Zeitschrift: Helvetica Physica Acta

Band: 44 (1971)

Heft: 5

Artikel: Untersuchung der 6Li(d,)^4He-Reaktion mit polarisierten Deuteronen

Autor: Neff, R. / Huber, P. / Nägele, H.P.

DOI: https://doi.org/10.5169/seals-114304

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Untersuchung der ${}^{6}\text{Li}(\overrightarrow{d}, \alpha)^{4}\text{He}$ - Reaktion mit polarisierten Deuteronen

von R. Neff, P. Huber, H. P. Nägele, H. Rudin und F. Seiler

Physikalisches Institut der Universität Basel

(20. II. 71)

Abstract. The vector and tensor analysing power of the $^6\text{Li}(\overrightarrow{d},\alpha)^4\text{He-reaction}$ for polarized incident deuterons have been measured at 400, 600, 800 and 960 keV mean deuteron energies. The four independent components $A_y(\vartheta)$, $A_{zz}(\vartheta)$, $A_{xx}(\vartheta) - A_{yy}(\vartheta)$ and $A_{xz}(\vartheta)$ are fitted by the appropriate associated Legendre functions. It is shown that the results can be explained by the assumption of three states with $J^\pi=2^+$, 4^+ and 0^+ .

1. Einleitung

Die ${}^6\text{Li}(d,\alpha){}^4\text{He-Reaktion}$ wurde von zahlreichen Autoren mit unpolarisierten und polarisierten Deuteronen untersucht [1–17]. Die Analyse der gewonnenen Daten aufgrund von Niveaus im ${}^8\text{Be-Zwischenkern}$, die auch auf der ${}^7\text{Li}(p,\alpha){}^4\text{He-Reaktion}$ [5, 18, 19] basiert, hat bisher zu folgenden Ergebnissen geführt: Als gesichert können ein Niveau bei 22,5 MeV Anregungsenergie mit Spin und Parität $J^\pi = 2^+$ [1, 5, 15, 19] und ein Niveau bei 25,3 MeV mit $J^\pi = 2^+$ [5, 6, 8, 16, 19] angesehen werden. Im weiteren werden ein Niveau mit $J^\pi = 0^+$ bei 24,0 MeV [19] und ein 23 MeV-Zustand mit $J^\pi = 4^+$ [18] angenommen. Chan et al. [20] geben verschiedene mögliche Niveauschemata, die den Verlauf der experimentellen ${}^6\text{Li}(d,\alpha){}^4\text{He-Daten}$ erklären können. Die oben erwähnte 2^+ , 0^+ , 2^+ -Reihenfolge halten sie dabei auch für möglich.

In der vorliegenden Arbeit wurde die ⁶Li(d, α)⁴He-Reaktion mit vektor- bzw. tensorpolarisierten Deuteronen bei unpolarisiertem Target untersucht. Dazu wurde mit einem gegenüber der Arbeit von Bürgisser et al. [15] verbesserten Messverfahren [27] die Winkelabhängigkeit der vier unabhängigen Komponenten der Analysatorstärke bei 400, 600, 800 und 960 keV Deuteronenenergie gemessen.

2. Theoretischer Teil

2.1. Differentieller Wirkungsquerschnitt einer Reaktion mit polarisierten Deuteronen

Zur Beschreibung des Polarisationszustandes eines Deuteronenstrahls und einer Reaktion mit polarisierten Deuteronen werden die Arbeiten von Goldfarb und Rook [21, 22] verwendet. Wählt man ein kartesisches Koordinatensystem nach der Madison-Konvention, in dem die Quantisierungsachse z^* der Deuteronen den Polarwinkel α

und den Azimutwinkel β aufweist (Fig. 1), so gilt bei unpolarisiertem Target für den differentiellen Wirkungsquerschnitt:

$$\sigma_{pol}(\vartheta) = \sigma_{0}(\vartheta) \left[1 + \frac{3}{2} p_{y} A_{y}(\vartheta) + \frac{1}{2} p_{zz} A_{zz}(\vartheta) + \frac{2}{3} p_{xz} A_{xz}(\vartheta) + \frac{1}{6} (p_{xx} - p_{yy}) \left\{ A_{xx}(\vartheta) - A_{yy}(\vartheta) \right\} \right]. \tag{1}$$

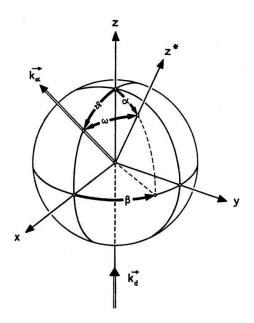
 $\sigma_0(\vartheta)$ ist der differentielle Wirkungsquerschnitt für unpolarisierte Deuteronen. Die Analysatorstärke der Reaktion wird durch die drei Tensorgrössen $A_{zz}(\vartheta)$, $A_{xz}(\vartheta)$, $A_{xz}(\vartheta)$ - $A_{yy}(\vartheta)$ und durch die Vektorkomponente $A_y(\vartheta)$ gegeben. Der Polarisationszustand des Deuteronenstrahls wird durch den Vektor \boldsymbol{p} und den Tensor (p_{ij}) beschrieben. Es ergeben sich die folgenden Komponenten der Vektor- und Tensorpolarisation [23]:

$$\phi_{y} = |p^{*}| \cdot \sin\alpha \cdot \sin\beta,$$

$$\phi_{zz} = \frac{1}{2} p_{zz}^{*} (3 \cos^{2}\alpha - 1),$$

$$\phi_{xz} = \frac{3}{4} p_{zz}^{*} \cdot \sin 2\alpha \cdot \cos\beta,$$

$$\phi_{xx} - \phi_{yy} = \frac{3}{2} p_{zz}^{*} \cdot \sin^{2}\alpha \cdot \cos 2\beta.$$
(2)



Figur 1 Koordinatensystem am Targetort nach der Madison-Konvention.

k_d = Wellenvektor der einfallenden Deuteronen.

 \boldsymbol{k}_{α} = Wellenvektor der ausgehenden α -Teilchen.

2.2. Entwicklung der Komponenten der Analysatorstärke nach Legendre-Funktionen

Nach [21] können die Komponenten der Analysatorstärke durch Linearkombinationen von Legendre-Funktionen $L_{l,m}(\cos\vartheta)^1$) in der folgenden Weise dargestellt werden:

¹⁾ In der Notierung von Jahnke-Emde [24]: $P_l(\cos \theta) = L_{l,0}(\cos \theta)$; $P_l^m(\cos \theta) = L_{l,m}(\cos \theta)$.

$$A_{zz}(\vartheta) = \frac{1}{\sigma_0^N(\vartheta)} \sum_{n=0}^{n_{max}} a_{zz}^{(2n)} \cdot L_{2n,0}(\cos\vartheta) ,$$

$$A_{xx}(\vartheta) - A_{yy}(\vartheta) = \frac{1}{\sigma_0^N(\vartheta)} \sum_{n=1}^{n_{max}} a_{xx-yy}^{(2n)} \cdot L_{2n,2}(\cos\vartheta) ,$$

$$A_{xz}(\vartheta) = \frac{1}{\sigma_0^N(\vartheta)} \sum_{n=1}^{n_{max}} a_{xz}^{(2n)} \cdot L_{2n,1}(\cos\vartheta) ,$$

$$A_y(\vartheta) = \frac{1}{\sigma_0^N(\vartheta)} \sum_{n=1}^{n_{max}} a_y^{(2n)} \cdot L_{2n,1}(\cos\vartheta) .$$

$$(3)$$

Wegen der zwei identischen Bosonen im Ausgangskanal der ⁶Li (d, α) ⁴He-Reaktion kommen nur Legendre-Funktionen mit geradzahligem l vor. $\sigma_0^N(\vartheta)$ ist der auf einen totalen Wirkungsquerschnitt von 4π normierte differentielle Wirkungsquerschnitt für unpolarisierte Deuteronen:

$$\sigma_0^N(\vartheta) = \frac{\sigma_0(\vartheta)}{a_0^{(0)}} . \tag{4}$$

Mit $\sigma_0(\vartheta) = \sum_{n=0}^{n_{max}} a_0^{(2n)} \cdot L_{2n, 0}(\cos \vartheta)$ und $b_0^{(2n)} = a_0^{(2n)}/a_0^{(0)}$ ergibt sich:

$$\sigma_0^N(\vartheta) = \sum_{n=0}^{n_{max}} b_0^{(2n)} \cdot L_{2n,0}(\cos\vartheta) . \tag{5}$$

Die Koeffizienten $a_{ij}^{(k)}$, $a_y^{(k)}$ und $b_0^{(k)}$ werden durch die an der Reaktion beteiligten Reaktionsmatrixelemente $R_n = \langle l_n', s_n', J_n^{n'} | R | l_n, s_n, J_n^n \rangle$ und die reduzierte Deuteronenwellenlänge \hbar der Relativbewegung im Eingangskanal bestimmt [21]. Das Matrixelement R_n verknüpft den Zustand mit Bahndrehimpuls l_n , Kanalspin s_n und Totalspin J_n^n im Eingangskanal mit dem Zustand l_n' , s_n' , $J_n^{n'}$ im Ausgangskanal. Es gilt:

$$a_{ij}^{(k)} = \frac{\hat{\lambda}^{2}}{a_{0}^{(0)}} \sum_{p,q} \alpha_{ij}^{(k,p,q)} \cdot Re(R_{p} \cdot R_{q}^{*}) = \sum_{p,q} \alpha_{ij}^{(k,p,q)} \cdot R_{p,q}, \qquad ij = \begin{cases} z \ x \ x - y \ y, \\ x \ z \end{cases}$$

$$a_{y}^{(k)} = \frac{\hat{\lambda}^{2}}{a_{0}^{(0)}} \sum_{p,q} \alpha_{y}^{(k,p,q)} \cdot Im(R_{p} \cdot R_{q}^{*}) = \sum_{p,q} \alpha_{y}^{(k,p,q)} \cdot I_{p,q}, \qquad (6)$$

$$b_{0}^{(k)} = \frac{\hat{\lambda}^{2}}{a_{0}^{(0)}} \sum_{p,q} \alpha_{0}^{(k,p,q)} \cdot Re(R_{p} \cdot R_{q}^{*}) = \sum_{p,q} \alpha_{0}^{(k,p,q)} \cdot R_{p,q}.$$

Für $(\tilde{\chi}^2/a_0^{(0)})$ $Re(R_p \cdot R_q^*)$ und $(\tilde{\chi}^2/a_0^{(0)})$ $Im(R_p \cdot R_q^*)$ werden die Abkürzungen $R_{p, q}$ bzw. $I_{p, q}$ verwendet. Die $\alpha_{ij}^{(k, p, q)}$, $\alpha_{y}^{(k, p, q)}$ und $\alpha_{0}^{(k, p, q)}$ sind Zahlenwerte, die sich aus der Drehimpulsalgebra für vorgegebene Indizes ergeben [25, 26].

Im Deuteronenergiebereich bis 1 MeV kann aufgrund von Penetrabilitätsbetrachtungen angenommen werden, dass nur Deuteronen mit Bahndrehimpulsen $l \leq 2$ wesentlich zur Reaktion beitragen können. Zudem entfallen wegen der identischen Teilchen im Ausgangskanal alle ungeraden l-Werte. Deshalb sind nur Zustände

mit $J^{\pi}=2^+$, $J^{\pi}=4^+$ und $J^{\pi}=0^+$ möglich. Die Matrixelemente, die den Reaktionsablauf über diese Zustände beschreiben, sind die folgenden:

$$R_{1} = \langle 2 \ 0 \ 2^{+} \ | R | \ 0 \ 2 \ 2^{+} \rangle$$

$$R_{2} = \langle 2 \ 0 \ 2^{+} \ | R | \ 2 \ 0 \ 2^{+} \rangle$$

$$R_{3} = \langle 2 \ 0 \ 2^{+} \ | R | \ 2 \ 1 \ 2^{+} \rangle$$

$$R_{4} = \langle 2 \ 0 \ 2^{+} \ | R | \ 2 \ 2 \ 2^{+} \rangle$$

$$R_{5} = \langle 4 \ 0 \ 4^{+} \ | R | \ 2 \ 2 \ 4^{+} \rangle$$

$$R_{6} = \langle 0 \ 0 \ 0^{+} \ | R | \ 0 \ 0 \ 0^{+} \rangle$$

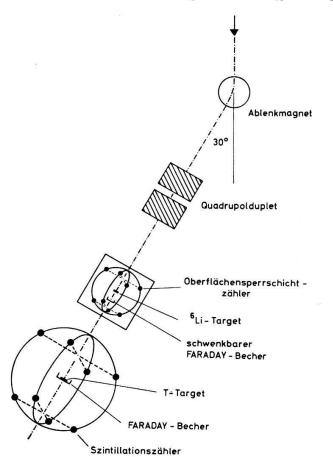
$$R_{7} = \langle 0 \ 0 \ 0^{+} \ | R | \ 2 \ 2 \ 0^{+} \rangle$$

$$(7)$$

3. Experimenteller Teil

3.1. Anordnung

Der Strahl polarisierter Deuteronen wird von einer nach der Atomstrahlmethode arbeitenden Quelle geliefert, die sich auf der Hochspannungsseite eines 1 MV-Kaskadengenerators befindet und von Grunder et al. [28] beschrieben wird. Nach der Beschleunigung auf die gewünschte Energie wird der Deuteronenstrahl um 30° abgelenkt und mit Hilfe eines magnetischen Quadrupolduplets fokussiert:



Figur 2 Messanordnung.

Die zu untersuchende ${}^{6}\text{Li}(\vec{d}, \alpha){}^{4}\text{He-Reaktion erfolgt in einer Streukammer, in welcher acht Oberflächensperrschichtzähler}{}^{2}$), angeordnet zu Quadrupeln gemäss

²) ORTEC-Silizium-Halbleiterzähler SCE J-100-300.

Petitjean et al. [27], zur Verfügung stehen. Ihre Entfernung vom ⁶Li-Target beträgt 140 mm. In Abständen von 30 mm und 3 mm vor jeder Zähleroberfläche befinden sich Blenden aus Tantal ($\varnothing=9,2$ mm). Die Blende bei 3 mm trägt eine 3,8 mg/cm² dicke Aluminiumfolie, die gestreute Deuteronen vom Zähler fernhält. Das kreisförmige Target ($\varnothing=10$ mm) besteht aus 95,6prozentigem ⁶Li, das auf eine 0,45 mg/cm² dicke Nickelfolie aufgedampft wurde. Für den einzelnen Zähler ergibt sich eine Winkelauflösung von \pm 4°. Die Targetdicke beträgt für die Messungen bei 400 und 600 keV mittlerer Deuteronenenergie 0,11 mg/cm², für diejenigen bei 800 und 960 keV 0,20 mg/cm².

Ein Faraday-Becher, der sich 50 mm hinter dem ⁶Li-Target befindet, dient zusammen mit einem Stromintegrator als Strahlmonitor. Die im Deuteronenstrahl vorhandenen H₂⁺-Teilchen werden durch entsprechend dimensionierte Nickelfolien vom Faraday-Becher ferngehalten.

Das ⁶Li-Target und der Faraday-Becher können aus dem Strahl herausgezogen werden, so dass die Deuteronen auf ein 72 cm unterhalb der Streukammer liegendes T-Ti-Target treffen können. Die Winkelverteilung der Neutronen aus der $T(\vec{d}, n)^4$ He-Reaktion dient zur Bestimmung bzw. Überwachung der Deuteronenpolarisation. Zum Nachweis der Neutronen dient ein Zählersystem, bestehend aus acht Szintillationszählern³). Jeder Szintillatormittelpunkt hat einen Abstand von 18,5 cm vom Target. Die Dicke des T-Ti(1:1)-Targets beträgt 0,4 mg/cm². Die aus Intensitätsgründen gewählte Einschussenergie der Deuteronen von 930 keV wird von einer 2,1 mg/cm² dicken Aluminiumfolie auf 230 keV reduziert, was zu einer mittleren Energie im Target von 130 keV führt. Die zum Abbremsen des Strahls verwendete Aluminiumfolie hält die H_2^+ -Teilchen vom Faraday-Becher fern. Die Folie hat vom Target einen Abstand von 7,8 cm.

Die Intensität des Deuteronenstrahls beträgt auf dem 6 Li-Target ca. 14 nA, auf dem T-Ti-Target 8–10 nA, bei einem durch Blenden begrenzten Strahlfleck von 7×4 mm² bzw. 11×4 mm².

3.2. Auswertverfahren und Bestimmung der Strahlpolarisation

Die Bestimmung der Komponenten der Analysatorstärke mit Hilfe der Quadrupelanordnung der Zähler wird von Petitjean et al. [27] ausführlich beschrieben.

Die einzige Änderung betrifft die Bestimmung der Polarisationskomponente p_{zz}^* des Deuteronenstrahls. Für die Messung von p_{zz}^* dient die bei Annahme eines durch s-Wellen induzierten Reaktionsablaufs der $T(d, n)^4$ He-Reaktion über das $3/2^+$ Niveau des Zwischenkerns gültige Formel:

$$\sigma_{pol}(\omega) = \sigma_0 \left\{ 1 - \frac{1}{4} p_{zz}^* \left(3 \cos^2 \omega - 1 \right) \right\}. \tag{8}$$

Der Winkel ω ist in Figur 1 eingezeichnet. Die Messung erfolgt mit zwei Szintillationszählern unter $\omega_{CM}=0^{\circ}$ bzw. 180° und vier Zählern unter $\omega_{CM}=90^{\circ}$. Die beiden übrigen Zähler dienen zur Lagekontrolle der Symmetrieachse z^* ; sie stehen deshalb

³) $1^{1}/_{4}'' \times 1^{3}/_{8}''$ Plastikszintillatoren NE 102 mit Photomultipliern Philips 150 AVP.

unter $\omega_{CM} = 54.7^{\circ}$. Um D(d, n)³He-Neutronen und weitere Untergrundneutronen von der Registrierung auszuschliessen, sind die Pegel so eingestellt, dass nur Neutronen mit Energien > 6 MeV gezählt werden.

Der so ermittelte Wert für p_{zz}^* ist zu klein, da ein gewisser Anteil der $T(d,n)^4$ He-Reaktion über einen $1/2^+$ -Zustand verläuft. Ohlsen et al. [29] haben diesen Anteil bei mittleren Energien in einem T-Zr-Target von 40, 58 und 67 keV zu 4–5% bestimmt. Die Werte sind für eine Korrektur der p_{zz}^* -Messungen dieser Arbeit zu unsicher, zumal im vorliegenden Fall die mittlere Energie im Target 130 keV beträgt.

Im weiteren ist zu beachten, dass wegen der Distanz zwischen der Aluminiumfolie und dem T-Ti-Target (vgl. Abschnitt 3.1) eine Depolarisation der Deuteronen
eintritt [30]. Bei der vorliegenden Energie verlässt der Bruchteil γ der Deuteronen
(ca. 17%) die Folie als Atome. Die Depolarisation der Atomkerne entsteht durch
Kopplung des unpolarisierten Elektrons mit dem polarisierten Deuteron während der
restlichen Flugzeit bis zum Target. Für das wahre p_{zz}^* ergibt sich aus dem gemessenen p_{zz}^{*m} :

$$p_{zz}^* = \frac{p_{zz}^{*m}}{1 - \frac{2}{3}\gamma} = \eta \cdot p_{zz}^{*m}. \tag{9}$$

3.3. Messungen an der ${}^{6}\text{Li}(\vec{d}, \alpha){}^{4}\text{He-Reaktion}$

Unter Ausnützung der Symmetrie der $^6\text{Li}(d,\alpha)^4\text{He-Reaktion}$ erfolgen die Messungen hauptsächlich in den experimentell günstigen Rückwärtswinkeln. Mit Zählerquadrupeln unter $\vartheta_{Lab} = 40^\circ$, 80° , 85° , 100° , 110° , 120° , 145° und 160° werden die Stosszahlverhältnisse mit polarisierten und unpolarisierten Deuteronen bestimmt. Die mittleren Deuteronenenergien im Target sind dabei 400, 600, 800 und 960 keV bei einer Breite von \pm 20 keV.

Die Erfassung der α -Pulse der ${}^6\mathrm{Li}(\vec{d},\alpha){}^4\mathrm{He}$ -Reaktion (Q-Wert: 22,36 MeV) geschieht mit Hilfe von Fensterdiskriminatoren. Um die allfällige Störreaktion ${}^{14}\mathrm{N}(d,\alpha){}^{12}\mathrm{C}$ zu überwachen, wird bei einem kinematisch günstigen Winkel (Vorwärtswinkel) ein zusätzlicher Oberflächensperrschichtzähler angebracht.

Die Messungen werden bei festem ϑ für drei verschiedene Stellungen der Quantisierungsachse z^* durchgeführt, nämlich für $\alpha=0^\circ$, $\alpha=54,7^\circ$ und $\alpha=90^\circ$ (Fig. 1). Damit wird es möglich, die Konsistenz der Messungen zu überprüfen. Sowohl bei der ${}^6\text{Li}(\vec{d},\alpha)^4\text{He-Reaktion}$ als auch bei der ${}^6\text{Li}(\vec{d},\alpha)^4\text{He-Reaktion}$ gelangt ein festes Messschema zur Anwendung [28]. Das Messprogramm sieht für $\alpha=54,7^\circ$ und $\alpha=90^\circ$ wie folgt aus:

- a) 2 Messzyklen $T(\vec{d}, n)^4$ He,
- b) 8 Messzyklen $^6\text{Li}(\bar{d}, \alpha)^4\text{He}$,
- c) 2 Messzyklen $T(\vec{d}, n)^4$ He,
- d) 6 Messzyklen $^{6}\text{Li}(\vec{d}, \alpha)^{4}\text{He}$,
- e) 2 Messzyklen $T(d, n)^4$ He.

Für $\alpha = 0^{\circ}$ kann man sich mit a), b) und c) begnügen, da bei dieser Stellung eine grössere relative Genauigkeit erreicht wird.

Jeder Messzyklus der $^6\text{Li}(\vec{d}, \alpha)^4\text{He-Reaktion}$ wird für sich ausgewertet. Die Zuordnung des p_{zz}^* -Wertes geschieht durch Mittelung der p_{zz}^* -Werte von a) und c) bzw. c) und e), sofern sich die beiden Werte innerhalb der Fehlerschranken decken; andernfalls wird linear interpoliert. Für jede Stellung der Quantisierungsachse werden die berechneten Komponenten der Analysatorstärke über alle Messzyklen gewichtet gemittelt und die statistischen Fehler der Mittelwerte berechnet. Zur Gewichtung dienen die statistischen Fehler der Einzelwerte. Diese Fehler ergeben sich aus den Stosszahlen und dem statistischen Fehler des zugehörigen p_{zz}^* -Wertes. Die für jede Stellung der Quantisierungsachse z^* bestimmten Komponenten der Analysatorstärke werden gemittelt.

4. Resultate

4.1. Strahlpolarisation

Die einzelnen Messwerte für $p_{zz}^*(SF)$ und $p_{zz}^*(SWF)$ haben bei den gewählten Stosszahlen eine statistische Unsicherheit von 2,5% bzw. 2%. Wegen der auftretenden Depolarisation (vgl. Abschnitt 3.2) müssen die Messwerte nach Formel (9) mit dem experimentell bestimmten Faktor $\eta=1,117\pm0,008$ multipliziert werden. Für die Angabe von $p^*(SWF)$ und $p^*(WF)$ werden die Messungen des Vektoreffekts der $^6\text{Li}(\vec{d},\alpha)^4\text{He-Reaktion}$ zu Hilfe genommen. Die Werte folgen aus dem Vergleich der Grössen $p_y(SF) \cdot A_y(\vartheta)$ mit den entsprechenden Grössen $p_y(SWF) \cdot A_y(\vartheta)$ bzw. $p_y(WF) \cdot A_y(\vartheta)$ [28]. In Tabelle 1 sind die mittleren Werte von p_{zz}^* und p^* zusammengestellt. In Klammern stehen die bei idealer Quelle erreichbaren Werte.

Tabelle 1
Polarisation des Deuteronenstrahls

Übergang	p_{zz}^*	₽*
$SF (3) \rightarrow (5)$	- 0,61 (- 1)	+ 0,20 (+ 1/3)
SF + WF (SWF)	+ 0,60 (+ 1)	- 0,24 (- 1/3)
WF	+ 0,01 (0)	-0,45 (-2/3)

4.2. Analysatorstärke der ⁶Li(d, α)⁴He-Reaktion

Tabelle 2 enthält die Messresultate mit ihren statistischen Fehlern. Die Winkel ϑ sind im Schwerpunktsystem angegeben. Eine typische α -Stossrate bei 800 keV Deuteronenenergie und $\vartheta_{CM}=115^{\circ}$ beträgt 4000 Impulse/min.

Die Messdaten werden, wie in den Gleichungen (3) angegeben, nach Legendre-Funktionen entwickelt. Die dazu benötigten differentiellen Wirkungsquerschnitte $\sigma_0^N(\vartheta)$ für unpolarisierte Deuteronen werden unter Ausnützung der in Arbeit [13] gemessenen Energieabhängigkeit den Publikationen von Longequeue et al. [11] und Bruno et al. [10] entnommen. Die berechneten Entwicklungskoeffizienten sind in Tabelle 3 zusammengestellt.

Tabelle 2 Komponenten der Analysatorstärke der $^6\text{Li}(\overrightarrow{d},\alpha)^4\text{He-Reaktion}$ als Funktion des Emissionswinkels ϑ im Schwerpunktsystem

\overline{E}_d	$artheta_{CM}$	$A_{zz}(\vartheta)$	$A_{xx}(\vartheta) {-} A_{yy}(\vartheta)$	$A_{xz}(\boldsymbol{\vartheta})$	$A_{y}(\vartheta)$
400 keV	42,5°	-0.167 ± 0.005	$-0,649 \pm 0,006$	$-0,650 \pm 0,006$	-0.032 ± 0.003
	83,8°	$+0,409\pm0,007$	$-1,206 \pm 0,009$	$-$ 0,080 \pm 0,011	-0.013 ± 0.004
	88,8°	$+0,428\pm0,007$	$-$ 1,190 \pm 0,011	$-$ 0,007 \pm 0,012	$+0,002 \pm 0,002$
	103.8°	$+0,364 \pm 0,004$	$-$ 1,165 \pm 0,008	$+$ 0,290 \pm 0,012	$+0.022\pm0.003$
	$113,6^{\circ}$	$+0,266\pm0,012$	$-1,061 \pm 0,009$	$+0,443\pm0,008$	$+0.026\pm0.003$
	123,3°	$+0,109\pm0,009$	-0.947 ± 0.012	$+0,553\pm0,007$	$+0.033 \pm 0.003$
	$147,2^{\circ}$	-0.427 ± 0.008	$-0,443 \pm 0,009$	$+0,634\pm0,008$	$+0.030 \pm 0.003$
	161,3°	-0.730 ± 0.006	-0.152 ± 0.009	$+0,446 \pm 0,006$	$+0.015\pm0.003$
600 keV	43,0°	$-$ 0,115 \pm 0,010	$-0,658 \pm 0,012$	$-0,607 \pm 0,006$	$-0,045 \pm 0,003$
	84,6°	$+0,366 \pm 0,005$	$-0,988 \pm 0,013$	-0.050 ± 0.013	$-0,006 \pm 0,003$
	89,6°	$+$ 0,374 \pm 0,014	$-1,011 \pm 0,012$	$+0.005\pm0.009$	$+0,000 \pm 0,003$
	104,6°	$+0,331\pm0,006$	-0.963 ± 0.013	$+0,220 \pm 0,007$	$+0.037\pm0.004$
	114,4°	$+0,240\pm0,013$	-0.923 ± 0.011	$+0.368 \pm 0.008$	$+0,041\pm0,004$
	$124,0^{\circ}$	$+0,125\pm0,005$	$-$ 0,855 \pm 0,011	$+$ 0,499 \pm 0,007	$+0.052\pm0.004$
	$147,7^{\circ}$	-0.391 ± 0.005	$-0,456 \pm 0,012$	$+0,616\pm0,007$	$+0,039 \pm 0,003$
	161,6°	$-0,711 \pm 0,010$	-0.167 ± 0.009	$+0,433 \pm 0,007$	$+0,025 \pm 0,004$
800 keV	43,4°	-0.045 ± 0.004	$-0,655 \pm 0,019$	$-0,538 \pm 0,005$	$-0,070 \pm 0,003$
	$85,3^{\circ}$	$+0,339 \pm 0,004$	-0.786 ± 0.015	-0.032 ± 0.009	-0.011 ± 0.003
	90,3°	$+0.329 \pm 0.005$	-0.795 ± 0.008	$+0.020 \pm 0.009$	$+0,002 \pm 0,002$
	$105,3^{\circ}$	$+$ 0,311 \pm 0,005	-0.807 ± 0.007	$+0.187\pm0.007$	$+0,053\pm0,003$
	$115,0^{\circ}$	$+0,251 \pm 0,003$	-0.810 ± 0.006	$+0,313\pm0,010$	$+0.067\pm0.003$
	124,6°	$+0,156 \pm 0,005$	-0.767 ± 0.010	$+$ 0,415 \pm 0,005	$+0.073\pm0.002$
	$148,1^{\circ}$	-0.347 ± 0.005	$-0,452 \pm 0,008$	$+0,604\pm0,007$	$+0.047 \pm 0.003$
	$161,8^{\circ}$	$-0,683 \pm 0,004$	$-0,178 \pm 0,004$	$+$ 0,452 \pm 0,006	$+0,026 \pm 0,002$
960 keV	43,8°	$+0,025\pm0,005$	$-0,687 \pm 0,011$	$-0,501 \pm 0,004$	-0.093 ± 0.003
	85,8°	$+0.324 \pm 0.006$	$-0,623 \pm 0,006$	-0.032 ± 0.005	-0.015 ± 0.004
	90,9°	$+0.327\pm0.008$	$-0,638 \pm 0,007$	$+0,022 \pm 0,008$	$+0.016\pm0.005$
	105.8°	$+0.312\pm0.005$	$-0,682 \pm 0,013$	$+0,141\pm0,006$	$+0,080 \pm 0,004$
	$115,5^{\circ}$	$+$ 0,281 \pm 0,008	$-0,725 \pm 0,008$	$+$ 0,252 \pm 0,005	$+0,103 \pm 0,004$
	$125,1^{\circ}$	$+0,206\pm0,007$	-0.740 ± 0.009	$+0,379\pm0,007$	$+0,\!106\pm0,\!004$
	148,4°	$-0,298 \pm 0,007$	$-0,475 \pm 0,012$	$+$ 0,609 \pm 0,008	$+0,060 \pm 0,003$
	162,0°	-0.657 ± 0.007	-0.188 ± 0.009	$+0,472\pm0,007$	$+0.030 \pm 0.002$

Tabelle 3 Entwicklungskoeffizienten der $^6\mathrm{Li}(\stackrel{\rightarrow}{d},\alpha)^4\mathrm{He}\text{-Reaktion}$

		400 keV	600 keV	800 keV	960 keV	
σ_{0}^{N}	$b_0^{(0)} \\ b_0^{(2)} \\ b_0^{(4)}$	$+$ 1,000 \pm 0,007 $+$ 0,041 \pm 0,013	$+$ 1,000 \pm 0,007 $+$ 0,125 \pm 0,013	$+$ 1,000 \pm 0,013 $+$ 0,192 \pm 0,027	$+1,000 \pm 0,013 +0,249 \pm 0,026 +0,010 \pm 0,004$	_ **
$\sigma_0^N \cdot A_{zz}$	$a^{(0)}_{zz} \\ a^{(2)}_{zz} \\ a^{(4)}_{zz} \\ a^{(6)}_{zz}$	$+0.036 \pm 0.004$ -0.846 ± 0.011 -0.139 ± 0.015	$+0.022 \pm 0.002$ -0.808 ± 0.006 -0.226 ± 0.009 -0.024 ± 0.010	$+0.031 \pm 0.004 -0.762 \pm 0.012 -0.333 \pm 0.014 -0.054 \pm 0.013$	$+0,056 \pm 0,003$ $-0,729 \pm 0,007$ $-0,413 \pm 0,009$ $-0,062 \pm 0,010$	

		400 keV	600 keV	800 keV	960 keV
$\sigma_0^{N} \cdot (A_{xx} - A_{yy})$	$a_{xx-yy}^{(2)} = a_{xx-yy}^{(2)} = a_{xx-yy}^{(4)} = a_{xx-yy}^{(6)}$		$-0,3568 \pm 0,0018$ $-0,0191 \pm 0,0006$ $-0,0006 \pm 0,0003$	$-0,0268 \pm 0,0003$	
$\sigma_0^N \cdot A_{xz}$	$a_{xz}^{(2)} \\ a_{xz}^{(4)} \\ a_{xz}^{(6)}$	-0.428 ± 0.005 -0.026 ± 0.004	$-0.393 \pm 0.004 -0.052 \pm 0.003$	$\begin{array}{ccc} -0.353 & \pm 0.006 \\ -0.075 & \pm 0.005 \\ -0.009 & \pm 0.003 \end{array}$	$\begin{array}{cccc} -0.332 & \pm 0.004 \\ -0.097 & \pm 0.003 \\ -0.013 & \pm 0.003 \end{array}$
$\sigma_0^N \cdot A_y$	$a_{y}^{(2)} \\ a_{y}^{(4)}$				$-0,0698 \pm 0,0016 + 0,0099 \pm 0,0010$

5. Diskussion

5.1. Drehimpuls und Parität der an der Reaktion beteiligten Zustände

Zur Analyse der Messdaten dienen die Beziehungen (6). Die benötigten $\alpha_{ij}^{(k,p,q)}$, $\alpha_{y}^{(k,p,q)}$ und $\alpha_{0}^{(k,p,q)}$ können für alle mit den Matrixelementen (7) möglichen Kombinationen berechnet werden [31]. Es ist das Ziel der Analyse, mit Hilfe der auftretenden Entwicklungskoeffizienten Aufschluss über die an der Reaktion beteiligten Zustände zu erhalten.

Nach den bestehenden Messergebnissen [1, 5, 6, 8, 15, 16, 19] verläuft die $^6\text{Li}(d,\alpha)^4\text{He-Reaktion}$ bei den vorliegenden Energien zu einem grossen Teil über einen $^8\text{Be-Zwischenkern}$ mit $J^\pi=2^+$. Als erstes wird deshalb eine Anpassung der Messdaten mit Hilfe der über einen 2^+ -Zustand führenden Matrixelemente R_1 , R_2 , R_3 und R_4 versucht. Es zeigt sich, dass in grober Näherung der Verlauf der Daten damit erklärt werden kann. Die Resultate bei 400 keV stimmen weitgehend mit der getroffenen Annahme überein, während bei 600, 800 und 960 keV bereits recht grosse Abweichungen auftreten. Die Mängel äussern sich hauptsächlich bei den Entwicklungskoeffizienten $a_{ij}^{(2)}$, und dies vor allem bei der Komponente $A_{xx}(\vartheta)-A_{yy}(\vartheta)$. Auch bei 400 keV treten bei dieser Komponente die noch verbleibenden Abweichungen am deutlichsten in Erscheinung.

Ein wichtiges Merkmal bei steigender Energie ist das Auftreten der Entwicklungskoeffizienten $a_{ij}^{(6)}$. Diese Koeffizienten können bei den benutzten Einschussenergien der Deuteronen nur auftreten, wenn an der Reaktion ein Zustand mit $J^{\pi}=4^+$ beteiligt ist (Matrixelement R_5). Um Übereinstimmung mit den experimentellen Daten zu erreichen, ist aber neben $J^{\pi}=2^+$ und $J^{\pi}=4^+$ noch ein dritter Zustand mit $J^{\pi}=0^+$ notwendig (Matrixelemente R_6 und R_7). Eine Berücksichtigung von nur zwei Zuständen mit $J^{\pi}=2^+$ und $J^{\pi}=4^+$ vermag die Messdaten nicht wesentlich besser zu befriedigen als ein alleiniger 2^+ -Zustand; die Relationen zwischen den Entwicklungskoeffizienten $a_{ij}^{(2)}$ können nicht erfüllt werden.

Im folgenden werden die Beziehungen (6) für die drei Zustände mit $J^{\pi}=2^+$, $J^{\pi}=4^+$ und $J^{\pi}=0^+$ angegeben. Im Bestreben, mit einem Minimum an Parametern auszukommen, wird eine physikalisch sinnvolle Auswahl der Grössen R_p , q bzw. I_p , q getroffen: Bei den Anpassungsversuchen mit $J^{\pi}=2^+$ alleine hat sich gezeigt, dass das

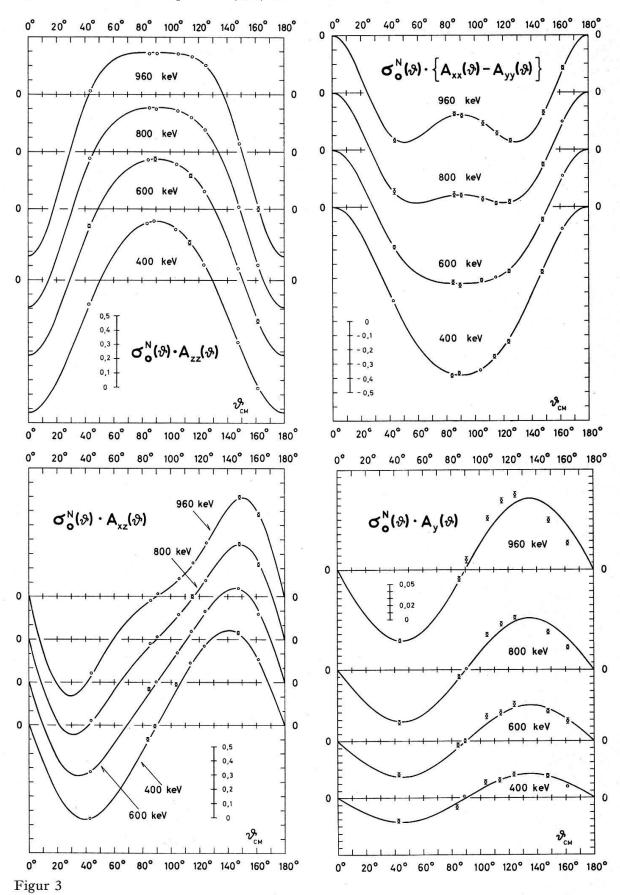
Matrixelement R_1 sehr viel grösser ist als die Matrixelemente R_2 , R_3 und R_4 , was auch aus Gründen der Eindringwahrscheinlichkeit zu erwarten ist. Deshalb genügen zur Erfassung des 2^+ -Zustandes die Grössen $R_{1,1}$, $R_{1,2}$, $R_{1,3}$ und $R_{1,4}$. Ebenso kann man aus der Grösse der Entwicklungskoeffizienten $a_{ij}^{(6)}$ auf ein im Vergleich zu R_1 kleines R_5 schliessen, weshalb nur $R_{5,5}$ und $R_{1,5}$ für den 4^+ -Zustand berücksichtigt werden. Weil auch R_6 im Vergleich zu R_1 klein ist, kann aus Penetrabilitätsgründen R_7 weggelassen werden. Der 0^+ -Zustand geht deshalb lediglich mit den Grössen $R_{6,6}$ und $R_{1,6}$ ein.

Das entstehende Gleichungssystem ist in Tabelle 4 wiedergegeben. Die linear abhängigen Gleichungen bzw. Gleichungsteile sind eingerahmt.

Tabelle 4 Gleichungssystem zur Ermittlung der Entwicklungskoeffizienten aus den Reaktionsmatrixelementen

Für die $a_{ij}^{(4)}$ - und $a_{ij}^{(6)}$ -Koeffizienten ergeben sich Konsistenzrelationen für die getroffenen Annahmen, die durch das Experiment innerhalb der Fehlerschranken bestätigt werden. Es sei darauf hingewiesen, dass bei diesen Koeffizienten der 0+Zustand nicht eingeht. Bei den $a_{ij}^{(2)}$ -Koeffizienten liefert der 0+Zustand seinen Hauptbeitrag und erlaubt es, Übereinstimmung mit dem Experiment herbeizuführen. Ohne den 0+Zustand können die für die $a_{ij}^{(2)}$ geltenden Relationen nur gerade für 400 keV einigermassen erfüllt werden. Die mit Hilfe der Messresultate berechneten Zahlenwerte für die $R_{p,q}$ sind in Tabelle 5 zusammengestellt. Die in den $R_{p,q}$ vorkommenden $a_0^{(0)}$ -Werte können den Arbeiten [10] und [13] entnommen werden.

Die Beziehungen in Tabelle 4 erlauben keine Aussage über die Werte der Imaginärteile $I_{1,3}$, $I_{1,4}$ und $I_{1,5}$. Im Rahmen der zugelassenen Matrixelementkombinationen sollten die Entwicklungskoeffizienten $a_y^{(4)}$ nicht auftreten. Bei Deuteronenenergien um



Komponenten der Analysatorstärke der ${}^6\mathrm{Li}(\vec{d},\alpha){}^4\mathrm{He}$ -Reaktion multipliziert mit $\sigma_0^N(\vartheta)$. Die eingezeichneten Kurven sind Anpassungen aufgrund der getroffenen Annahmen; die Punkte sind die Messpunkte. Wenn die Fehler nicht angegeben werden, so sind sie in der geometrischen Ausdehnung der Punkte enthalten.

1 MeV sind sie wohl klein, aber deutlich von null verschieden. Daraus folgt, dass entweder die Interferenzterme $I_{2,3}$, $I_{3,4}$, $I_{3,5}$ und $I_{4,5}$ nicht mehr vernachlässigt werden dürfen oder aber, dass weitere nicht mehr berücksichtigte Matrixelemente beizutragen beginnen.

Tabelle 5 Zahlenwerte für die $R_{p,q}$ aufgrund des Gleichungssystems in Tabelle 4

	$400~{ m keV}$	600 keV	$800~{ m keV}$	960 keV
$R_{1,1} + 0.2 R_{6,6}$	$+$ 7,20 \pm 0,08	+ 7,04 ± 0,09	$+$ 6,85 \pm 0,11	$+$ 6,73 \pm 0,11
$R_{1,1} - 1,265 R_{1,6}$	$+6,05 \pm 0,07$	$+5,36 \pm 0,06$	$+4,64\pm0,06$	$+4,16 \pm 0,05$
$R_{1,2}$	-0.05 ± 0.03	-0.14 ± 0.02	-0.20 ± 0.04	-0.23 ± 0.03
$R_{1,3}^{-,-}$	-0.14 ± 0.02	-0.13 ± 0.02	-0.15 ± 0.02	$-0,20 \pm 0,02$
$R_{1,4}^{-,4}$	$+0.04 \pm 0.02$	$+0.08 \pm 0.02$	$+0,18\pm0,02$	$+0,27 \pm 0,02$
$R_{5,5}^{7,5}$	$+0.00 \pm 0.04$	$+0.09 \pm 0.04$	$+0,20 \pm 0,03$	$+0,26 \pm 0,03$
$R_{1,5}$	$+0.09 \pm 0.03$	$+0,22 \pm 0,03$	$+$ 0,33 \pm 0,04	$+0,45 \pm 0,04$

Die durchgeführte Analyse lässt keine Aussage zu, ob es sich bei den drei Zuständen mit $J^{\pi}=2^+$, 4+ und 0+ um Zwischenkernniveaus in ${}^8\mathrm{Be}$ handelt. Aufgrund der Arbeiten [1, 5, 6, 8, 15, 16, 19] darf angenommen werden, dass der Zustand mit $J^{\pi}=2^{+}$ grösstenteils dem 2⁺-Niveau mit 22,5 MeV Anregungsenergie entspricht, zu einem kleineren Teil aber auch dem 2+-Niveau bei 25,3 MeV.

Figur 3 zeigt die unter Annahme der Zustände 2^+ , 4^+ und 0^+ berechnete ϑ -Abhängigkeit der mit $\sigma_0^N(\vartheta)$ multiplizierten Komponenten der Analysatorstärke. Bei der Vektorkomponente werden nur die $a_v^{(2)}$ -Koeffizienten berücksichtigt.

5.2. Vergleich mit bestehenden Messungen

Die einzigen Messungen gleicher Art und im gleichen Energiegebiet stammen von Bürgisser et al. [15]. Sie wurden bei einer mittleren Deuteronenenergie von 550 keV durchgeführt. Vergleicht man mit den Messungen der vorliegenden Arbeit, so stimmen die Komponenten der Analysatorstärke innerhalb der Fehlergrenzen miteinander überein. Bürgisser et al. konnten ihre Resultate mit einem alleinigen Zustand mit $J^{\pi}=2^{+}$ erklären, weil ihre Messfehler relativ gross sind.

Für die Ausführung verschiedener Einrichtungen danken wir den Herren des Elektroniklabors und der mechanischen Werkstatt. Die Durchführung dieser Arbeit wurde durch die finanzielle Unterstützung des Schweizerischen Nationalfonds ermöglicht.

LITERATURVERZEICHNIS

- [1] N. P. HEYDENBURG, C. M. HUDSON, D. R. INGLIS und W. D. WHITEHEAD, Phys. Rev. 74, 405 (1948).
- [2] W. WHALING und T. W. BONNER, Phys. Rev. 79, 258 (1950).
- [3] F. Hirst, I. Johnstone und M. J. Poole, Phil. Mag. 45, 762 (1954).
- [4] I. G. HAN und N. P. HEYDENBURG, Bull. Am. Phys. Soc. 7, 570 (1962).
- [5] J. M. F. Jeronymo, G. S. Mani, F. Picard und A. Sadeghi, Nucl. Phys. 38, 11 (1962).
- [6] V. MEYER, W. PFEIFER und H. H. STAUB, Helv. phys. Acta 36, 465 (1963).

- [7] Y. P. Antoufiev, M. M. El-Shesheni, H. R. Saad, Z. A. Saleh und P. V. Sorokin, Nucl. Phys. 48, 299 (1963).
- [8] P. PAUL und K. P. LIEB, Nucl. Phys. 53, 465 (1964).
- [9] G. S. Mani, R. M. Freeman, F. Picard, D. Redon und A. Sadeghi, Proc. Phys. Soc. 85, 281 (1965).
- [10] G. Bruno, J. Decharge, A. Perrin, G. Surget und C. Thibault, J. Phys. 27, 517 (1966).
- [11] N. Longequeue, M. M. J. F. Cavaignac, E. Ligeon, J. P. Longequeue und H. Beaumevieille, J. Phys. 27, 649 (1966).
- [12] G. J. Clark, D. J. Sullivan und P. B. Treacy, Nucl. Phys. A98, 473 (1967).
- [13] F. Bertrand, G. Grenier und J. Pornet, Rapport CEA-R-3428, Commissariat à l'Energie Atomique, France (1968).
- [14] L. G. Pondrom und J. W. Daughtry, Proc. of the International Symposium on Polarization Phenomena of Nucleons 1960 (Birkhäuser, Basel 1961), p. 201.
- [15] H. Bürgisser, E. Baumgartner, R. E. Benenson, G. Michel, F. Seiler und H. R. Striebel, Helv. phys. Acta 40, 185 (1967).
- [16] G. R. Plattner, E. Baumgartner, S. E. Darden, H. Meiner und F. Seiler, Helv. phys. Acta 40, 465 (1967).
- [17] W. E. Burcham, J. A. R. Griffith, O. Karban, G. S. Mani und S. Roman, Nucl. Phys. A120, 145 (1968).
- [18] I. G. HAN und N. P. HEYDENBURG, Bull. Am. Phys. Soc. 6, 415 (1961).
- [19] R. M. Freeman und G. S. Mani, Proc. Phys. Soc. 85, 267 (1965).
- [20] TSAN UNG CHAN, J. P. LONGEQUEUE, H. BEAUMEVIEILLE, Nucl. Phys. A124, 449 (1969).
- [21] L. J. B. GOLDFARB, Nucl. Phys. 7, 622 (1958).
- [22] L. J. B. Goldfarb und J. R. Rook, Nucl. Phys. 12, 494 (1959).
- [23] W. Trächslin, H. Bürgisser, P. Huber, G. Michel und H. R. Striebel, Helv. phys. Acta 38, 523 (1965).
- [24] E. Jahnke und F. Emde, Funktionentafeln (Dover Publications, New York).
- [25] T. A. Welton, Fast Neutron Physics, Part II (Interscience, New York, London 1963), p. 1317.
- [26] S. Devons, L. J. B. Goldfarb, *Handbuch der Physik*, Bd. 42 (Springer-Verlag, Berlin 1957), S. 362.
- [27] Cl. Petitjean, P. Huber, H. Paetz gen. Schieck und H.R. Striebel, Helv. phys. Acta 40, 401 (1967).
- [28] H. Grunder, R. Gleyvod, G. Lietz, G. Morgan, H. Rudin, F. Seiler und A. Stricker, Helv. phys. Acta. 44, 662 (1971).
- [29] G. G. Ohlsen, J. L. McKibben und G. P. Lawrence, Proc. of the 3rd International Symposium on Polarization Phenomena in Nuclear Reactions, Madison 1970 (The University of Wisconsin Press, Madison 1971), p. 503.
- [30] W. W. LINDSTROM, R. GARRETT und U. von Möllendorff, Nucl. Instr. and Meth. 93, 385 (1971).
- [31] F. SEILER und E. BAUMGARTNER, Nucl. Phys. A153, 193 (1970).