Vv mn' Wmn Wm'n' ¦ rVmn ** m'ri '• •

I f>0 I 1

r

Inductively we extend these definitions to products of more than to Wick monomials.

Wick monomials and Wick terms are usually represented as graphs. A Wick
monomial Wmn is drawn as

m lines i lines

Each Wick term in (2.2) is represented by the graph of Wmn to the left of the graph of
W^,n.. Those lines whose variables have been identified byJJ\ =iô(k't — li) are connected.

They are called internal lines, the other lines are called external lines. Let

W r r. $ t

FJa*(ki) dkiYJa(k) dkYJdpi w(ki, ,kr,l_
J i 1 i 1 i l

¦ Is pl, ¦

be a Wick term. Then we define a truncation of W by replacing w(ki, pi) by
w(ki, ,pi) ¦ %(ki, pi), x being a characteristic function.

A truncation of a sum of Wick terms is defined by truncating each Wick term
separately. We now turn to the model under consideration. The expression J : <£4 :(x)
X h(x) dx has an expansion

4 4 /»

Z Via ^Z a*(ki) ¦ ¦ ¦ a*(ki) a(kt+i) a(ki) via(ki, ki) dki. dk4 (2.2)
j=0 i 0 J
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Here h is in the space Si of Schwartz and

Vla(kl, ki)

0)4\ 4

U^kj)-^2 h(ki -\ Yki- ki+i ki)
)' 0

if \k}\ <o for / 1, 2, 3, 4

0 otherwise.

By
~

we denote the Fourier transform; fi(k) (k2 + m2)V2.
We now give the explicit definitions of the two Hamiltonians which we shall

consider later.

Ha=Ho+ZVia+Ma+Ea,
» 0

Ha=H0 + Voa + Via + Ma + Ea

Ma, Ea, Ma, Ea are the counterterms, whose definition is motivated by perturbation
theory, see e.g. [6].

The mass counterterms are defined by

Ma 2ma a*(ki) a(ki) fi(ki)~^2 fi(k2)~V2 (h*h) (ki - k2) dki dk2

\ki\<o

Ma ma f : (a*(ki) + a(- ki)) (a*(k2) + a(- ki)) : fr(ki)^2 fi(k2)-V2

\>>i\<o

X (h * h) (ki + k2) dki dk2

m° ^\ 17 4tt * fa +P2+ P3) (Z rip*))-1 ¦
J « i ft-ypi) t i

4a/3

The scalar counterterms are given by

Ea (cf>o,Voar(Via)<po),

Ea=%~ (F(Via) <fa, V2ar(V4a) d>o)

Here cj>o denotes the Fock vacuum.
We shall also use the notation

Aa \\ r(Via) h ||2 (r(Via))* F(V4a)
I 1

The fact that Aa O(lncr), that is the divergence of Aa as o -> oo, is the reason for
a change to a non-Fock representation of the CCR.

The graph representing Aa is ^^ A graph which does not contain ^ß as

a subgraph is called a skeleton graph.
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We shall often use the following standard domain Bo in Fock space. Bo is defined
to be the set of all vectors in Fock space which have a finite number of particles
(i.e. the «-particle component equals zero for « large) and which have compact
support in momentum space.

III. Dressing Transformations for a Simplified Hamiltonian

As was shown [5], [6], the ultraviolet divergencies of Ha are formally compensated
on the range of a formal dressing transformation

Tformai:a exp— r(Via) expWa (3.1)

For a rigorous construction of a domain for Ha as a -> oo we use a truncated version
of (3.1). The aim of this section is to define a class of such truncations, each of them

leading to the definition of a limiting Hamiltonian Ha.
Let f:N-^R+ be a strictly increasing, nonnegative function on the natural

numbers N, and define f(N) {/(.) ;ieN}. Let g: N -> Nkj {0} be a map of the
natural numbers into the nonnegative integers.

For q ef(N), a > 0 and/-1 the inverse function of/,

TQo(fg)=YJ exVW„a, (3.2)

where

«

exp* '^xkjk\ for « > 0
« * o

Furthermore

W,fja r(V4fja) f a*(ki) a*(ki) (Zfi(ki))-i v4fja(ki ...ki)dh... dh,
J » i

V4a(ki, ki) if max \ki\e [/(/),/(;' + 1))

V4fja(kl, ¦ ¦ ¦ ki)
0 otherwise

In the following we refer to the momentum ki, \ h \ e [/(/),/(/ + 1)), as the 'maximal
momentum belonging to Wfja'.

Note that Tna(f, g) is that part of Tformai,c which contains at most g(j) factors

Wßo. One can easily verify that Tea(f, g) is a truncation of Tf0rmai, a in the sense of the
definition of section II. Namely, for a > /(1) we have — r(V4a) — r(V4;(ij) +¦
2JjL i Wfja and the W/ja's commute one with the other.

By Tpan(f, g) we denote the «th order contribution to Tea(f, g). The purpose of this

chapter is to establish sufficient conditions on the functions / and g such that Tga(f, g)

is a dressing transformation for Ha.
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Definition. For any ô > 0 we say that / and g satisfy condition C0, or (/, g) e C„,
if there is a constant io > 0 such that for all i > io :

CI. f(i) > »*»,

C2. g«</W\
C3. fl3 ln/(i) < g(i),

QA. f(i + l)<f(iT<,
with «i, a4 satisfying

2(1 + A)
Al. «i >

A2. a2 <

Bo

ô eo

A3. a3 >
2(1 + Ô)

'

A4, ai > 1,

A5. «4< 1 +min{l, eoA-1e-56(1+'')}.

The positive constants eo and X are fixed and given by the model. They will be

specified below.
The main result of this section is :

Theorem 3.1. Let (J, g) satisfy Co for some ô > 0 and suppose q, q' ef(N). Then

with Tga Toa(f, g) as defined in (3.2) and cf>, xp s B0 the following holds.

I. lim(reo^, Tn-axp) e~A° (Eeoo<£, Tgicx>xp)r (3.3)
CT—> OO

exists.

II. The expression (3.3) defines a positive definite scalar product (•, -)r on

<f0oo(/, g)<j>:d>eBo,o ef(N)y §(/, g) (3.4)

(y denoting the linear hull. B(f,g) together with (¦, -)r is a prehilbert space, whose

completion J(f, g) is a separable Hilbert space.

III. || HaTga cf>\\2 e~Ao is uniformly bounded in 0 < o < oo, and

lim (Tqo rf>, Ho Te'o xp) e~Aa exists and defines a symmetric operator H(f, g) with domain
a—> oo

kf, g) cj(f, g).

Proof: We have to verify /-///. The proof follows step by step Glimm's procedure [4].
We sketch only the most important estimates which are needed. Property / is

a consequence of conditions CI and C2 on / and g, which guarantee that the truncation

omits enough terms from the divergent series of Tf0rmai,o to make the remaining
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series convergent. Thus the main tool to prove property / is a rr-independent upper
bound on

\{Tea(f,g)4>,T0.a(f,g)xp)e-A°\. (3.5)

Glimm's analysis shows that (3.5) is majorized by

272>! «o-1 (I HI s.« IM), (3-6)
nim Snm

where the sum £snm runs over all Wick terms Snm in the expansion of « m TQon(f, g) *

T0'om(f, g) whose graph is a skeleton graph.
By Snm(f>ext,ptnt) we denote the numerical kernel of Snm', pext(ptnt) stands for

all the variables belonging to external (internal) lines of the graph of Snm ¦

Lemma 3.2. (Glimm [4, Theorem 2.2.1]; [2], [9]). There exist positive constants
so and K, independent of q, a, f or g, such that for all e < e'o,

\\j[Jft(pi)-2 + el2 I TJfl(piY | Snm(pext, pint) \ ipint \\z,ext < K«+™ (3.7)
Pi e Pext J Pi's Pint

By || • 112, «** we denote the L2 norm with respect to the momenta pi e pext-

Remark. The constant eo used in the definition of condition C0 is chosen to be
the maximal possible value of e_; eo 1/6, by inspection.

Suppose r e N has been chosen such that for all s _> r the s-particle components
of <f> and xp respectively are zero. Then for fixed « and m the number of Wick terms
Snm contributing to (3.6) is bounded by

Z ^,(4W)(4W)((4«-si)!(4w-s2)!)1/2<24C + '»)((4«)!(4w)!)i/2. (3.8)

Note that each term in the sum on the left-hand side of (3.8) counts the number of
Wick terms which annihilate (create) Si (si) particles. Furthermore in (3.8) we have
used

MO
By the Schwarz inequaHty we get as bound on (3.6)

C<t,,ieZ2Hn+ m) ((4 M)! (4 m' !)1/2 (w! m!)_1
n,m

X max H/Y/^*)-2 I Snmipext, pint) \ dpint Wî.ext, (3.9)
$nm Pi€Pext J

where C^,, is a constant depending on <f> and xp only. The definition of the truncation
of Tfonnai.o implies that Tea(f, g) contains Wfja at most g(j) times or, in other words,

that Toa(f, g) contains at most Ç(ï) __7f"i. g(j) maximal momenta with absolute
value smaller than f(i).
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Let t(pi, pin) be the numerical kernel of Tgan(f, g) ', pi, ¦ ¦ ¦ pn the maximal
momenta, and suppose that \ pi\ < | p2 | < • • • < | pn | ¦ Then the above statement
says that

\pm + 1\>f(i). (3.10)

Now we use the condition C0 : for i large,

f(*' +1) =Zs(i) <Zisi) +Zm« byC2.
i l j l i «o + l
< ./(.)*¦ < /(*)«.+ !/«• by CI, (3.11)

<f(i)Sl12, for some ei < eo, by Al and A2

Inequalities (3.10, 11) give, for large i,

|£iW + ih/2>/«e-'2>£(; + l), or

I pn |El/2 > « for large «

Finally we choose amj>0 such that ei(l + rj) e < e0 in order to get

| pn |£/2 > «(1 + "' for large « (3.12)

Using Lemma 3.2 and (3.12) we finally get

max \\YJfi(pi)-2 | Snm(pext, pint) | dpmt \\2,ext < max \\fJfi(pi)-2+ e/2

Snm Pi^Pext J snm Pi^Pext

X ]Jfl(ptY\Snm(pext,plnt)\dPint\\2,exl(n\m^-t-X + ^ Ki^+rn (3.13)
J Pit Pint

<Kn+m(n\m\)-(-1 + rii, for large «, «j,

and thus by modifying K, for all «, m > 0. Thus (3.9) converges uniformly in q and <r

and is therefore the desired finite bound for (3.5).
Remark 3.1. In some later calculations we will know that at least one of the

momenta in snm(pext, pint) is restricted to absolute values larger than some given
number x. Then we can improve (3.13) :

max WJJfl(pi)-2 | Snm(pext, pint) \ dpmt ||a, ext
snm Pi^ Pext J

<Kn+m(n\ m!)-<! + •)/*) T-(«i/4) for all «, m > 0 (3.14)

Property //, the positive definiteness of the 'renormalized' scalar product, is essentially
a consequence of conditions C3 and C4 on / and g. They guarantee that the truncation
of Tformai.a is not too strong, whereas CI and C2 were designed to make the truncation
strong enough.
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Lemma 3.3. Let Afja || Wfja cf>01|2 4! || wfj„ ||2.

Then there exists a constant X, independent of f, j and a such that

Ai +1)
Afja < X Hi ;

/(/)

The proof of this lemma is straightforward. The above constant X is used in the
formulation of condition C0.

Lemma 3.4. // (/, g) satisfy condition Cd for some ô > 0, then

lim lim TJexpAfjaexp — Afja l. (3.15)
;0-»-ooCT->oo f>t, g(;')

Proof: If we set bj expAfja exp—Afja, then
e(i)

0<&4<1 and (1 -bj)< .(^)8'''
+ '

(3.16)
(g(l) + 1)!

Thus

i > h i > io

^ (Afjo)ëii) + i
^Z LMxüi' using (3.16)

<

,fiAs(i) + i)\
e X\lnf(j + 1)-Inf(j)] y(i)+i

>h \ g<3)

by Lemma 3.3 and by Stirling's formula

e(i) +1
<z («4 — 1)

«3
by C3 and C4

i > u

<, 27 e~m + 1]. bv A5 [see inequality (3.30) below]
i > n

< Z e-ai"'lai =£j-«i«», by CI and C3
i > u i > u

< oo, for any /o > 1 by Al and A3.

This bound combined with the fact that limAfja exists establishes Lemma 3.4.
a—*oo

The remainder of the proof of property // follows from Glimm's arguments, see

[4, p. 35] or [3].
The essential tools in the proof of property /// are bounds, uniform in a, on

IKffo + E^f^g)^!2^ (3.17)

and on

11 (V0a +Ma+Ea) foa(f, g) <j> \\2 C~A a (3.18)
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We only indicate how one gets the bound on (3.17). The methods for the bound on
(3.18) are identical. For the remaining steps in the proof of /// we refer again to [4].
Using the definitions (3.2) we obtain for q ef(N), q < a,

V4a V4o +2^ V4fja,

and

\\(Ho + Via) fea(f, g)<p\\ e-W < || fnaif, g)H0<p\\ e~^2

+ \\V4efea(f,g)cf>\\e-Aol2 (3.19)

+Z\\V*fi°~£)TL U expWWH*-^.
7 >/-'(_) g\tl- i >/'(") «(»)

» #>

The first two terms on the right-hand side of (3.19) are bounded uniformly in a, by
the arguments used in the proof of property /. The remaining terms come from the

sum of [Ho,Tga(f, g)] d> and __7;>/-'(e) VAfja TWl/', g) cf> and have to be estimated.
First we observe that due to the definition (3.2) the following inequality holds:

| V4fja | < const/(/ + 1) | F V4fja I

constfl/ + 1) | Wfja | (3.20)

with a constant that does not depend on /, / or a. Therefore it suffices to look for a
bound on

(g(i) }Y2 (Ai + l))2 II I Wfja |«W + i/Jexp I Wfla I «A ||2 e-*o (3.21)
» # i g(»)

and to show that 27; K (3.21) converges.
As in the proof of property / we find that (3.21) is majorized by

g(fl + 1 / ali) + 1 \ 2

(8(3) !)"2 (AJ + 1))2Z Z^ »O"1
n,m * 0 \ l I

X (g(i) +l-t)\Afja) + ^ e-Aiio£ (I d> I I Snmt \ \ <f> |) (3.22)
Snmt

where the sum £snmt runs over all Wick terms Snmt in the expansion of

»! m\ (JJ exp | Wfja\)tth order \ W*ja |( | Wfja |( (JJexp\ Wfla |)mth order
»V> g(i) *¥=i e(i)

whose graph is a skeleton graph. As in (3.8) we find that the number of such Wick
terms is smaller than

24(„+„ + 2() ^4(M _j_^i i4im +/))!)i/2. (3.23)
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Using Lemma 3.1 and inequality (3.14) we get with the aid of (3.23) the following
bound on (3.22) :

„ e(i) + 1 / gU\ + l \ 2

cMi) !)~2 (/(/ +1))227 Z (n] »O-1 (ed) +1 - 0!
n,m t 0 \ » I

X 4£) + 1-' e-AH° K{n + m+2V ((4(« + t))\ (A(m + t))^'2 (3.24)

X ((« +t)\(m + ty)-0- + n)f(jytn

for some rj > 0 and a constant C* that depends on cf> only. Here and in the sequel K
denotes a finite constant which, however, may change its value from one inequality
to the other.

We use the inequality

(a +b)\ <2a+»a\b\ (3.25)

to decouple « and m from t :

(4(m +t))\ < K*(nl)* K*(tl)*

for some fixed K.
After the summation over « and m which obviously converges, we are left with

the following bound on (3.24) :

sM + i AgW + i-t
const(g(/) + I)2 (f(j + 1))2£K*(f(j))-*> - A 1 _ jrj e-Alia (3.26)

By C2 and C4,

(g(i) + I)2 (/(/ + I))2 <: 2/(/)2"«<1 + "«) for large j (3.27)

Let to be the smallest integer such that /(j)2"«'1 + a')-t°<i < const/-3. Such a fo always
exists due to CI. Then (3.26) is majorized by

h Ag(i) + i-i e(i) + i
constZf^ya.d + a,) -r^- — + constj'3 y (Kfd)-")'-^ (3.28)

<=o (g(n +i — i)i i=lr+i
The first term in (3.28) is smaUer than

const T** + «*.*0 (^(ln/0- + l)-ln/Q-))y(>»
+-

« I g(/) +1 - < /
by C3, Lemma 3.3 and Stirling's formula, and thus smaller than

t, i a(i) \e(i)
const }7 (e*JA + ¦*.- e A(«4 - 1) a3^ + 1-t{ —|^— (3.29)

< o \ fiW — 'o /
by C3 and C4. By A5, A3, A2, and using the value eo 1/6 of Lemma 3.2, we get

e28.(i + «J«,,eA(a4 - 1) a,1 < e2-2[i + ^./(2(i + <s))]2(i+«)/%eA(a4 - 1)

< e54'1 +1» X eo i(«4 - 1) < e-2. (3.30)
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Therefore (3.29) can be bounded by

co-nstZe~2m+1-'l < const e~2^ < const (Ai))'2"* < const/-2"'"» <co:ist/-l2 + s>,

0

for some e > 0, by C3, CI, Al and A3.

As the second term in (3.28) is obviously bounded by const/-3 for large / we finally
conclude that (3.28) and thus (3.21) is bounded by const/-*2 + e>, too. The convergence
of __7; K (3.21) is then obvious and estabHshes the uniform boundedness of (3.17). This
concludes the proof of property /// and thus the proof of Theorem 3.1.

IV. Natural unitary mappings

In the preceding section we showed that any (J, g) e Ca define a Hilbert space

J(f, g) and a limiting Hamiltonian H(f, g) which is densely defined in J (J, g). Now
we proceed to construct unitary operators which map one of these Hilbert spaces
onto another (Theorem 4.4). We call them 'natural' because they emerge in a natural
way from the identity map in Fock space. They also give the connection between the
different limiting Hamiltonians as will be seen in section VII.

Let (fa, ga) e C0, a 1, 2 for some ô > 0. Then we define the mapping
u U(f2g2,figi) from ê(fi,gi)cJ(fi,gi) into J(f2, gi) by

U Teoo(fi ,gi)cf> lim TMn) oo(/2, gi) fefM(fi, gi) cf> (4.1)
n—*oo

for cf> e Bo, q efi(N). Note that TQf^n)(fi, gi) cf> 8m e B0 whenever cpe B0 and
« < oo. We shall prove that the closure of U, which we denote again by U, is unitary,
using the following

Lemma 4.1. (Fabrey [3], Lemma 4.2). Suppose that for each cf> e Bo and each

Qi efi(N), Q2 ef2(N) there exist dm and d2n e B0 and Xi(n), Xzin) > 0 such that

lim lim 11 Tq,a(fi,gi)4- TTlin)a(f2, ga) 02» 112 e~A° 0 (4.2)
n—*- oo a—y oo

and

lim lim 11 f,,_(/_, ga) <f> - f.H{n)a(fi, gi) 6m 112 e~Ao 0 (4.3)
n—> oo a—? oo

Then the closure of [/(/_ g2,/i gi) as defined in (4.1) is unitary.
The following lemma establishes the assumptions of Lemma 4.1 for a special case.

Lemma 4.2. Let (/«, ga) e C0, a 1, 2; ô > 0, and suppose that fi(N) of%(N). Then

for every d> e B0, and each q« sfa(N) the equations (4.2) and (4.3) hold if we set

Ti(«) t2(«) /_(«) (4.4)

dm TeMn)(f2, gi) (f>;02n= TSlMn)(fi,gi) <f> ¦ (4.5)
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Proof: We will prove (4.3) only; the proof of (4.2) is analogous. We have to show that
for any e > 0 there is an N(e), such that for all « > N(e), uniformly in o

1177 expWf^acp-lJ exp Wfja n expWfija<r\\2e-Ao
/>/f(e) «id i>lr'lflm Si(j) t-/T(e) eM

(4.6)

is smaUer than e.

By [ ]„ we denote the 'vth order term'. With M M(o)= max {/1 Wfja # 0},
wfajc Waj and /(«) =fx-i(f2(n)) we have

£_• =J~[exp W21 —]~J exp Wii
i>» gill) »>/(«) «i(»)

//(;+i)-i \ //(j + i)-i \
=iJexP _TW" -i7 17 expTfn

» > » gitf) \ » - /tf) / ]>n \ i =J(j) g,(i) /
f M r //(/+i)_i v-, M r/(j + l)-l

2" 77 exP ZWA -12 iTexpPEH
»•» W>0 \j n Lg,(i) \i =/(;') / J »¦,¦ )' re Li=j())ft(i)

(4.7)

It is now important to note that for
vj < y(j) min{g2(/), gi(/(/)) gi(/(/ + 1) - 1)} one has

7(;-M)-l -,

exp ZWlt
Lg.(î') i =J{j)

7() + l)-l
YJ exp Wu (4.8)

Therefore in each nonvanishing term ot the expression (4.7) for La there is at least one
/ > « with n > y(j).

Now the expression (4.6) can be rewritten:

(4.6) || La Yl exp W2jcp ||2 e-A°
7=/i-'(e) «*(;')

(<A- T*fM,g*) L* La TeMn)(f2, gi) <f) e-A* h+l2. (4.9)

We describe the decomposition Ii + l2, which is obtained by partitioning the space
of variables of the numerical kernel of each Wick term of T* L* L T in the following
way. In lx, the momenta larger than/2(«) occur in the /l-components of the Wick
term only ; the complementary region appHes for 12 ¦ Note that in Ii, all contributions
from La occur in the /l-components only.

By the methods of the previous section, we bound l2 by

Zs\<r\,\S\\<l>\),
s

where £s runs °ver aU Wick terms S in the Wick expansion of T* L* La T whose

graph is a skeleton graph and whose kernel s(qi, qi) vanishes unless at least one
of the variables has absolute value larger than/_(«). Using Remark 3.1 and inequahty
(3.14) we conclude that there is some r\ > 0, such that uniformly in a

12 < const/2 (n)~i (4.10)
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In order to estimate h we have to use the representation (4.7) of Lj and equation
(4.8), i.e. we have to take advantage of cancellations in La. We can write

Ji Il TeMn)(f2, gi) </> ||2 e-A/M ¦ Cn (4.11)

and || Tef^„)(f2, gi) <f>\\2 e~AMn) is uniformly bounded in « by Theorem 3.1
(Property /). Furthermore

Cn e-lAo-AJM\4>o, L* La <po)a (4.12)

where the subscript A indicates that one has to take only those contributions to Lf La
whose graph consists of /1-components only, by construction of Ti.

We certainly increase the value of (4.12) if we replace La by

M M
2 £ (exp\Wy\- exp| Wv\) [Jexp\W2i\, (4.13)
j n y(j) i — n

i*i
which means that with A2} Afja,

M M
Cn < 4 e-tA°-AUni2J (expA,- — expA2j) TJexpA2t

i n y(j) i n
i*i

M oo IA„,\rij) + 1

AX (exp - Av) (expAv - exVAv) < A% ,,!',,. (4.14)
i=n vffl /=» (yd) +1)!

By definition, we have

Yd) min{g2(/), gi(/(/)), gi(/(/ + 1) - 1)} and thus

y(j) > min{a3>2 ln/2(/), a3,i ln/i(/(/))}

for some a3yX, a3>2 > - by C3
2(1 + o)

min{a3|i, a3t2} In f2(j), by the definition of / (4-15)

Inequality (4.15) and the assumption (/«, gx) e Ca, a 1, 2, ensure that (/2,7)
satisfy conditions Cs with a possible exception of C2. But as was shown in the proof
of Lemma 3.4, CI, C3, C4 and A1-A5 are sufficient to guarantee that for fixed « the
sum in (4.14) is finite and thus goes to zero as « tends to infinity.

Therefore Ii + I2 (4.6) tends to zero as « goes to infinity, uniformly in o.
This ends the proof of (4.3) and thus of Lemma 4.2.

A next step will be to eliminate the assumption fi(N) 3/2(N) in Lemma 4.2.
Let (/«, g«) e Co, a 1, 2 for some ô > 0. Then we define (uniquely) a function /:
N ->R+, strictly increasing, such that/(A7) fi(N) \jf2(N). Vet for a 1, 2,

/a(t) min{/|/a(/) >f(i)}. We define g: N ^N \j{0} by

g(i) min{gi(/i(t)), g2(J2(i))} (4.16)

We write (/,g) ^((/ig!), (/_g_)).
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Lemma 4.3. Let (/<_, gi) e C», a 1, 2, ô > 0. Then (/, g) <f> ((/i gi), (/2 gi)) satisfy
condition CD, too.

We postpone the proof of Lemma 4.3 and discuss its consequences. It follows
immediately from the definition of (/, g) that/1 (A") cf(N) and f2(N) cf(N). Therefore
by Lemma 4.3 we can apply the Lemmata 4.1 and 4.2 to conclude that

U(f2 g2,/1 gi) [/(/_ g2,/g) U(fg, fi gi) (4.17)

is a unitary map from J(fi, gi) to J(J2, gi) ¦ Finally, we consider the most general
case and we suppose that (/a, ga) e Cö_, a 1, 2, for some ôi, Ö2 > 0. Note that for
Mi) 21, goö') i2, we get (/0, go) e Ct for all Ô > 0. Let (/«o, g«o) ^((/« ga), (/0 go)),

a 1, 2. Then the equality

U(f2g2,flgl)

c7(/a g2, /20 gao) C/(/.o g2o, /0 go) U(fo go, /10 gio) U(fw gio, /1 gi) (4.18)

shows that {7(/_ g2,/i gi) is unitary since each of the factors on the right of (4.18) is.
We state this result as

Theorem 4.4. Let (/„, gi) e C0_, ô« > 0, a 1, 2. EAe« U(f2g2,figit is a unitary
operator on J(fi, gi) to J(J2, gi) ¦

We now prove Lemma 4.3.
Let «i«, «4a be the constants for which (/„, gi) satisfy C1-C4, a 1, 2. We

check C1-C4, A1-A5 for (/, g) <p((fi gi), (/_ gi)) ;

/W > maxf/^iB - l),/2(/2W - 1)}

> max{(/i(i) — 1)"", (/.(») — 1)"«} by CI,

(j
\ min{a,,,ti,%}

-— — 1 > 4"1, for large t.>(2-
We have used ji(») + j2(i) > i and we define «i such that
2(1 + ô) eö1 < «1 < min {an, ai2}. Then CI and Al are verified for (/, g).

g(i) min{gi(/i(i)), g2(/2(i))}

< min{/i(/i(»))"».,/2(/2(t'))"-} by C2

<{min{fi(ji(i)),f2(j2(i))})^

/(»¦)-,

where «2 max{«2i, «22}. This proves C2 and A2.

ln/(.) min{ln/1(/1(t)), lnf2(j2(i))}

< min{gi(/i(«')) «3Î1, g*(n(i) «321} by C3,

< g(i) ¦ «3"1

where a% min{#3i, «32}. This proves C3 and A3. Finally, since f(N) fi(N) \jfz(N),
by C4 f(i + 1) <f(i)a>, where a4 min{«4i, «42}. This establishes C4 and A4, A5
for (/, g) and ends the proof of Lemma 4.3.
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V. The Complete Interaction

In this section we give the modifications which are needed to carry over the
results of the previous sections to the case of the full Hamiltonian (1.1). First we
define a family of dressing transformations T(f, g) which lead to Hilbert spaces J(f, g)
in which the limiting Hamiltonians H(f, g) are densely defined. We then construct
the natural unitary operators on one of the J (J, g) to another in the sense of section IV.

We need some definitions : F_a is the truncation of V2a in which V2a(ki, ,k4)
is replaced by zero if the momenta ki, k2 belonging to the creation operator satisfy
| ki | +1 k21 <_ 2 (| ks | + | ki |). We set A? M2a - VXa rÇV^), and furthermore for

3

/ e N, Vîja, Vzja, A)a are defined by restricting the momentum of largest magnitude
| k | created by F30-, V20 and Aa4 respectively to the region where | k | e [21, 21+1).

For the following definitions, see also [9]. Let Y be the set of all functions x which
map N into Z.

Then we set

XQo(f, g) Xga {x: x e Y, for all »eJV, 0 < x(i) < g(i), and

x(i) 0 if f(i) <q or if /(.) :> 0} (5.1)

For x eY we define xu 6 Y by x^(i) — x(i) — ou and x e Y by x(i) g(i) — x(i).
Let furthermore (/1, /m) /m £ (N)m; /° s>, and let

A-l
Jo hi {r : 2* > q, (Zii)s < h, k 2,3,...}; with £ < 1.

t 1

We shall keep f 3/4 fixed and omit it in the following.
We now define Sra(f, g \ jm, x) Sra(im, x) by

f 1 if x 0,
Sroti0, X)

I 0 otherwise,

Sra(r, X) - r((V3jma + V'2jma - _d&) Sm(jm'\ x))
OO

-Zr((V*rnO + V2ima) Wflr S„(/-l, X()) (5.2)
i 0 I I

-Zr(l V2im° Wfl.r Wfi,x Sxa(r-\ «J)

and finally for qi ef(N), q2 > 0,

oo

Tn,e,a(f, g)=z n (expwfi°) zs~um• *) ¦ (5-3)
xeXniai-7-He,)m im*Ie,

This is the definition of the dressing transformation for the full Hamiltonian (1.1).
This definition insures that Wßa occurs at most g(i) times in TQ,Qta(f,g). We note
that for qi Q2 0 and f(i) 2l, g(i) i, £ 3/4, Equation (5.3) is an explicit
definition of Glimm's original dressing transformation [4, p. 26].
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By modifying Glimm's proofs [4] in the sense of our Theorem 3.1, we arrive at the

Theorem 5.1. Let (/, g) e C0 for some ô>0, qi ef(N), q2 > 0, Te,nia(f, g) Ta
defined as above. Then Ta satisfies for all cf>, xp e Bo:

I. lim (Ta cp, Ta xp) e-Ao (r,. <f>, I„ xp)r (5.4)
a—yoo

exists.

II. The expression (5.4) defines a positive definite scalar product on

m g) <reje,oo(/, g) <?: cp e B0, a ef(N), Q2 > 0 > (5.5)

III. 11 Ha Ta <j> 112 e~Ao is uniformly bounded in a < oo a»ilim (Ta cf>, Ha TB xp) e~Ao

defines a symmetric operator H(f, g) on B(f, g). 0-+00

B(f, g) together with (¦, -)r is a prehilbert space, whose completion we denote by

Af,g)-
Next we want to compare J (J, g) with J(f, g). We need the following extension

of Lemma 4.2:

Lemma 5.2. Let (j, g) e C», à > 0. For each cf>e B0, each qi ef(N), 02 > 0,
there exists 6m, 02n £ B0 such that

lim Hm y TMla(f, g) 4> ~ *><»)<,(/. g) 6m ||2 e~Ao 0 (5.6)
rt—> 00 a—? 00

and

lim Um 11 TM g)<f>- Tmma(f, g) 02„ 112 er*« 0 (5.7)
m-^oo a—¥co

Proof: The proof is completely analogous to the one of Lemma 4.2. We only give dm
and 02« -

6^=Z II (expWfia)ZSmnn)(r,x)cP, (5.8)

62n=fj expWfiacp. (5.9)

Lemma 5.2 suffices to obtain the natural unitary operator mapping J(f, g) onto

Af, g).

This combined with the natural unitary mapping £/(/_ g2, /i gi) : J(fi, gi)

-> J(j2, gi), established in Theorem 4.4, defines a natural unitary mapping of J(fi, gi)
onto J(J2, gi) for (/a, ga) e C0a, da > 0, a 1, 2.

An explicit definition of this unitary map F(/2 g2,/i gi) : J(fi,gi) -^J(f2,gi)
can be given iorfai(N) 3/„„(A) by

F(/2 g2,/i gi) TeieiO0(fi, gi) <f> liml^C/., g2) 0eieir (5.10)
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where cpe B0, 01 efi(N), x x(n) fai(n) and

6Mlr=Z ÏÎ (expWflia)ZSMim,x)<p. (5.11)
*eXeiTUi,g,) i=/r'(ei) m imeles

The proof of this statement is again a straightforward appHcation of the arguments
introduced in section IV. Of course the choice of ETT*oo(/2, gi) 0eiesr to approximate
the vector V(f2 g2,/i gi) TM2oo(/i gi) <p is very special, but it will be helpful in section
VII, where we shall compare two Hamiltonians H(fi, gi) and H(f2, g2).

VI. Equivalence of (Non Fock) Weyl Systems

It was shown by Fabrey [3] that on the spaces J(f, g), f(i) od, a > 1, g(i)
strictly increasing but polynomially bounded, one gets representations of the CCR
which are not unitarily equivalent to a direct sum of Fock representations. Furthermore,

he proved that two such representations, given in the form of exponential Weyl
systems, are unitarily equivalent provided the /'s are equal and the g's are different
in only finitely many points.

A slightly different discussion of the representations of the CCR in the (<f>4)3 model
is given by Hepp in [6], [7]. He starts from Glimm's original 'renormalized' Hilbert
space Jren, which in our notation is the closure of (Te<x>(f, g) B0, q 0, f(i) 2i,
g(i) iy in the (lim(-, •) e~Ao)V2 norm. This space may be too small for the desired
representation of the CCR; e'* is not known to be a unitary operator on Jren. Hepp
constructs a larger space Jf 3 Jren, using the Gelfand Neumark Segal construction
and then obtains a non-Fock representation of the CCR on Jf. It is straightforward
that 3f can be identified with a subspace of J (J, g) and that Hepp's representation of
the CCR is a subrepresentation of the one constructed by Fabrey. An easy calculation
should show that JC J(f, g) and that the two representations are the same.

It is the purpose of this section to establish the existence of exponential Weyl
systems on all spaces J(f, g) and J(f, g) for (/, g) e C0, ô > 0, and to show that all
of them are unitarily equivalent.

Definition. (Weyl [11], Chaiken [1, def. 1.1]). A Weyl system is a map y -> W(y) from
a complex inner product space X to unitary operators on a complex Hilbert space Jf
such that

W(yi) W(y2) exp [2-1 i Im<yi, y2>] W(yi + yi) (6.1)

and for each y e Jf, W(t y) considered as a function of the real variable t is weakly
continuous at t — 0. Our inner product space is given by

X {yeL2(R2):\\fi»y\\2<oo}, (6.2)

and the inner product is <y_, yi) j yi(k) (2 /^(k))-1 y2(^) dk. We choose & 2, in
view of a later application of Lemma 3.2. We remark that we also could take any
ê > eo/2, but this would require a slight modification of Lemma 3.2., which we do not
want to give here.
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For y eJt* let

<f,(y) f M(k)-V2 [y(k) a*(k) + y(k) a(k)] dk (6.3)

then by setting W(y) — è*Wi, je J, the Fock space, we get the Fock representation.
The (non-Fock) representations W(f, g\y), y £ X on the Hilbert space J(f, g)

will be defined by

(Ttie,oo(f, g) <p, W(f, g I y) Te[e^(f, g) xp)r

\im(TQieto(f, g) <f>, W(y) TQ[e-a(f g) xp) *~A° - (6-4)
CT—* OO

and correspondingly we define the representations W(f, g \ y) on J(f, g).
The results of this section are summarized in the following two theorems.

Theorem 6.1. Let (/, g) e C0 for some ô > 0. Then W(f, g | y) and W(f, g\y), as

defined in (6.4), are Weyl systems.

Theorem 6.2. La (/«, g«) e C„a, da > 0, a 1, 2. TÄe« W(fi, gi\y), W(f2, g2 | y),

W(fi, gi | y) and W(f2, g2 \ y) are all unitarily equivalent.

Remark. The unitary equivalence will be established using the natural unitary maps
introduced in sections IV and V. First we prove a technical lemma.

Lemma 6.3. Let (/, g) e Cô for some ô > 0, y e jT. Then the limits

lim(Tein,aCp, <p(y)"> T0;eiaxp) e~A« (6.5)
a—> oo

lim 11 d\(y)™ TMM, g)f\\ e-A°12 (6-6)
CT—> OO

exist and (6.6) is bounded by

Km(m\)V2 \\/j.2 y \\f (6.7)

for a constant K which depends on cf> only. The limit (6.5) defines an operator cp(f, g | y)m
on B(f, g).

The same statements hold if we replace Te,eta by Tga and B(f, g) by B(f, g), and

we denote the operators thus obtained by cp(f, g\ y)m.

Proof: The existence of the limits (6.5) and (6.6) is proved by the methods of sections

III and V. To obtain the bound (6.7) we conclude as in the proof of Theorem 3.1 that

Il Hy)m TMM,g) V \\2 e~*o <Z Z(\f\.\ Snrn, |M), (6.8)

where the sum _£s„lHa runs over all Wick terms Sn,n2 in the expansion of
(T*,w)n,(f, g) (4>(y)m)* (<}>(y)m) (TeiCho)na(f, g), whose graph is a skeleton graph.

Using Lemma 3.2 and the Schwarz inequality in the contracted variables
between T* T... and (cp(y)m)* (<p(y)m) we obtain

(M, | s»i». \\cp\) <Cn, K^ + "' + m || ft2 y ||!™(«i! »2!)-<2 + "> (6.10)

for some n > 0.
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The number of Wick terms Sn,na is bounded by

K"i + «" + m(«i!M2!)2m!, (6.11)

and (6.10, 11) combined with (6.8) give the desired bound (6.7). Now Theorem 6.1
is proved as Theorem 2 in [3]. To estabHsh Theorem 6.2 we prove first the unitary
equivalence of W(fi, gi | y) and #(/2, g2 | y) for (/a, ga) e C_, à > 0 and/i(A) d/2(2V).
We assert that

W(fi ,gi\y) U-i(fz g2, /i gl) #(/., g2 | y) U(f2 g2, /i gi) (6.12)

with the unitary operator U(f2g2,figi) as defined in (4.1). We use the following
abbreviations :

V U(f2 g2,/i gi) ; W(fa ga | y) W(x \ y) ;

?.„(/„, g«) f„(a), •?(/«, gi) J(x), öl 1,2.

Choose a sequence of vectors Te(„)oo(l) cpn e B(fi, gi) such that

\\W(l\y)fe^(l)cp-f0,H)oo(l)cpn\\r^O as « ^ oo (6.13)

||.||2 (,.)r lim(,.)e-A,.
O—r- OO

We now write

|(Je.00(2) y, c/ If (1 | y) Teoo(l) 9>)r - (TV42) y, rf (2 | y) U Teoo(l) |

< lim K7V42) v. C7 #(11 y) f9JX) cp)r - (ft.a(2) xp, e*W r„(l) ç») ^ | (6.14)
O—> oo

+ lim |(TVoo(2) xp, W(2 | y) £7 fBCO(l) <p)r - (fe.a(2) y, «**W ?e<J(l) y) e-^ |

CT—»¦ oo

We give an upper bound on the first term on the right of (6.14),

Hm lim |(f8.00(2) f, U W(l \ y) fe<X)(l) <p)r - (fe-„(2) y, re(n)<J(l) ç>„) «-^ |

«—>oo CT—>oo

+ lim lim |(f,,(2) y, (**W f„,(1) <?> - ?eW-(l) <p„)) «-A» | < (6.15)
n—¦> oo u—> oo

0 + lim lim y fn-a(2) xp || e-^CT/2 || gW) f^l) y - ?c(„)o(l) ç>„ || e-W 0
n—>oo CT—> OO

In the same way we show that the second term on the right of (6.14) is equal to zero,
and thus the left side of (6.14) vanishes for all q, q' ; cp, xp £ B0.

As B(f2, g2), the set of vectors of the form re'<»(2) xp, xp e B0, and finite linear
combinations of them, is dense in J(J2, gi), assertion (6.12) is proved.

For all other cases the unitary equivalence is established in the same way if in
(6.12) we use the natural unitary operator which maps the Hilbert space of one Weyl
system onto the Hilbert space of the other. All these unitary operators have been
constructed in sections IV and V. This ends the proof of Theorem 6.2.
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VII. Unitary Equivalence of the Hamiltonians

As we have stated in section V, each (/, g) £ C0 can be used to define a Hamiltonian

H(f, g) as a symmetric operator in J(f, g). In this section, our main result is
the following connection between these Hamiltonians.

Theorem 7.1. For any (/<_, gi) e C0a, _ia > 0, a 1, 2, the closures

H(Ugi) of H(fa,ga) in J(fa, ga), a 1, 2

are unitarily equivalent.

Proof: As in the proof of Theorem 6.2 it is sufficient to prove the assertion for
(fa, ga) eC6,ô> 0, fi(N) Df2(N) or MN) c/2(A).

Our main ingredient is the following lemma, in which we make use of the approximation

(5.10, 11) in the construction of the unitary operator F(/2g2,/igi) on
J(fl, gi) tO J(f2,gi).

Lemma 7.2. Let (fa, gi) £ C„, «5 > 0, a 1, 2 and suppose fi(N) af2(N)
[orf2(N) cfi(N)]. Let <p,xpe B0, Qai efi(N) n/2(A), qa2 £ R+. Finally let 0eilBl!,. be defined
as in (5.11). Then with x x(n) f2(n) [or x(n) =/_(»)], one has

lim{Te,t9^(f2,gi) xp, Ha(T„>a(f2,g2) 6ene„T - Te„0„a(fi, gi) <£)) e~A° -> 0
a—>¦ oo

as « -> oo (7.1)

Furthermore

Hmsupll Ha Trr,a(f2, g2) 6nllQllZ ||2 er*a (7.2)
CT—y CO

is bounded uniformly in t, and

limsupl | Ha Teueafi. giMI2 r*o (7.3)
CT—*¦ OO

is finite.

We postpone the proof of Lemma 7.2 and prove now Theorem 7.1. Since

H(fa, gi), a 1, 2 is symmetric, it is closable. Now (7.1)-(7.3) say that for <p e B0,

V2i Teil8l2oo <f> is in the domain B(H(f2, g2)). We have written F.i V(f2 g2,/i gi).
(7.1)-(7.3) imply also

H(f2, gi) |F_,_?[if(/„&)] Vu H(fi, gi) Vïi.
In other terms,

V2iH(fi,gi)VllcH(f2,g2),
or

H(fi,gi)cV2\H(f2,gi)V2i
and therefore

H(fi,gi)dV-àH(f2,gi)V2i. (7 4)
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Exchanging (/i, gi) and (f2, gi) we get

H(f2,gi)cV2iH(fi,gi)V2\ (7.5)

and combining the two inclusions (7.4), (7.5) we complete the proof of Theorem 7.1.

Proof of Lemma 7.2: We first note that (7.1) and (7.2) do not follow from our earlier
estimates for the following reason : In TTr%(/2, g2) 0Dliei2T we approximate T0l,eiia(fi,gi) <j>,

but since T and 6 are of the form exp W/s followed by an S factor, we find that in
Trr'o(f2,g2)6g„rhtT the Sao of Txx'a(f2,gi) and the exp U/s of öeil8lsT are not in the
same order as in Teiiei,a(fi, gi) <f>.

Therefore the cancellations of the infinities of Ha on TTT<ta(f2, gi) 6nnn„T will not
be as good as they are one on Tei,ei2a(fi, gi) cj>. The particular choice of dgllÇllr (see

Equation (5.11)) ensures that the additional uncancelled Wick terms give rise to
convergent kernels whose contributions go to zero as x ->¦ oo. It will be crucial that
the W/s in the S part of deilQl,T are more strongly truncated than the Vis, V'2's etc.

We finally remark that (7.3) is known from Glimm's analysis [4], see also Theorem 5.1.
The calculations leading to (7.1) and (7.2) are long. We present here as an example

only the calculations in connection with the cancellation of the F3<j-part of Ha in (7.1),
and of this term only those contributions in which V3a is not contracted with the
exp TE,- part of T0lln^a(fi, gi), ESl!1„S!„(/2, gi) or öeiiei2r. In this example, however, the
reader will find all the interesting cancellation and convergence arguments which are
necessary for the complete calculation. For the terms arising from F4ct, see also the
calculations in the proof of Theorem 3.1, property ///.

We define V3(0T) as that truncation of E30 in which the maximal magnitude of the
created momenta lies in the interval [_>, t).

Let qi pn, 02 0i_, let l =/ï1(0i), and let X$ Xna(fa, gi), a 1, 2 (see
also (5.1)) ; S<S>(/*, x) Sm(fa, g<x | /*, x). We start by writing down V^ TMla(fi,gi) cp:

00

VioTtl0la(fl,gl)<r=Z n^W^ZV^o)Sa^,x)cp (7.6.1)
xeX(l) i l x{i) jkeJ

OO

+Z lJ^WfJ°ZV^,S°°(.ik-x)<r (7-6-2)
xeX(l) i l x{i) jkeJ

Q,a tf2

+ terms where V3a is contracted with Wfja of exp Wfja.
x(i)

Our next term is F3ct T„'o(f2, gi) 6Q,Sar. Define ma by x =fa(ma), o. 1, 2.

00

V3a TrMft.gt) 6Mlr=Z 11 ^Wfja Z V^'o) SSö'*. *) <W (7.7.1)
xeX(2)i mtx(i) jkeJr,

+ TrT,a(f2 gi) Z U exp WfjaZ ^3(0r») S&tf*, x) <p (7.7.2)

xeX(iy ix(i) jkej^
oo

+Z IT «*P 1*7* 27 [*W S°Aik> *)] 6eieir (7.7.3)
xeXC2J i «., x(i) jkejTl

+ terms where F3CT is contracted with Wfja of exp Wfja,
or with Wfja of exp Wfja. *(i)

m
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We now need the following parts of Ho TeiQ,a(fi, gi) cp to cancel the infinities in
(7.6.1) and (7.7.2).

-z n™?wit*z^ik*5^*-1>*)<!> (7-8-1)

fi*!,,,
oik -^ „2

OO

-27 TJe^WA,aZV^SBla)(i^,x)cp. (7.8.2)

The corresponding quantity from H0 TTT»„(/2, g_) 6QieiT is

CO

-27 FI ^vWfja Z Vau« SSü"*-1. A 6M%r (7.9.1)
xeX(2) i m, x(i) jkeJri

- Trx>a(f2, gi) Z /7W **7* 27 F^° S$(j*-\ x) cp (7.9.2)
xeX(.l)i lx[i) jksJ

We now combine (7.6.a) with (7.8.a), (7.7.a) with (7.9.a), a 1, 2 and find cancellations

in y.h-T ¦ We obtain

oo

(7.6.1) + (7.8.1) =27 IJ^Wf^Z' VV° W. *) d, (7.10)
xeXWi lx(i)

e,rf

where £' runs over the set {/*, /: /* e Je„ 2) > t2, / < (__7*=i /») *}.
First we observe that ||(7.10)||2 e~Aa is uniformly bounded in a. This follows by

a standard argument by Glimm [4] : one has to use the fact that in £', / < (J£*= i /<)*.
Furthermore as 21 >x2 (t(«))2 (/2(«))2, all terms in (7.10) contain at least one
momentum larger than (t(»))2. Thus by Remark 3.1, inequality (3.14), the contribution

of (7.10) to (7.1) is 0(x(n)~i) for some n > 0. Next we compute

OO

(7.6.2) + (7.8.2) =27 TTexV WfJ° Z F3(o.2) S«(/*, x) <p (7.11.1)

xeX(iy ix(i) jkejBa

oo

+ 27 ./Jexp Wfja Z" Vsjr* SV(3*, X) rp (7.11.2)
xeXW i l-x(i)

n,a

and 2J" runs now over the set {/*, /: /* e feA 02 < / < (Zi i /«)*}• The sum (7.7.1)
+ (7.9.1) contributes 0(r(n)'i) to (7.1) by the same argument as above.

m, — 1

(7.7.2) + (7.9.2) TXT>a(f2,gi)Z //expTE^ 27 V^ S».(/*, *) 0 (7-12.1)

0,T

m,-l
+ ETlSo(/2,g2)27 lJexpWfjaZ"V3j^S^(j",x)4.. (7.12.2)

xeXW i lxl>)
Q,T
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The terms (7.11.1, 2), (7.12.1, 2) give finite contributions to (7.1), but they are
not necessarily small. Nevertheless we assert that the contributions of (7.11.1) —

(7.12.1) and of (7.11.2) — (7.12.2) go to zero as « approaches infinity. For a proof
we note that those Wick terms in (7.11.1, 2), (7.12.1, 2) which have large momenta

(> t(«)) in the skeleton contribute individually 0(x(n)-i) to (7.1). To Wick terms in
(7.11.1) and (7.11.2) who have only small momenta in the skeleton there is always a
term in (7.12.1) and (7.12.2) respectively with exactly the same skeleton (and the
same skeleton part of the numerical kernel). Thus in the difference of two such

corresponding terms we have to consider the difference in the high momentum part
of the _4-factors only. Differences of this kind have been discussed in the proof of
Lemma 4.2. It has been shown there that these expressions go to zero as « goes to
infinity.

The remaining term is (7.7.3). There are no other terms for cancellation. Again
we observe first that the contribution of a single Wick term in (7.7.3) to (7.1) is finite
(for all a < oo), because with V3(W) there is always at least one other vertex in the
skeleton graph (because ot the commutator), and creating at least one momentum
larger in magnitude than all momenta created by E3(ots). Then by 'power gymnastics'
[see Equation (7.14) below] the assertion follows. Secondly, we have to make sure that
the summation over all contributions of (7.7.3) to (7.1) converges uniformly in a. This
is shown with the arguments we have used in the proof of Theorem 3.1, property /.

Finally, as each skeleton occurring in the contribution of (7.7.3) to (7.1)
contains at least one line with momentum larger in magnitude than t2, inequality (3.14)
ensures that the contribution of (7.7.3) is in fact 0(x(n)-i). This concludes the
discussion of the terms (7.6 — 7.9). For all other contributions to (7.1) or to (7.2) we can
use the same arguments, with one exception :

The exceptional term appears in the discussion of E4ct TrT'a(fi, gi) öei8äT, where
one wiU get expressions containing commutators :

[F+(0T),S<2>(/*,*)]. (7.13)27
Mr'

They show up in terms analogous to (7.7.3). It is for these expressions we have made
the very special choice of E^oo 0eift,T in (5.10, 11). By definition F4<or) creates only
momenta smaUer in magnitude than x, while there is always at least one vertex in
£tez* S^d", x) which in (7.13) is contracted with E4(0r) and which creates a
momentum larger in magnitude than x3/2 x2% (see definition of Je( in section V).

Consider for example

[V4{0t), 27r V3ja] QT

2l> T!

The expression || Qr cf>0 \\2 has as graph
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The momenta belonging to the lines 1-5 have absolute value smaller than t,
while one of the lines 6, 7, 8 has momentum k with | k | > x2. Thus we can multiply
the numerical kernel of Q* Qr by

^^>1 (7.14)
T

('power gymnastics') and then convince ourselves (and possibly the reader) by power
counting that || Qx cf>o ||2 is finite and in fact goes to zero for x going to infinity.

This ends our discussion of (7.1)-(7.3).
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