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An Exact Solution of the Y Equation ')

by Mario Novello

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Université de Genève, Geneva

(9. III. 71)

Abstract. We try to evaluate a solution of the V equation [1] with spherical symmetry and
statical condition. We arrive at Schwarzschild's solution, as it would be expected. Some comments
about the possibility of obtaining other solutions are set up.

1. Introduction

In a recent paper [1] we have shown that it is possible to consider Einstein's
gravitational theory as a consequence of an interaction between 'internal' objects.
In this paper it is our purpose to obtain an exact solution of the fundamental r
equation and to relate this solution to Einstein's equations.

2. The Fundamental Variables

Let us resume, briefly, the properties of the fundamental objets rAB(x). In
a change of coordinates the i""s behave as a vector, that is,

dx'1*
r'"(*') l^rr»- (1)

Besides this, they have internal indices, such that they may suffer a transformation
like

r'"AB(x) MA c(x) r»CD(x) Mr nB(x) (2)

where A, B, C, D may have the values 0,1, 2, 3 (T is the transposed and the bar means
conjugate).

We do not need, for the time being, to specify the properties of MBA (x). We only
assume that they are non-singular, everywhere.

The 7""s have the property that

{r"(x),r(x)} 2g^(x)i (3)

x) This work has been supported by 'Coordenaçào do aperfeiçoamento de pessoal de nivel
superior (Capes-Brazil)'.
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where

{A,B} AB+ BA (4)

g'"'(x) is the metric tensor. 1 is the identity of the Clifford algebra.
Furthermore there is a .T5 AB(x) such that

J"6 AB(x') MA c(x) rb CD(x) MT DB(x) (5)

As a consequence of (1) and (2) we see that the usual derivative is not a good
geometrical object, and we obliged to introduce a covariant derivative, defined by

r,ll{v(x) rfll„-{iv}re + [Tvrlj\ (6)

where

r (x)-dr'Ax)'mi,w- dx,

{* } is the Christoffel symbol. xv is a sort of internal affinity.
We introduce here an hypothesis that makes a strong restriction on the permisible

internal transformations. We assume that the M(x) that generates an infinitesimal
transformation (2) is of the form

MAB(x) ~ 1 + s f„(«) UaAB(x) + e £.„„(*) U«ßAB(x) + 0(e2) (7)

where

uAB--—\r fAbU aß —
g

I1 a> l ßi

This choice is such as to permit us to consider the internal transformation as a
coordinate transformation of the type

xa -» xa xa + e £"(*) •

If we look for the conditions necessary to make this identification we arrive at

KI (x) a [Uv(x), rß(xfAB a is a constant (8)

(we put a 1 in the rest of this paper).
If we look for an object U„ which is a member of the Clifford algebra but such

that it does not introduce any new field, we see that this object has the form

uAB (x) rAB (x) + (rv(x) r-*(x) )AB. (9)

A straightforward calculation shows that the covariant derivative is not
commutative and that we may write

where

R<xeßx is Are Riemann tensor

RAB is the internal curvature.
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3. Radial Symmetry

It is an easy matter to show that Einstein's equations of the gravitational theory
are obtained as a consequence of the equation

iKß, n o (ii)

in the absence of matter.
We will look now for a solution of this equation such that

r, r,(r,6) (12)

where r is the radial distance. We will use a spherical system of coordinates and we
identify

xo t, x1 r x2 0 x3 <f> (13)

Condition (12) implies that the metric tensor has spherical symmetry too. We
next assume that

J» i» «*> 1, (14)

rx(r) Fx(r) -«*<'> 1 (15)

r2(r) r2(r) =-r2 1, (16)

r3(r, 0) r3(r, d) -r2 sen20 1 (17)

These conditions are equivalent to assume that the infinitesimal length is

ds2 ev(r) (dx0)2 - eX{r} (dr)2 - r2(dd)2 - r2 sen2d(d(f>)2 (18)

From equations (14), (15), (16) and (17) we obtain

(19)

(20)

(21)

(22)

(23)

¦*0|f
V'

r0,

¦F1 \r
F

rx,

A \r
i
r r2,

A|r
1

r r3,

A I 8 cotg e r3,

where

v'
dv

dr
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From (6) and (19) we obtain

rollr-rolr-{ix}r. + [TX,r0], (24)

rnr 2rxr0. (25)

Then,

[T1,Jr0] 2r1r0, (26)

In a same manner we obtain

\xx,Tf 2elrF (27)

\xx,Ff 2Fxr2, (28)

lxx,Ff 2FxF3. (29)

Expressions (26) to (29) implies that a non-trivial rx has the form

rx rx + rxrF (30)

By the same manner we arrive at the following expressions

[T0,rn}=v^F-lrx-2Fr*, (3i)

[r0,r1]=2r0r1±^r0, (32)

[T0)r2] 2r0r2, (33)

[T0,r3] 2r0r3) (34)

and we see r0 has the form

r0 r0 + r0 r* + ~ e-1 rxr0. (35)

Analogously, we have

[r2,r0] 2r2rn, (36)

[r2,rx]=2r2Fx + -1 If, (37)
r

(38)

(39)

(40)

[>« .rj 2 r2 r5 -- r e~JTX,

[?« .rj 2r2r3:
and we obtain

*2 J\ + r2r---
e~l

~12r r2rx.
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And, by the same procedure,

[T3,r0] 2r3r0, (4i)

[r3,rx] 2r3rx+ -1 f3, (42)
r

[r3,r2] 2r3r2 + cotger3, (43)

[Ts ,T3] 2 r2 sen2 0 T5 - r sen2 d e~l Fx- sen 0 cos 0 r2 (44)

and we obtain

r3 r3 + i\r*- e2X-r3rx- ^ r3r2. (45)

With these values of the internal affinities we may evaluate the internal curvature
by the expression

R«/5 Ta|/3-T/î|œ+[T/3)Ta]. (46)

If we evaluate this, we obtain

e~K v'X v'2)Ki-^{v"~^ + -2-\rxr0, (47)

e-'- v'
Ro2 -y r2r0, (48)

4 r

e^ v'
Ros ^ --r,r„ (49)

e~l 1 X \
Ki2 ~-V-{---y-)-F2rx, (50)

R13 ^.(-^).r3r1, (5i)

R2s=27F- (g-A-l)-r37^. (52)

From these expressions and from the equation (11) we obtain the following
equations

[Ro„,r"] 0 (53)

gives

'" 4- -

2 r

[RM,r"] 0 (55)

v'2 2v'
v+ — -v'X+ 0, (54)
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(56)

(57)

(58)

(59)

(60)

(61)

(62)

With the Minkowskian boundary condition we arrive at the Schwarzschild's
solution of Einstein's equation. This is not surprising because, as we said, the equation
(11) may give origin to Einstein's equation. What we have obtained is another way
to arrive at the solutions of these equations, and we expect that others solutions may
be obtained by this method.
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„ "'2 „v + — v A —
2X

r
0,

[Ra/,.-T"] 0

gives

l-ex=rX.
[R3/l,r"] o

gives

l-el rX
From these equations we see that

v' + X 0

and

(r e~'-) constant


	An exact solution of the Γ equation

