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Multi-particle Quantum Systems
below the Four-Particle Threshold %)

by Alex Schtalheim
Seminar fiir theoretische Physik, ETH, Ziirich, Switzerland

(3. IL. 71)

Abstract. In the time independent approach to the scattering theory of a quantum mechanical
system of N nonrelativistic particles, the wave operators are expressed in terms of amplitudes
satisfying the Faddeev-Yakubovsky equations. We study these equations for energies below the
four particle threshold s,. A graphical method is introduced to classify and analyze the singular
integrals occuring in the iterated Yakubovsky kernels. Under a certain spectral assumption, we
establish and control the Fredholm alternative. Partial asymptotic completeness of the scattering
states below s, follows.

1. Wave Operators and the Resolvent Operator

We consider a quantum mechanical N-body system with a Hamiltonian
N g2

Hes) —— V:; = H° 1.1

=1 2m5+1gi§SN Y v ( )

acting on the C-M Hilbert space H{ = L2(R3"-3). The p, and the m, are respectively
the C-M momentum and the mass of particle 7. Throughout this article we shall
assume that the Fourier transforms v,; of the potentials satisfy Faddeev’s conditions

[2]:

o) | <c (L4 k)% 6> 32, (1.2)
o (B +h) —o(k)| <c (4 [R]7° A", |A <1, p>1/2,
o(—k) = v(k) . (1.4)

In particular, the potentials are real valued and L2 in x-space.

Let a;, be a partion of {1, ... N} into % disjoint clusters (4,, ... 4;). The Hamil-
tonian of the non interacting clusters is:

— — — 1go 70 — o T
i, =5 +£kvai =H'+V,=H, +H, +V, =H +H, (1.5)
where
Va E_EAVU, (1.6)
<€
k
_ p(A,) _
Bl= Y 2 U2 =F 1.
o, 2 2m(d) a(Pay) (1.7)
and

1) Extracted from the author’s thesis [1].
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A= X Eyby) Eaps) = 3
% A;eay A4 Ll i€A; 2 m,
J J

The introduction of the total momentap, = (p(4,), ... p(4,)) of the clusters 4; and

of the momenta pi(A;) of the particles in A j relative to the C-M of 4; corresponds to a
factorization of the Hilbert space:

(1.8)

k
U=, @H, = U, @H, (1.9)

H, acts in the obvious manner on the product (1.9).

The operators H, H, and H o, are self adjointon D(H ) and D(ﬁgk) respectively
and bounded from below [3].

The operators H, describe possible asymptotic motions of our system. In order
to formulate this we define a channel as a pair (a,, @ak) where a, is a partition of
{1,...N} and @, € H,, is a bound state of Flak: H, $, = —%, @, On thechan-
nel states @, € D, = H,, ® ¢,,, H,, reduces to the channel Hamiltonian:

¢ __ 1o 2
H, =H, —u, . (1.10)
It is well known [4] that the wave operators defined as the strong limits |

Q= =s- lim ¢

. crrC

1Ht e_zHa t

ay k
t—4 o0

(1.11)
exist on all of #. Thus exp{—i H,, ¢} D, tends strongly to exp{—1: H t} QF D,
as t — -+ oo.

In formal scattering theory the wave operators are expressed in terms of boundary
values of the resolvent operator. On a rigorous level we have the following result by
Hunziker [5]:

Theorem: (1,12)

Let H and H = [ 2 dE%(}) be selfadjoint operators on H and let € H be such
that

% = i T iHt , iHGt
vhsi lm o ey
exists. Then p+ can be represented as
yﬁzyT?—nfRM—nMBWw, (1.13)
g 0

where R(z) = (# — H)™! and the integral exists as strong limit of Stieltjes sums.

The time independent approach to scattering theory consists in the use of (1.13)
for the computation of the wave operators. Therefore it includes the investigation of
the resolvent operator R(z).

In order to describe the method of Faddeev and Yakubovsky [2, 6, 7] we need
a few notations. Let q, and b, be two partitions. ¢, C b, means that every cluster of a,
is contained in some cluster of 4,. By definition a,__b, is the partition arising from a,
by the additional connections of b,; i.e. two particles 7 and 7 belong to the same cluster



644 Alex Schtalheim H.P. A,

of a,l__b, if and only if there is a particle %, such that the pairs (7, £) and (7, &) are
each contained in some cluster of @, or b,. A sequential connectivity «, is a sequence
of partitions of the form:

Otk:(ale,dN_z,...ak), 6l£+1 Cai, N—l;i;k. (1.14‘)
The operation |__ for sequential connectivities is defined by

o L B, = (@ =qs von By Cpagy 553 8y) 5 (1.15)
where the subsequence (a,, ¢,—,, ... ¢,) is obtained from (a,, a;| _by—,, ... a,l__0,)

by retaining only one partition from any maximal subsequence of identical partitions.
We shall use the notations:

Rlag,2) = (z— H, )™, Ryz) = R(an,2), R(z) =R(a;,2), (1.16)
T()=V,+V, Rla,2V,, Th=T/I(),

a a
TH=V,, R(aN_l, 2) V(aw —glan—1) R(an -5, 2), ... V(aglag+) (1 + Ra;,2) V),
(1.17)

with
@ Ca; and V(a)fa,+,) =V, =V, - (1.18)

These quantities are related by [7 8]:
2 T“k+1 2 ];Zk 4;2 .+ 2 j;ofvf\‘ 11 (119)
°‘k+1C°‘k ap +2C o ay -1C o
R(ay, 2) = Rol2) + Rol2) T, (2) Rof2) . (1.20)
By o, C &, we mean that «, can be continued to «,. A graphical interpretation of the
above definitions is given in Ref. [7]. The Tu:kﬂ(z) obey the Faddeev-Yakubovsky
(F-Y) operator equations (cf. [2, 6, 7]):

T,p1(s) = T, 1() + 3 Q1 1(z) Ryfe) T1(2) (1.21)
or in matrix notation J, = J¢ + Q,, R, J,,, where

Qs 18+1(s) = I T,(2) Rofa) Vi + 2" T, 41(2) Rola) Vo, - (1.22)
2" denotes the sum overalloc[anddN_lquchthatocl Cootpigs 0L Bryy=omo,l  Brpiqs=
o +1 and dy—y Ca,,dy—;|_b,+, = a,4+,. The summation X" differs from 2" only

by the additional restrlctlon dy-1L_a,+,=a,[7]. The advantage of the F-Y equations
rests upon the following two properties:

a) Uniqueness: In the family of operators with a domain D ~ D(H?Y), the i s 1(z),
defined by (1.17), are the only solutions of the F-Y equations for z in the resolvent set

of H [2, 6]. (1.23)
b) Connectedness: For any n = N — k the nth power of the Yakubovsky kernel
1s connected, i.e. there is no factorlzatlon of the form {( Qu, Ro 32 = 0 ® I:Ha in
H-H QW18 (1.24)
According to Ref. [8],
Tor(z) = D) Qub+1Pr+1(z) Ry(z) Tk+1(z) . (1.25)

Br 41
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Hence we are lead to the following procedure for the computation of the T-operators.
After solving the Lippmann-Schwinger equations

TN 16) = Vi + Vay_, Rol2) T 1(0) (1.26)

N1
we can construct ¢, according to (1.22) and thus formulate the F-Y equations
for k = N — 2. After computing J; __ and ¢
N — 3, etc.

In Ref. [1] a generalization of the F-Y equation is proposed for systems inter-
acting via a sum of 2-, 3-, ... and N-body forces. These equations have the connected-
ness property and for N = 4 the uniqueness property is also verified. Here we shall
only consider Hamiltonians of the form (1.1).

=1

ay s We pass to the equations for k =

2. Faddeev’s Program for the F-Y-Equations

Weexpect that the 7,2 +1(z) act as integral operators in momentum representation.

This Ansatz leads to the F-Y integral equations for the corresponding kernels. In the
passage to the F-Y integral equations, it is desirable to preserve the existence of a
unique solution (1.23) and even in view of (1.13), to extend this property for Im z |, 0.
Faddeev’s program serves to accomplish this by establishing the Fredholm alternative
for the integral equations without loosing control over the solutions of the homo-
geneous system, even in the limit I z | 0. For this aim, the Ansatz for the kernels
has to be more differentiated.

The definitions (1.17) indicate the appearance of multiplicative singularities in
ther kernels of the 7,%(z) of the form [7]:

Kk 12 = (:—E,(B) (= E,(R)™... (2= E,, (k) F(k1,2)

31

X (2 — E,,j O)y...(z2— E%(z))fl (2.1)
with ail.C ;. C...Ca; and d; C... Cb; , where
E (k) = E, (k) — x> . (2.2)

The handling of these singularities is greatly facilitated by the following two

properties of the spectra o(H):

a) The part of U(I;Ta) in the complement of ac(ﬁa), the continuous spectrum of H Py
consists of eigenvalues only. These are of finite multiplicity and can accumulate
only at the lower end ¢, of ch(I-} o). A proof of this may be found in Refs. [9] and
[10]. (2.3)

b) Thereisad, > Osuchthat [¢, — §,, + o0) is free of eigenvalues. Thisis a standard
assumption, cf. [1, 2, 7]. No general proof is known. For attempts of a partial
answer we refer to [11]. (2.4)
In accordance with (2.3) and (2.4) we assume, for notational convenience,

that H, has exactly one non degenerate eigenvalue — x5 strictly below the

continuum and that 4 = min (%2 — 2%}) > 0. This implies for any a Cb that

Re[{z — E (k,)} — {# — E,(k,)}] = d > 0. Therefore the multiplicative singul-
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arities (2.1) can be separated by a Hélder continuous partition of the identity (cf.
[1, 7]), which yields:

];:k+1(k, l,2) = 5% (;}ak — zak) {Ta;‘k+l(R, R |k 1 2)

To(a;, R | kL z) T@e(R,d |k Lz  T2+(a;,d |k 2)
t2 l Ea%.(k) T 7 — E() T =B —E0)
(2.5)

Qg’?+lﬁk+1 Ry(k, 1, 2)

_ E 9 , Q;‘k+1ﬂk+1(RJ d|k 1z Q Be1(a,, d | k, 1, 2)
= 8, (kg lak)Z { —¥ U T E,(z))'} 6)
6% a, =[] 8 (k(4;) — U4,)) . (2.7)

A; jcag

By (1.17) and (1.22) 2" extends over all a; € o, +; and & C a,, d =+ a,, ay, whereas X"
is the sum over all @, € a; 1+, and d C a, 4, such that either d = dy or d 5 dy—, with
dy—4L__b,4+; = a,. The index R denotes a regular part. It is clear that (2.6) contains
additional J-functions arising from contributions of a lower connectivity than
a,. By construction T 2#+1(R, d | k, [, z) is different from O only in the region
| Re z — E,(l) | < 2/3 d; in this region all the other denominators are bounded by 3/d.
A similar statement holds for the other contributions.

This leads to the following representation of the F-Y equations:
Ta:kﬂ(ai, g |kl g)= T“k ;-l(a., d| k1 2)

%k 11 Bp + k, TPk+1(b,d |, L,
N Z/dﬁ Qir+11(a ¢ | b p,2) T2 (b,d | ,4,7)
B +1,C

g Eb(?b)

% +1 Pk +1(a Tﬁk+ b, d |1,
. fdP Q17 41(a, El $.2) 1( ELT I
Br+1, O beB 11

(z = Ep) (= — £u(p))

It is understood that the variables &, / in (2.8) are adapted to the §-functions in (2.5)
and (2.6). In matrix notation (2.8) reads:

T @102 =To@ |02+ A, 2) T, (@11 2). (2.9)
Aequivalently we may discuss:

T |12) = TN 12) + Al 9T, (@ 11.2), 2.10)
where

n—1
T, = () T, and T, =9, — 3T,

In the discussion of (2.10) we shall frequently use the following terminology:
The term a-connected amplitude’ denotes a product of the form 8, (k,—7,) (z— E,(k))™?
X K(b, ¢ |k 1, 2) (z— EI))~* where K does not contain §-functions and b C a, ¢ C a.
The denominators will be referred to as ‘b-connected left propagators’ and ‘c-connected
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right propagators’, whereas the numerator K will be called ‘a-connected component’.
An a-connected component will be termed H-C if K depends Hélder continuously on
k,land z € II, HereIl, denotesthecomplex planeslit along [¢,, + o) and completed

by its limit points from above and from below (which are not identified).

It follows from Privalov’s lemma (Appendix I) that A4, (/, z) defines a linear
operator in the Banach space B, (6, u). This suggests to discuss (2.10) in B, (0, u).
In order to show that ”ﬂgk(d |1, 2) is a B, (6, u)-valued function which depends Hélder
continuously on’and zell,, and to establish the Fredholm alternative for the equation
(2.10) in a region {z EHé‘ak’ Re z << E,} it suffices, according to Refs. [12] and [7]
(cf. also [1]), to prove the following two properties for the elements of the kernel
matrix (Q,, Ro)" (k, 7, z):

a) Any amplitude contributing to (Q,, Ro)" (k,/, z) has @,-connected H-C components
of an index o« > u > 0. (2 A1)

b) For some >0 >0 the componehts of (Q,, Ro)" (%, 1,z) are bounded by
C N, (%, B) N,,(l, f) uniformly in land z€ I1,, 0 {Rez < E}. (2:.12)
These properties also show that (A4, (, 2))* depends, in the sense of the operator norm
in C(Bak(ﬁ, ), B,,(6, u)), Holder continuously on /and z. Thus a solution of (2.10) is
H-C at any regular point (Z, z).
In order to control the Fredholm alternative for z = E + 1 0, E — o,(E ak)’ it 1s
necessary to require:
S: For some ¢ > 0 the interval &4, — 9, c0) does not contain singular points of the
equation (2.10). (2.13)

This is of course closely related to the spectral assumption (2.4).: Any z¢o,(H,, ) is a

A

singular point of (2.10) if and only if it is an eigenvalue of ﬁak [2, 6]. The same holds
for E +10€e0,(H,,) if p > 1/2 [2]. '

The critical terms for the decrease at infinity (2.12) of (Q,, R)" (%, ], z) arise from
the regular parts in @, R, since the remaining contributions have compact support

with respect to the variables appearing in the propagators. From the way one
proceeds, solving successively the F-Y equations for the T +1 with decreasing /, it

becomes clear that the purely regular contributions to (Q,, R,)" may be estimated by
purely regular contributions to Born terms of sufficiently high order for (Q,, R,)". The
latter ones were estimated by Hepp ([7], Lemma (3.3)):

Lemma: (2.14)

Any purely regular Born term G contributing to (Q,, R)"(,/,z), withn =4 (N—&,)
is bounded by C (G, Eg) N,, (%, 6) N, (}, 6) for some 6 > 3/2, uniformly in 2, and
Re z < E. Furthermore it is H-C of an index 4 > 0 with respect to %, /, 2.
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This settles (2.12). In the sequel we concentrate on the proof of the regularity
property (2.11), which amounts to a discussion of the singular integrals arising in the
iterated Yakubovsky kernels. In § 3 we shall see that the iterad Yakububovsky
kernels may be represented as a sum of generalized Feynman integrals with H-C
numerators. The separation of the singularities confines the momenta occuring
in the propagators to bounded regions. With arguments similar to those invoked
for the verification of (2.12), it is always possible to assure the convergence of
the integrations over the remaining variables, absolutely and uniformly in Re z <
E,and in the propagator momenta. We shall refer to this fact as‘sufficient decrease’
of the integrand.

3. Graphical Representation of Singular Integrals

In this paragraph we develop a graphical tool for the classification and the
analysis of the singular integrals arising in the computation of the iterated F-Y
kernels. Our graphs will only specify the singular energy denominators and the
Hoélder continuity and connectivity structure of the numerator in the integrand.

In the integrand for the iterated F-Y kernel [(Q,, R,)"]*+1 Pr+1 we insert H-C
partitions of the identity in order to separate the multiplicative singularities asin (2.1).
This yields a finite sum of products of amplitudes. To fix the notation, we recall that
the 4™ factor consists of a ci,-connected component 8,:(p’; ' — p%) f(pi =1, i, z) and
possibly an /-connected left-propagator (z — E,(pi7))~! and an #%,-connected
right-propagator (z — E,(p’))-1. Components which are not H-C arise from the low
order iterations of the F-Y equations. If in these iterations we still encounter non H-C

components, we reiterate until we obtain H-C components. Thus the integrand for
[(Qq,, o)) +1 Pe+1 can always be written as a finite sum of products of amplitudes with

H-C components. With each product we associate a sequence of connectivities

{To) cr(nw) » -+ E) (7o)} s (3.1)

where () denotes a possible omission. To such a sequence we relate in a one to one
manner a graph as follows: We draw N horizontal lines representing the IV particles

of the system under consideration. For a ¢, = — (C’, ... C¥)-connected component
we draw a ‘c;-connected’ straight vertical line (‘c-line’), i.e. an assembly of straight
vertical lines connecting the horizontal lines of the particles in the clusters C' ... C¥

respectively. For clarity we dot the intersections of the vertical lines with the linked
particle lines. For any /,-connected (m << N) left propagator we draw an /_-connected
wavy vertical line (‘p-line’) to the left of the corresponding component line and
similarly for the right-propagators. The free propagators will be represented by
undotted vertical wavy lines.

After integration over the d-functions, momentum conservation at every c-line
has to be taken into account for the choice of a set of independent integration variables
(‘loop momenta’).

Example (N =4, m; = 1/2):
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The graph
k A h
— 1l m ] | iy
T ! | o
‘ ; h Fig. 1
' Prrhyhy ’

represents the following type of integrand:

(Z T 7"?2 — 1/2 (kg + ky)% — k§ = ki)—l f123(R, £, 2) (Z + %33 - P% —1/2(py+ ky)® — ki)—l

(2+ 35— 1/2 (P + k) — P — k5) ™ frapaals R, 1, 2)

(2= A7 — B3 — (pat kot 1y)2 — (Po+ Ry — D)) faal, R 1, 2) -

A c-subgraph is a portion of a graph between two c-lines, including these. It is
said to be contractible to a c-line, if the integration over the intermediate momenta
yields an H-C component. A trivial contraction is possible whenever the subgraph
contains no p-lines: it involves only integrations over d-functions and over H-C
functions of sufficient decrease (cf. Sect. 2). A graph is called contractible if its
maximal c-subgraph is contractible. It is called partially contracted, if only non

maximal ¢-subgraphs have been contracted. After contraction a ¢c-subgraph becomes
a c-line, and we relabel the momenta and lines of the graph accordingly.

Let us state in a theorem those properties of the graphs which reflect the com-
binatorial structure of the F-Y kernel (2.6) and the fact that we have separated the
multiplicative singularities.

T heorem.: (3.2)

A finite number of graphs is associated with the iterated F-Y kernels. Graphs
which are obtained from each other by an exchange of neighbouring p- and c¢-lines
of equal connectivity are aequivalent. After the trivial contractions have been
performed, the following relations hold for any ¢ > 1:

B, BCe,

yi b Ji+1l pio4 i1

ri p citl, v, € citl for wu(i) = N,

¢l & Ji+1 ) i & gi+l,

Proof: The relations #* ¢ /i+1 and 7! /i +1 exress the fact that we have sepa-

rated the multiplicative singularities. All the remaining properties follow from the
combinatorial structure (2.6) of @, R,,except 7’ 3 ¢'*1. The latter is a consequence

of the trivial contractions.

For the sequel the following lemma on the choice of loop momenta is useful:

Lemma:
Let a = (4,,... 4,) and b, = (B, ... Bi;) be partitions of {1,... N}. If for

(i) —

any 4, A;u 4, is contained in a cluster of ¢i==al__ b= (Ci, ... C,;), then the
momenta k(B?) do not determine £(A4,) and £(4,) separately.
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Proof: We label the clusters of ¢f such that 4, y 4, C C}. Hence
Kdy) + k(Ay) = 3 k(B)— Y kA), i=12,..

) 7 %
ByC ¢y 4, C ¢
I+ 1,2

Obviously, these equations determine at most the sum 2(4,;) + &(4,).

We conclude this paragraph with a notational remark. We shall write 4 NZ G;,
ic1

whenever the graphs associated with the quantity 4 are G,, G,, ... G

n*

4. Contractibility and Maximal Regularity below s

In terms of contractibility, the regularity statement (2.11) reads: Forn = ny(a,, N)
and Rez < E, the graphs arising from (Q,, Ry)" (k,/,z) are a;-connected and con-

tractible. It is sufficient to prove this assertion for # = n, because of the

Lemma: (4.1)

A graph G to (Q,, R,)" containing an a,-connzcted contractible ¢-subgraph is
contractible.

Proof: Apply Privalov’s lemma (Appendix I).

In the subsequent discussion we confine ourselves to E, <<s, where s, is the

4-particle threshold s, = ir;f‘l {x|xe a(ﬁ[ak). In this region only a,connected (! = 3
p-lines have to be considered, since the propagators of lower connectivity become non-
singular and will be incorporated systematically in the components. It will turn out
that this implies that the contractions based on Privalov’s lemma (‘Privalov con-
tractions’) and on Faddeev’s lemma (‘Faddeev contractions’), summarized in
Appendix I, allow to show the contractibility of any graph. We only treat systems
with more than 3 particles,

Lemma: (4.2)
QP Ry) (b hy2) ~ 3 e}, k=4 |
CIJ_lbkk:“k—l
el bpy1=a

Proof: The lemma holds for £ = N. We make the induction assumption that it is
true for & = &+ 1. Therefore the graphs to (Q,, Rg)*® ~# can be contracted trivially.

This, together with the estimate (2.12) shows that the Fredholm alternative applies
to the F-Y equations for T;‘]f +1, Since we consider the region Re z < s, only, there is a

unique solution in B, (6, u). Hence T;‘:H ~{c, = a,}. By (1.25) and (1.22) the lemma
results.
The F-Y equations for 7§+ can be treated the same way. The only difference is

the appearance of a simple pole at z = E,, (k, ), generated by the bound state of H #
Using (1.25) we obtain:
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Lemma: (4.3)
T ~{e=a}, 1 >4 and T,) ~ {5 = a5} + {ls = a5, ¢y = a3} .

By (1.22) we may conclude (for N = 4):

Lemma: _ (4.4)
Qg:'a; Ry ~ 2 {e.} + {ls= B3 D= “;}
€ € oy
¢l al=a,
eyl alt=ay
Lemma: (4.5)

Any graph G to (Q, Ry)", n > N — 2, is connected and contractible.

Proof: G is trivially contractible if there is no p-line in the interior. The case
where G contains inner p-lines is only seemingly more difficult since these arise in c-
subgraphs of the form

L h=d},ch=a} or {dt=aiY, i =ai , li = a}, c§ = a}}. (4.6)
Both are a,-connected by (4.4) and trivially contractible since the p-lines can be

shifted to the exterior of these subgraphs by theorem (3.2). Lemma (4.1) implies
that G is contractible.

By arguments we are already familiar with, we conclude that the Fredholm
alternative applies, in some B, (0, u), to the equation:

"Td 14 ) =T |1, 2) + Al 2) T,(d |1, (4.7)
for n >4 (N — 2). Together with our spectral assumption (2.13) this allows to
conclude that (4.7) has a unique solution in B, (0, u) for z€ Il,, 0 {Re z < s,}, except

for a bound state pole at z = E, (%, ). Now it is helpful to remember the definition of
B, (0, u) as direct sum [7]:

Baz(e: ‘u) = @ Bag(ay ,u) 0€3) L) (4.8)
as C aq
where, according to (2.5)
Bag(el M 0('3) = Bag(es M R) @ Baz(G, M | ai) . ‘ (49)
a; € og

By construction "T,*(a;, d | k, &, z) is equal to the B, (0, u, a;)-component of the
solution *J, (d | 4, z) of (4.7). Summarizing our discussion of (4.7) in graphical terms
we have:

Lemma: (4.10)
La ™ {oa = as} + {ls = a3, c3 = a3} + {co = as} + {l3 = a3, ¢ = a5}
+ 2 {13:613, C2=a2,1’3}+{l2=dz,02:—‘02}.

73 C ag
From (4.4) and (4.10) we deduce that the graphs to T = 2" Qg A R, T% area,-
connected and contain a ¢-subgraph which is trivially contractible. This leads to the
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Lemma: (4.11)
T ~{co=ag} + {ls = a5, ¢, = a} + Z Lo s= 8 = g, #y)

73 C ag

+ {la = a, ¢y = ay}, )
:f' * Ry ~Z" {c)} + {ls = ag, ¢ = ag} + {ly = ay, ¢y = 4y}

+ {I; = a;, By = a;,r3} + {I;= a;_, By = a;} i

In X o is restricted by the conditions

L 2 o ’ 2 o 4 ’ 2 . r 2 . ’
a, | a4y = 4y, a,l_a;=a,, a,l_a; =a,, a, l_’a3 = a, and ¢; ranges over
all ¢y € a, such that ¢, a =a,, and ¢, |__ a5 = a,, whereas 7; is subject to
!
73l a2 = a,. (4.13)

The formula (4.13) is the basis for our study of the graphs G arising from (Q, R;)".
By performing all possible trivial and Privalov contractions we are lead to a graph G'.
G’ (and therefore G) is contractible if it contains a connected c-line. If there is no
connected c-line in G’, we cut G’ at the 2-connected p-lines into sectors. We shall
essentially show (Lemma 4.75) that the ¢th sector contains 7(#); 1 < 7(¢) < 3, propa-
gators of the form:

[z + »? — n; ?5:2 - ": (P; + pi+a)? + 2y D707,
for 1+ X' r(t) <i<< ) r(t). (4.14)
: tr <t

<t
Hence if G’ contains at least 4 sectors, Faddeev’s lemma (cf. Appendix I), applied to
the integration over p,, p5, p,, provides the analytical tool for the contraction of G’
(and G). Example:

P Fs

) E

{ nl § {
3 “3 g ina ) fr7  Fig. 2
sector 1 | Sector2

secior 3 |
It will turn out that G’ contains at least 4 sectors provided # = 5 (N — 2). This
shows that n, = 5 (N — 2) is a possible choice for the contractibility statement (2.11).
It remains to verify (4.14). The following lemmas on the structure of the sectors are

devoted to this task.

Lemma: (4.15)

Let G be a graph obtained from (Q, R,)", after all possible trivialcontractions
have been carried out. Then, every c-subgraph of G, containing more than one ¢-line,
contains at least one 2-connected c-line.

Proof: By assumption, the c-subgraph between cj; and cjj1,, contains at least

one p-line. If &(7), k(z + 1) = 3, the p-lines 7/ and /' +* must be 3-connected. Therefore,
they can be shifted to the exterior of the subgraph, which contradicts the assumption
that no c-subgraph is trivially contractible.
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Lemma: (4.16)
Let ¢?, + > 1, be the ith c-line. If ¢t is 2-connected, ¢~ _ ¢! = a,.
i—k—=1 i—h
Proof: ¢i—1 arises from the contraction of a ¢-subgraph to some Q* 2% Ry
ay

i-1 i : : ; ; A

Q™ +*R,. Formula (4.13) implies: ¢~1~ a}~! with 4" |_ a4} = a,. But ¢ was
' i+l i+l a+l+1

obtained from the contraction of a c-subgraph to QZ‘Z’“ RO,...Q“: ) o R,.

a

Therefore ¢f = 4. Hence ¢#-1)._ e 5 ai~ L. &} = a;.

Lemma: (4.17)

Let chy, chi;+1) be two c-lines in a graph G where trivial contractions and Privalov
contractions are not possible. If ¢/ is 2-connected, ¢} L__ ¢y} = 4;.

Proof: In view of (4.16) we can assume % (¢ + 1) > 3. The c-subgraph between ¢!
and ¢/ *1 takes the form {ci, 7}, cj;} )} after shifting /:+1 to the exterior, if necessary.
! must be 3-connected; otherwise it could be shifted to the exterior. Let 75 = (R%, R:, R})
and ¢, = (R}, R}, R:). Theorem (3.8) implies ¢ty & ;. Therefore ¢i+1 connects
either R! and R} or R! () R and Ki. In the latter case ¢']__ ¢*+1 =4, as the lemma
states. In the first case lemma (3.10); on the choice of loop momenta, tells us that
p = k(R?) is independent of the external momenta of the subgraph and may therefore
be used as loop momentum. Denoting the remaining loop momenta with g, the c-
subgraph in question represents an integral of the form:

[ daa@p k1, p, 9,2
X {z+ %2 — n(RY) p* - n(RY) (p + k(RS2 — n(RE) (R},

where

n(d) = (2m(4))L. (4.18)
Therefore the contractibility of the ¢-subgraph follows from Privalov’s lemma. This
contradicts the assumption of the lemma.
Lemma: (4.19

Let G be a graph to (Q, R,)", which does not allow trivial or Privalov con-

tractions. Then any subgraph of G, containing more than one c-line, is connected.
Proof: (4.15), (4.16), (4.17).

Lemma: (4.20)

Under the assumption of lemma (4.19), p-lines which cannot be commuted to the
exterior of the graph are 3-connected.

Proof: Suppose there were a 2-connected p-line Z in the interior of the graph.
The c-subgraph between ¢i~! and ¢i+! must be of the form {ci™%, #i%, I = a,,
¢ = ay, 554, ¢!}, Theorem (3.8) states #i~! ¢ Ii = ay. Therefore 7511 __ ¢ = 4.
But, repeating ‘the arguments in the proof of (4.17), we see that the conditions
ri~1 Cei™' and 7571 ¢} = a, are sufficient for the c-subgraph {c7?, r;~1, ci} to
admit a Privalov contraction, contrary to the assumption.
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Lemma: (4.21)

Let G be as in (4.19). If {_cg, rg,’ Chiitq)} is a c-subgraph of G, then 7 L C%iy = dy
\ivith Co L ay = ay. If {64y, l5*1, c;" '} is a c-subgraph of G, thency; L i+l = a,with
d2 l_ 014‘1 = al.

‘ Proof We consider {ci, 7}, ci;iy)}. By theorem (3.10) 7 $ cifi}y). Therefore
ra L ck (i+1) is at least 2-connected. If it were connected, the subgraph would admita
Privalov contraction, according to the arguments in the proof of (4.17). The same
applies to the case whereri | cii} ) = @, = ci. Therefore, to avoid a contradiction
with the assumption, we must necessarily have 7} |_ cifit,) = @, with ¢i L 2, = a;.
The discussion for the subgraph {ci, %, ci*!} is similar.

Examples:

i |

| Fig. 3
i % _ a1 i 1 i+1
Cy F Ay ag=c; ¢ Crgl_ Chivy

— G contractible — ( contractible

From now on we shall refrain from graphical illustrations. For the readers ease we
remark that the 5 particle system provides examples for all the statements following
below.

Lemma: (4.22)
Let G be asin (4.19), and let {ci, 7%, li*?, ci*'} be a c-subgraph of G. Then either

the relations a), (4.23), or the relations b), (4.24), are satisfied.

a) Al _ctr=a, il LET=a, L % a,, (4.23)

B #il_d& % e, ordl By (4.24)
Proof: The relations 7{ |_ci*! + a;, and ¢, I;"* + a, cannot be satisfied

simultaneously because this would imply 74 Cci*! and 5! Cci. However, two

partitions a, + b, have at most one common refinement ¢, ., [6]. Hence Z; = Ii*3.
in contradiction with theorem (3.2). It remains to show that the relation

Al _ctl=cil Etl=ril 6t =gq (4.25)

is contradlctory to the assumption of the lemma. Suppose (4.25) holds. Let
= (Ry, Ry, Ry), 6= (Riu Ry, Ry, (4.26)
lw+1 (Lz+1 L'H-l L¢+1) ’ 1,+1 (L@+1 L;+1’ Lg-i—l) . (427)

k= k(R") and &, = k(LL"Y) are external momenta of the subgraph. The relations
rs Cchandril c” 1 — g, imply that both, ¢/ and ¢i+1, connect the clusters R} and R?.
By lemma (3.3) 4, = £(R}) may be chosen as a loop momentum. Similarly, it follows
from (4.25) that each of the connectivities ¢f, ¢i*! and 7' connect Li*! and Li*!.
Therefore p, = k(L.*!) may be chosen independently as a second loop momentum.
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Thus a c-subgraph {ci, 7%, Ii*1, ¢i*1}, satisfying (4.25), represents an integral
of the form

Jab 1, £,2) (2 4+ 5 — nlRE) B — n(RY) (py + k)? — n(R)) 4317
X [+ = m(LE™) 42— a(L5™Y) (py + bn)? — m(L5) BETL. (4.28)

By applying Privalov’s lemma twice, we see that the graph is contractible, which
contradicts the assumption of the lemma.

Lemma: (4.29)
Let {ci, 7i, ci™1, [L72, ¢i*2}, k > 3, be a c-subgraph of a graph G satisfying the
hypothesis of lemma (4.19). Then the relation i1 __ ¢i*3|_ I5*® * a, holds.
Proof: Suppose 74 |_ci*']__ [i*! = a,. The partitions ¢, 7§, I+2, c;*2 are given by
ri= (R, Ri, RY), ¢ = (R R:, RY), (4.30)
l;+2 _ (Lfi'+2’ Lg+2, L;+2) , Cg+2 — (Li+2u L;JﬂJ Lg+2) i (431)
By lemma (4.21),74 ] ci*'and c¢i*'|__ Ji*2 are 2-connected partitions. On the other
hand it follows from lemma (4.19) that .| ci*'=ci* | ¢i*? = a,. Thus ¢;*!

connects R! () R} with Ri and Li*!( Li*® with Li*2 If the clusters are suitably
labelled, we can write therefore:

AL — (R, Ry R, | +32)
C;;+1 |_lé+2 - (L-i+2, L?-ZU L§+2) . (433)
ky = k(R:) and hy = k(L.*?) are external momenta of the subgraph. ¢j|  ¢;*' =
;"' L_ei*!t = a, shows that p, = k(R!) and p, = k(Li*?) cannot be determined by
external momenta. If furthermore 7% |__ (ci*!|__/i*?) = a,, p, cannot be determined
from the external momenta and p,. Therefore p, and p, are independent loop mo-

menta. Privalov’s lemma, applied to the p, and to the p,-integration shows that the
subgraph is contractible. Therefore 7i| __ ¢i*! = [i*? = 4, must be false.

We are now prepared to verify the structure (4.14) of the propagators in a sector
of a maximal c¢-subgraph satisfying the assumption of lemma (4.19). There are two
kinds of sectors; exterior sectors, to the left of the leftmost cut and to the right of the
rightmost cut, and interior sectors. Let us turn to the interior sectors first. These are
in a one to one correspondence with the minimal ¢-subgraphs between two 2-con-
nected c-lines.

We shall consistently use the following notation for the clusters in the con-
nectivities of the $- and c-lines:

ls= (L3, L3, Ly); 7= (R}, RS, Ri). (4.35)

¢y =(Liu Ly, Ly) = (Ryu Ry, Ry) . (4.36)
i.e. L} and Ri are the clusters of Z; and 7. respectively, which also appear in c}.

G =(Li, L}, L}) . (+.37)
If no p-line is attached to ¢, we write: (4.38)

VR (i A (4.39)
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We now start with lthe classification of minimal c-subgraphs g between two

2-connected c-lines. The main classes are given by:

I: g contains two c-lines: ¢} and cZ. (4.40)

II: g contains three c-lines: ¢3, ¢;, ¢3, k = 3. (4.41)
Class I 1s subdivided further by:

I.1: g contains one p-line: 7} or /2, (4.42)

I1.2: g contains two p-lines: 7; and 2. (4.43)

L.1: The structure of g is discussed in lemma (4.21). It implies r; C ¢}, 73 C c2
and ¢zl ¢ = a,. Similarly /2 C¢2,72 Ccl and ¢}l c2 = a,. Therefore 7} = I2is the

unique common refinement of ¢} and ¢2. Hence, if #? is the p-line in g;
6= (RiuR;, R;), ci= (R, RiURy. (4.44)

In (4.44) and in all following similar discussions, it is understood that the clusters are
suitably labelled.

ky = k(R}) and i, = k(R}) are external momenta of g. By (4.44), k(Rl) = — (&, + 4,).
Therefore, the quadratic form Q,* in the propagator #. depends only on external
momenta:

Qralk, h) = n(Ry) kY + n(Ry) (ki + hy)? + n(Ry) by (4.45)
1.2: g = {c}, 7}, 12, c2}. According to lemma (4.22), there are two subcases:
a) rl_c=a, cdl _B=a, rHL_E+a,. (4.46)
b) rnl_c+a or ¢l I +a,. (4.47)
[.2.a: It is easily verified [1] that there are essentially two possibilities: «, f:
) RIUR!=12y12, R =12, (4.48)

We set &, = k(R}) and &y = R(L3).
According to lemma (3.10) $ = k(R}) is a loop momentum. By (4.48) we obtain:

Qralk, b, ) = n(Ry) ki + n(Ry) p* + n(Ry) (ks + $)?, - (449
Quplk, b, p) = n(L3) by + n(L3) p* + n(L3) (b + §)? . (4.50)
B) REUR =112 R.=12,1I2. (4.51)

Here we set &, = k(R3), by = R(L3).
p = k(R}) = —k(L3) is a loop momentum (lemma 3.10). (4.51) yields
Oralk, p) = n(Ry) ki + n(Ry) (ky + p)* + n(Ry) p*, (4.52)
Quplh, p) = n(L3) p2 + (L) (p — m)® + n(L3) Iy . (4.53)
I.2.b: We only treat the case ri L¢3 =+ a,, ¢;|__ 15 = a;, the discussion for
ryl_ci=ay, c}|_I§ + a, is identical. 7} is the common refinement of ¢} and cj.
Becauseofc} | [2 = a,, p = k(L?) may be chosen as loop momentum. The external
momenta in the quadratic forms are & = £(R}) and & = £(L3). The explicit discussion

[6, 1] shows that the clusters of the common refinement 73 are (R}, L%, R3). Thus, the
quadratic forms associated with the p-lines #} and /5 are:
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Qro = n(RY) B+ n(L3) B + n(RY) (k+ W2, (4.54)

Quo = n(L3) 4% + n(Ly) (p + ) + m(L2) ? . (4.55)
Since Privalov’s lemma, applied to the p-integration, furnishes a new H-C numerator
of sufficient decrease, only the surviving denominator (z + #y: — Q,.)~!is of interest.

The graphs of class II may be further characterized by the number of p-lines:
IL1: g= {c3, 73, ¢k, 8, ¢}, k=3, (two p-lines) . (4.56)
I1.2: g = {c;, 73,05 = c&, c3, 15, 3} (three p-lines) . (4.57)
We discuss these cases separately:

II.1: By lemma (4.29) 7} L_c;_ I + a,. (3.9) therefore implies 7jL_ c; =
il I3 =a,. Using ¢}l __ ¢ =ci_ 3 = a, we conclude that

either (L2, L3y L)
4o = (R}, Ry RY) = e (4.58)
or (L5 Lay L3)

k = k(R3) and h = k(L3) are external momenta. p = k(R]) is a loop momentum.

With this choice we obtain E(R}) = — (B + p), R(L}) = £ p k(LY =—(h £ P),
according to (4.58).

Qpp = n(Ry) B + n(Ry) (k + £)* + n(R;) 12, | (4.59)
Qi = (L) $*+ (LY (h & p)* + n(L3) 72 . (460)
IT.2: We distinguish between two cases:
a) rnl_ 2l _B=a,, (4.61)
b) rnl_cEl 2 +a,. (4.62)

I1.2.a: As in the proof of (4.29), we apply lemma (3.3) twice in order to verify
that p, = &(R]) and p, = £(L?) can be chosen as independent loop momenta. By

lemma (4.21) ¢2|__ I3 = a,. We label the clusters of ¢ and a, such that A= CL.
Since ¢2l_ ¢ = a,, by (4.19), ¢2 connects L? L% with L3. Therefore A4, + L3,
¢ = 1, 2. This yields essentially the alternatives: ‘

) C:= L3y L5 and B) C32=L3. (4.63)
Similarly we haverll 2= a,=(A,, Ay). &y + dgsince @yl _a,— (rAL_cB)__ (2L
By=7il_c2l_ 3= a,. Therefore we may label the clusters of ¢ such that 4,
— C2. ¢l 2 = a, implies R! + 4,, i — 1, 2. Again two cases are possible:

y) Ci=RyuR;, 0 C;=R;. (4.64)

Putting 2 = k(R}) and & = k(L3), we have k(C3) = F p, in the cases &) and (§) respec-
tively, and k(C3) = F #, in the cases y) and d).

Thus:
Qrr = n(Rg) B2 + n(R) (k + p1)? + n(RY) p7, | | (4.65)
stﬁ = n(Cé) P? . 3 "(C§) (P1 & Do) + ”(Ci) 7.‘)3 ) : (4.65)

Qi = n(L3) Py + n(Ly) (py + B)* + n(L3) 1* . (4.67)
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In (4 66) the -+ sign holds for the combinations («, ¥), (8, d), the — sign for (e, 4) and

(B, )-
IT.2.b: Asin II.1, wehave #A | c2|__ /3 + a,. Repeating the discussion of II.1,
we obtain essentially two alternative identification schemes:

R R, RY either (L3, L3y L3) 4.68)
) U e .
R or (L3y L3, 13,
and
' either (L}, Ly L3)
(R, R1, RY — (4.69)
12 2 3/ < ¢ ¢ )
or (LN L2, L%.

As in II.1, we may choose p, = k(R!). Since the partitions c}, 7} and ¢} all connect
the clusters L2 and L2 of 12, p, = £(L3) is a second independent loop momentum.
Setting £ = k(R}) and & = (L3), we obtain:

Qrp = n(Rg) k2 + n(Ry) (k + p1)2 + n(Ry) py (+.70)
Qup = (L) P + n(L3) (py £ $2)* + n(L3) 25, (4.71)
Qup = n(LY) p7 + n(Ly) (py = R)® + n(Ly) B> (+.72)

The alternatives 4+ in (4.71) and (4.72) arise from (4.68) and (4.69). After applying
Privalov’s lemma to the p, integration, only Q,. and Q,. survive.

This concludes our discussion of the interior sectors of maximal c-subgraphs.

An exterior sector to the left is confined by the c-lines ¢; (£ > 3) and ¢2. We may
assume that it contains one p-line /3, since 7; could be commuted with ¢;. Lemma
(4.21) implies that ¢} connects L} L3 with L2 but does not connect Lj with L2.
If G contains at least 3 c-lines, p = k(L )isa loop momentum of G and

Que = n(L3) B2 + n(L3) (k + )2 + n(L3) p*, (4.73)
with k& = k(L?). Similarly, an exterior sector to the right yields
Qr, = n(Ry) p* + n(Ry) (p + h)* + n(Ry) A%, (4.74)

with & = k(R,) and p = A(R,).

We summarize our discussion:

Lemma: (4.75)

Let G be a graph which does not allow for trivial or Privalov contractions. Then
in each sector of its maximal c¢-subgraph, the number of surviving propagators
exceeds the number of (internal) ¢-lines at least by 1. The propagators are of the form

[z + % — n(dy) p] — m(Ay) (B; + pi+1)® + n(ds) i 10] 7" (4.76)
An immediate consequence is the theorem:

Theovem.: (4.77)

In a quantum mechanical system satisfying (1.2-4) and the spectral condition
(2.13) the graphs arising from (Q, Ry)" (k, %, 2), n =5 (N —2), Rez <s,, are
connected and contractible.
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Proof: Either the graph is contractible by trivial or Privalov contractions or
lemma (4.75) applies. If #n > 5 (N — 2), it contains at least 5 c-lines, because the
graphs to (Q,, Ry)* are at least N — % connected. Hence, by lemma (4.75), G contains
at least 4 surviving propagators of the form (4.76). Thus Faddeev’s lemma can be
applied to the p,, p5, $, integration, proving that G is contractible.

This, together with the fall-off estimate (2.12), proves the Fredholm alternative

for the F-Y equation (2.10) in the region {z | ze I, , Re z < s,}. Thus the singularity

structure of the full amplitude T7(%, &, z) is determined, apart from the bound state
poles, by the low order iterations to the F-Y equations (‘maximal regularity’):
Theorem.: - (4.78)

In a quantum mechanical system, satisfying (1.2-4) and the spectral condition
(2.13), the operators T33(z) act as integral transformations in the momentum repre-
sentation of the C-M Hilbert space for zell,, N {Rez < s,}. We have (using the
matrix notation (1.21)):

5(N —2)

Tolbo b 2) = 3 (Qu, Ro)* Ty, (B, 1, 2) + T, (R, 1, 2) (4.79)

n=0
For z in the above region, the elements of the kernel matrix have, apart from a
boundstate pole vy, (%), (h)* (2 + #;)~1, H-C components Tfff(R, R), T;‘f(ai, R),
Tf,‘:(R, d) and T3*(a;, ), where a; € (a,, a,) and d ranges over all partitions of {1, ... N}
into 2 or 3 clusters. y, is H-C and satisfies an estimate
9, (B)| <cN(@, &), 6> 3/2. - (480)

The components, as well as their Holder derivatives, are bounded uniformly in &, %
and zell,, 0 {Rez < E, < s,} by const N(0, k), N(0, &).

5. Remarks on Applications

In Ref. [1] the previous results are applied to the problem of asymptotic com-
pleteness (cf. e.g. [13]).

The channel states of a system are called asymptotocally complete if the time
evolution of any state of the system tends for £ — 4 oo to a superposition of freely
moving fragments; i.e. if

RE=@®Q:D, =¥W. (5.1)

a,

A proof of (5.1), using as main ingredients the formula
B
(E(f) — E (8- 0)] p = s-lim 28/nfdm(z—f:e) R(A+ie)y,

(cf. [14]) and the connection between time dependent and time independent scattering
theory (1.12), is possible, provided the interchange of certain limits is allowed [7].
Theorem (4.78) (maximal regularity below s,) provides a justification for g <Cs,.
Partial asymptotic completeness follows [1]:
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Rx()) =@ .Qj;e E%() D, = EX) #, for 1 <s,. (5.2)
ay, ,

A second application, given in Ref. [1], deals with a proposal by Hunziker [13]
for the general definition of scattering cross sections g, ,(£2, @,) for the scattering of m
fragments in the initial channel state @, into » final fragments (channel b) with
momenta in the region £ << R3”. One expects that the definition is only meaningful
if £ is chosen such that certain rescattering processes are screened out. Using maximal
regularity below s, we are able to enumerate these processes for 2 — »n processes
below s, and for the 3 — 3 scattering in a 3 particle system.
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Appendix I: Singular Integrals

For the reader’s convenience we state here the lemmas on singular integrals used
in this article; both due to Faddeev: A 3-dimensional version of Privalov’s lemma and
‘Faddeev’s lemma’ [2] (p. 44-45).

Privalov’s lemma: (I.1)

Let f(.,.): Rm"x R?® — C be H-C of index u > 0 with an estimating function
N(k):

|F(k, )| < N(k),

[ (B +hp+q) — [k p)| < N()([B]*+ |p|¥) for [A] <1, ]p] <1,
and let f vanish outside some ball |p| < R.

Then
/(& 75)
F(R 2= [ d® I.2
is H-C in Rm x IT_,. with Holder indices p' < g and v < min(1/2, u/2). In (1.2)

E(k, p) denotes a positive definite quadratic form and 77 _,. is the complex plane slit
along [— %2, co) and completed by the limit points from above and from below.

Corollary: (1.3)

Let f(%, $): R3" x R3* — C be H-C of index u > 0 with an estimating function
N (k) and let f be absolutely integrable in p, uniformly in k. Let furthermore x> < »;
for a C 5. Then

P Y
Fik. 2 :fd P et 2 Ep) (c % — Eyp)

is H-Cin regions R3" x [IT_,. 0O {Re z << Ey}], »* = max (x;, x;), with indices p' < u
and » < min (1/2, u/2) and estimating function N(&).

(1.4

Proof: Outside a sufficiently large ball |p| << R(E,), the denominator is non
singular for Rez << E;,. The contribution to F(%, z) from the integration over
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|#| = R(E,) has the desired regularity properties. If a C b or b C a, the singularities
can be separated and the corollary results from applying Privalov’s lemma in both
subregions of |p| < R(E,). Ifa ¢ band b ¢ a then, by lemma (3.3), the loop momenta
can be chosen such that E,(p) = 9% + E(p), E,(p) = p5 + Es(p) and E, ,(p) do not

depend on $, and $,. The corollary follows from applying Privalov’s lemma twice.

Faddeev's lemma: (L.5)
Let f(ky, ... k,, p1, Pa, P3) be H-C with index u > 0 and estimating function
N(k) such that f(&,, ... p3) =0 for |p,| > R, 1 <+ < 3. Then

s ~ 3 4
mewmaifnmmm¢u7@+ﬁ~@wmw, (L.6)
i=1 -1
where '
Quk, p) = my P71+ ng (p—y = P2+ my P}, 1 <I< 4,
with '

Po = Po(k) and p, = py(k) ,

is H-C with some index 4’ > 0 and estimating function N (k) in R3" x II_,., where

%2 = max x;.
1<i<4

Appendix II: On the Definition of B, (6, #)
In analogy with the definition of B(f, u) in Ref. [7] we define B, (6, u) as direct
sum of function spaces R}" — C normed by

116+ — ()]
WLW#—SW>N(P®4%H)I SR : (IL.1)
p,qeR3N 1q]
“*
N, 2?[7 L+ 1)
2" extends over all (N — k)-tupels p,; of partial sums
AT
:Zo'ijr}br: Gz‘jr:Or +1,
r=1
which span REY and such that o,;, 0;;,. = 0if » and ' belong to different clusters of a,.
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