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Multi-particle Quantum Systems
below the Four-Particle Threshold*)

by Alex Schtalheim

Seminar für theoretische Physik, ETH, Zürich, Switzerland

(3. II. 71)

Abstract. In the time independent approach to the scattering theory of a quantum mechanical
system of N nonrelativistic particles, the wave operators are expressed in terms of amplitudes
satisfying the Faddeev-Yakubovsky equations. We study these equations for energies below the
four particle threshold s4. A graphical method is introduced to classify and analyze the singular
integrals occuring in the iterated Yakubovsky kernels. Under a certain spectral assumption, we
establish and control the Fredholm alternative. Partial asymptotic completeness of the scattering
states below s4 follows.

1. Wave Operators and the Resolvent Operator
We consider a quantum mechanical A-body system with a Hamiltonian

H^ÉH+ E VU H»+V (1.1)

acting on the C-M Hilbert space %l L2(R3N~3). The pi and the m( are respectively
the C-M momentum and the mass of particle i. Throughout this article we shall
assume that the Fourier transforms y of the potentials satisfy Faddeev's conditions
[2]:

\v(k)\ <c(l+ \k\y\ 0>3/2, (1.2)

\v(k + h) -v(k)\ y c(l + \k\~6 \h\" \h\ <1 /x> 1/2, (1.3)

v(-k) v(k). (1.4)

In particular, the potentials are real valued and P2 in «-space.

Let ak be a partion of {1, AT} into k disjoint clusters (Ax, Af. The Hamiltonian

of the non interacting clusters is:

Ha^H« + ZVH H«+Vah=H:k + Hlk+Vakr,Hlh + Hak (1.5)
Ateak

where

Va £ Vu • (1-6)
i< jeA

n>£^irE°^ (L7)

and

1) Extracted from the author's thesis [1].
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K *Z ÊA](PA]), ê4pa) » y —^- M
The introduction of the total momenta"^ (p(Af, p(Af) ot the clusters Aj and

of the momenta pfAf of the particles in Aj relative to the C-M of Aj corresponds to a
factorization of the Hilbert space:

w K ® KA %4 ® %, (1-9)

H acts in the obvious manner on the product (1.9).

The operators H, Hak and Hak are self adjoint on D(H°) and D(H°f respectively
and bounded from below [3].

The operators H describe possible asymptotic motions of our system. In order

to formulate this we define a channel as a pair (ak, cpaf where ak is a partition of

{1, N) and yak e %± is a bound state of Py IIak yak - «^ <^. On the channel

states 0 e P — ~Ua, ®q>ak> Hak reduces to the channel Hamiltonian:

HC=H°- x2 (1.10)
ak ak "h v '

It is well known [4] that the wave operators defined as the strong limits

(1.11)

exist on all of "U. Thus exp{— i H t}& tends strongly to exp{ — i H t} Qf 0af_

as t —> + oo.

In formal scattering theory the wave operators are expressed in terms of boundary
values of the resolvent operator. On a rigorous level we have the following result by
Hunziker [5]:

Theorem: (1-12)

Let H and Hca f X dEa(X) be selfadjoint operators on "U and let tp e 11 be such
that

V± s- lim e,Ht e~iHalrp

exists. Then y)± can be represented as

ip± s- lim -ie fR(X-ie)dEa(X)f (1.13)

where R(z) (z — H)~x and the integral exists as strong limit of Stieltjes sums.

The time independent approach to scattering theory consists in the use of (1.13)
for the computation of the wave operators. Therefore it includes the investigation of
the resolvent operator R(z).

In order to describe the method of Faddeev and Yakubovsky [2, 6, 7] we need

a few notations. Let ak and b, be two partitions. ak C bt means that every cluster of ak
is contained in some cluster of bt. By definition ak I bt is the partition arising from ak

by the additional connections of bf, i.e. two particles i and / belong to the same cluster
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of af b, if and only if there is a particle k, such that the pairs (i, k) and (j, k) are
each contained in some cluster of ak or bt. A sequential connectivity <xk is a sequence
of partitions of the form:

0Lk (ajsr-x, «iv-2> ••¦ afl «i+iCdj, Af - 1 > « > L (1-14")

The operation 1 for sequential connectivities is defined by

xkL—ßm (aN-r, ...ak,ck-lt ...cj) (1.15)

where the subsequence (ak, ck~.x, cj) is obtained from (ak, af bi/-x, ¦¦¦ aA bm)

by retaining only one partition from any maximal subsequence of identical partitions.
We shall use the notations:

PK, x)s(z- Ha/)^ R0(z) R(aN, z) R(z) R(ait z) (1.16)

Taf[z) ee Vak + Vak R(ak, z) Vak T(z) ee Taff)

T:^Va^_iR(aN-x,z) V(aN-2laN-fR(aN.2,z),...V(aklak + 1) (1 + R(ai:z) Vaf),

(1.17)
with

ak C a, and 7(flj/aJ+1) ee Va> - Va[+i (1.18)

These quantities are related by [7, 8] :

TafF)= E T«y + 1(z)A Z J7ff^ + ---+ E Ta7Fx^), (1-19)

P(«„ *) R0(z) + Rfz) Tak(z) R0(z) (1.20)

By a, C ak we mean that a, can be continued to ak. A graphical interpretation of the
above definitions is given in Ref. [7]. The Tft> + i(z) obey the Faddeev-Yakubovsky
(F-Y) operator equations (cf. [2, 6, 7]):

Ta?+1(*) Tfffff(z) +ZQaf "'*< Hz) R0(z) Tff^(z) (1.21)

or in matrix notation Uttk Xk + Qak Ro $<,„, where

Qlf^ ß*i(z) ee E' Taf(z) R0(z) Vdyi + E" Tfj^ (z) R0(z) V,n + i (1.22)

E' denotes the sum over all a, and dit-x such that a, C otk+x, a, J ßk + 1 otk,&[ I ßk + 2

ak +x and ijy-j C «,, rfjv-jl &,. + 2 ak+x. The summation 27" differs from E' only
by the additional restriction dif-f al+x al [7]. The advantage of the F-Y equations
rests upon the following two properties:

a) Uniqueness: In the family of operators with a domain D 3 D(H°), the Tfjf+t-(z),
defined by (1.17), are the only solutions of the F-Y equations for z in the resolvent set
of H [2, 6]. (1.23)

b) Connectedness: For any n ^ N — k the nth. power of the Yakubovsky kernel
is connected, i.e. there is no factorization of the form {(Qa. P0)"}a^ Q (x) lw, in

#= %®Ha[l,S\. (1.24)

According to Ref. [8],

T:Mz) £ QaT'^Hz) R0(z) T$+i(z) (1.25)
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Hence we are lead to the following procedure for the computation of the P-operators.
After solving the Lippmann-Schwinger equations

Ç^to VaNi + VaN_x Rn(z) Tf»_-i{z) (1.26)

we can construct QaN_ according to (1.22) and thus formulate the F-Y equations
for k N — 2. After computing Uf7_ and Qa we pass to the equations for k

N - 3, etc.

In Ref. [1] a generalization of the F-Y equation is proposed for systems
interacting via a sum of 2-, 3-, and A-body forces. These equations have the connectedness

property and for N 4 the uniqueness property is also verified. Here we shall
only consider Hamiltonians of the form (1.1).

2. Faddeev's Program for the F-Y-Equations

We expect that the Tf-k +1 (z) act as integral operators in momentum representation.
This Ansatz leads to the F-Y integral equations for the corresponding kernels. In the
passage to the F-Y integral equations, it is desirable to preserve the existence of a
unique solution (1.23) and even in view of (1.13), to extend this property for Im z \. 0.

Faddeev's program serves to accomplish this by establishing the Fredholm alternative
for the integral equations without loosing control over the solutions of the
homogeneous system, even in the limit Im z 1 0. For this aim, the Ansatz for the kernels
has to be more differentiated.

The definitions (1.17) indicate the appearance of multiplicative singularities in
ther kernels of the Taak(z) of the form [7]:

K(k, I, z) (z~ Ë (A))-i (z - Ê (*))-i ...(*- S (*))-» F(k, I, z)

X (z-Eb] (l))-F..(z-Ëb(l))-i (2.1)

with «, Ca,.. C C a, and b, C Cb, whereH H '„ Ji Jm'

P» s Ea(ka) - x\. (2.2)

The handling of these singularities is greatly facilitated by the following two

properties of the spectra a(Ha) :

a) The part of a(Ha) in the complement of ac(Hf, the continuous spectrum of Ha,
consists of eigenvalues only. These are of finite multiplicity and can accumulate

only at the lower end ea of ac(Hf. A proof of this may be found in Refs. [9] and
[10].

"

(2.3)

b) There is a ôa > 0 such that [ea — ôa, + oo) is free of eigenvalues. This is a standard
assumption, cf. [1, 2, 7]. No general proof is known. For attempts of a partial
answer we refer to [11]. (2.4)

In accordance with (2.3) and (2.4) we assume, for notational convenience,

that Ha has exactly one non degenerate eigenvalue — x\ strictly below the
continuum and that d min(x\ — xf) > 0. This implies for any a Cb that

Re[{z — Ea(ka)} — {z — Efkf}} > d > 0. Therefore the multiplicative singul-



646 Alex Schtalheim H. P. A.

arities (2.1) can be separated by a Holder continuous partition of the identity (cf.
[1, 7]), which yields:

ra»*+i(Ä, i, z) oy (\k - g |re-*+i(Ä, aim, *)

T.p + ifo.KIM,*) Ttf + ijR.d \k,l,z) T^k+i(a.,d\kJ,z)
+ ^[ z--E.fi)

" + ~
* - P,(/)

" +
(z - Eai(k) )(z - Ed(l)

(2.5)

Q%+M+iR0(k,l,z)-ak

- - „ Q^k + ißk + r(R, d | À, I, z) Q^ + ißk+i(aitd\k,l,z)\
K K - QE j- g_m -+(l.ÏJi))(l_ïiW)) (2-6)

5., (^ - g - /7 ^3 (*Mj) - 'W • (2-7)

y
By (1.17) and (1.22) E' extends over all a{ e txk+x and d C ak, d 4= aA, «jv. whereas 27"

is the sum over all at e otk+x and d C ak+x such that either d du or d 3 cfo-, with
rfjv-jj ô^+j ak. The index P denotes a regular part. It is clear that (2.6) contains
additional <5-functions arising from contributions of a lower connectivity than
ak. By construction Ta£* + i(P, d \ k, I, z) is different from 0 only in the region

I Re z — Ed(l) I < 2/3 d; in this region all the other denominators are bounded by 3/d.
A similar statement holds for the other contributions.

This leads to the following representation of the F-Y equations:

Ta^ + Hai,d\k,l,z) Ta^f(ai,d\k,l,z)

y f Qa? f^jfff (*< ,C\k,P,z) T/f+l (b, d\p,l, Z)

r Q^f^fHOj,c\k,p,z) T/f+i(b, d\p,i, z)

\+,tW * """(*-*.(«)(*-*<<«)" "

It is understood that the variables k, l in (2.8) are adapted to the ^-functions in (2.5)
and (2.6). In matrix notation (2.8) reads:

<Jak(d \l,z) Ulk(d \l,z) + Aak(l, z) Uak(d \l,z). (2.9)

Aequivalently we may discuss:

"Uak(d \l,z) »Vak(d \l,z) + Aak(l, z) "Uak(d \l,z), (2.10)

where

»ux (Aakruak.nd«vak^uak~n£'Fak.

In the discussion of (2.10) we shall frequently use the following terminology:
The term «-connected amplitude' denotes a product of the form ôa (ka —If (z — Eb(k) )_1

X K(b, c \k,l, z) (z — Ec(l))~x where K does not contain <5-functions and b C a, c C a.
The denominators will be referred to as '^-connected left propagators' and 'c-connected
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right propagators', whereas the numerator K will be called 'a-connected component'.
An a-connected component will be termed H-C if K depends Holder continuously on
k, I and ze LJe Here LJe denotes the complex plane slit along [ea, + oo) and completed

by its limit points from above and from below (which are not identified).

It follows from Privalov's lemma (Appendix I) that Aafl, z) defines a linear

operator in the Banach space B (6,/u). This suggests to discuss (2.10) in B (0,fi).
In order to show that "Ua(d \ I, z) is a B (9, ^-valued function which depends Holder

continuously on / and z eTIe and to establish the Fredholm alternative for the equation
(2.10) in a region {zeLTe Re z ^ P0} it suffices, according to Refs. [12] and [7]

(cf. also [1]), to prove the following two properties for the elements of the kernel
matrix (QakR0)-(k, I, z):

a) Any amplitude contributing to (Qa Rf" (k, I, z) has «^-connected H-C components
of an index x > fi > 0. (2-H)

b) For some ß > 6 > 0 the components of (Q Rf" (k, I, z) are bounded by
C Nafk, ß) Nafl, ß) uniformly in I and z e /7^ n {Re z ^ E0}. (2.12)

These properties also show that (Aa, (l, z))n depends, in the sense of the operator norm
in C(B (0, ft), B (d, pt)), Holder continuously on / and z. Thus a solution of (2.10) is

H-C at any regular point (/, z).

In order to control the Fredholm alternative for z E + i 0, E -> ac(Haf), it is

necessary to require:
S : For some ô > 0 the interval [e — ô, oo) does not contain singular points of the

equation (2.10). (2.13)

This is of course closely related to the spectral assumption (2.4).: Anyz^tyc(Hak) is a

singular point of (2.10) if and only if it is an eigenvalue of B. [2, 6]. The same holds

torE±i0eac(Hak)iift>lj2[2\.
The critical terms for the decrease at infinity (2.12) of (Qak Rf)" (k, I, z) arise from

the regular parts in Q R0 since the remaining contributions have compact support
with respect to the variables appearing in the propagators. From the way one

proceeds, solving successively the F-Y equations for the Tft +1 with decreasing /, it
becomes clear that the purely regular contributions to (Q Rf" may be estimated by

purely regular contributions to Born terms of sufficiently high order for (Qak Rf". The

latter ones were estimated by Hepp ([7], Lemma (3.3)):

Lemma: (2.14)

Any purely regular Born term G contributing to (Qak Rf" (k, I, z), with n > 4 (N— kj)
is bounded by C (G, Ef N„k (k, 6) Nak(l, 6) for some 6 > 3/2, uniformly in Tak and

Re z < P0. Furthermore it is H-C of an index pi > 0 with respect to k, I, z.
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This settles (2.12). In the sequel we concentrate on the proof of the regularity
property (2.11), which amounts to a discussion of the singular integrals arising in the
iterated Yakubovsky kernels. In § 3 we shall see that the iterad Yakububovsky
kernels may be represented as a sum of generalized Feynman integrals with H-C
numerators. The separation of the singularities confines the momenta occuring
in the propagators to bounded regions. With arguments similar to those invoked
for the verification of (2.12), it is always possible to assure the convergence of
the integrations over the remaining variables, absolutely and uniformly in Re z <
E0 and in the propagator momenta. We shall refer to this fact as'sufficient decrease'
of the integrand.

3. Graphical Representation of Singular Integrals

In this paragraph we develop a graphical tool for the classification and the
analysis of the singular integrals arising in the computation of the iterated F-Y
kernels. Our graphs will only specify the singular energy denominators and the
Holder continuity and connectivity structure of the numerator in the integrand.

In the integrand for the iterated F-Y kernel [(Qa, P0)"]a*+i^ + i we insert H-C

partitions of the identity in order to separate the multiplicative singularities as in (2.1).
This yields a finite sum of products of amplitudes. To fix the notation, we recall that
the ith factor consists of a cj^rœmiected component ôftfp'fî — pf) f(p'~1, p, z) and

possibly an ^yonnected left-propagator (z — Effir1))-1 and an reconnected
right-propagator (z — Efpl))'1. Components which are not H-C arise from the low
order iterations of the F-Y equations. If in these iterations we still encounter non H-C
components, we reiterate until we obtain H-C components. Thus the integrand for
[( Q Rf}"] ak + rßk + r can always be written as a finite sum of products of amplitudes with
H-C components. With each product we associate a sequence of connectivities

{(C(i>) o'M(r'M) (lsm{sj) csm(rsnUj)} (3.1)

where denotes a possible omission. To such a sequence we relate in a one to one
manner a graph as follows: We draw N horizontal lines representing the N particles
of the system under consideration. For a ck — (C, C*)-connected component
we draw a 'c^-connected' straight vertical line ('c-line'), i.e. an assembly of straight
vertical lines connecting the horizontal lines of the particles in the clusters C Ck

respectively. For clarity we dot the intersections of the vertical lines with the linked
particle lines. For any /m-connected (m < N) left propagator we draw an /m-connected

wavy vertical line ('^>-line') to the left of the corresponding component line and
similarly for the right-propagators. The free propagators will be represented by
undotted vertical wavy lines.

After integration over the ^-functions, momentum conservation at every c-line
has to be taken into account for the choice of a set of independent integration variables
('loop momenta').

Example (N 4, m{ 1/2) :
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The graph

"i

¦ht

Fig. 1

h+K-hi

represents the following type of integrand:

(z + n\2- 1/2 (k3 + kf)2-k\- A2)-* fX23(k,p,z) (z + 4,-pi- 1/2 (px- kf)2-kl)-i
hY-Pl-klY^fr (P,k,h,z)(z+ Xw— l/2(p2-r A-4/ — y2 — 1*1) /]3/24

^^hl_k2_ (p2 + ki + hi)2_ {p2+ ki_h2)2yifsi{Pik)h>z) _

A c-subgraph is a portion of a graph between two c-lines, including these. It is
said to be contractible to a c-line, if the integration over the intermediate momenta
yields an H-C component. A trivial contraction is possible whenever the subgraph
contains no /3-lines: it involves only integrations over ô-iunctions and over H-C
functions of sufficient decrease (cf. Sect. 2). A graph is called contractible if its
maximal c-subgraph is contractible. It is called partially contracted, if only non
maximal c-subgraphs have been contracted. After contraction a c-subgraph becomes

a c-line, and we relabel the momenta and lines of the graph accordingly.

Let us state in a theorem those properties of the graphs which reflect the
combinatorial structure of the F-Y kernel (2.6) and the fact that we have separated the

multiplicative singularities.

Theorem: (3-2)

A finite number of graphs is associated with the iterated F-Y kernels. Graphs
which are obtained from each other by an exchange of neighbouring p- and c-lines
of equal connectivity are aequivalent. After the trivial contractions have been

performed, the following relations hold for any i f^ 1:

A C cl V C à

ri <£ f+i^ rt -j> f + i ;

A 4> ci+1, rM 4= ci + 1 for n(i) 4= N
A 4= /•'+! cl £ ci+1.

Proof: The relations r' 4= li+1 and r* :p li+1 exress the fact that we have
separated the multiplicative singularities. All the remaining properties follow from the
combinatorial structure (2.6) of Q P0, except r* ;b c'+1. The latter is a consequence
of the trivial contractions.

For the sequel the following lemma on the choice of loop momenta is useful:

Lemma:

Let a=(Ax,...Af and iy (B[, B\uj) be partitions of {1, N). If for
any i, Axu A2 is contained in a cluster of c' a\ ¥ (C\, C\(ij), then the
momenta k(B') do not determine k(Af and k(A2) separately.
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Proof: We label the clusters of c1 such that Ax<j A2C Cj. Hence

k(Ax) + k(A2) £ k(B'j)- E k(Ai)' *'=1.2,...
B\ CC{ AlC C\

I 4= 1,2

Obviously, these equations determine at most the sum k(Af A- k(A2).
n

We conclude this paragraph with a notational remark. We shall write A ~ X'G,-,

whenever the graphs associated with the quantity A are Gx, G2, Gn.
i-l

4. Contractibility and Maximal Regularity below s4

In terms of contractibility, the regularity statement (2.11) reads : For n > n0(ak, N)
and Re z if. E0 the graphs arising from (Q Rf" (k, I, z) are «^-connected and
contractible. It is sufficient to prove this assertion for n n0 because of the

Lemma: (4.1)

A graph G to (Q R0)n containing an a^-connscted contractible c-subgraph is

contractible.

Proof: Apply Privalov's lemma (Appendix I).
In the subsequent discussion we confine ourselves to P0 < s4 where s4 is the

4-particle threshold s4 s inf {x \ xe cr(H In this region only «rconnected (I > 3

^>-lines have to be considered, since the propagators of lower connectivity become non-
singular and will be incorporated systematically in the components. It will turn out
that this implies that the contractions based on Privalov's lemma ('Privalov
contractions') and on Faddeev's lemma ('Faddeev contractions'), summarized in
Appendix I, allow to show the contractibility of any graph. We only treat systems
with more than 3 particles.

Lemma: (4.2)

(Q«fkR0)(k,h,z)~ 2J ici}- k>A
cieak

n\ h-ak-i
cl\ bk + l -"k

Proof: The lemma holds for k N. We make the induction assumption that it is
true for k' k+1. Therefore the graphs to (Q P,,)4^-*' can be contracted trivially.
This, together with the estimate (2.12) shows that the Fredholm alternative applies
to the F-Y equations for P"*+1. Since we consider the region Rez <si only, there is a

unique solution in B (d, pt). Hence T? + i ~{c,. af]. By (1.25) and (1.22) the lemma

results.

The F-Y equations for Tf- can be treated the same way. The only difference is

the appearance of a simple pole at z Eafkaj), generated by the bound state of Py
Using (1.25) we obtain:
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Lemma: (4.3)

Taf ~ {c/ aj\ l>* and Tf? ~ {c3 a3} + {Z3 as, c3 as}

By (1.22) we may conclude (for A y 4):

Lemma:
„ (4.4)

Val"* R0~ E iCl) + & =^,Cn= a'n)

Ci e as'

Lemma: (4.5)

Any graph G to (Ça, Rf)n, n y A — 2, is connected and contractible.

Proof: G is trivially contractible if there is no p-line in the interior. The case
where G contains inner />-lines is only seemingly more difficult since these arise in c-

subgraphs of the form

{c\-\ 4 4.4 4} or {ci-1 4-1,4 4-1,4 4,4 4} • (4-6)

Both are «2-connected by (4.4) and trivially contractible since the /»-lines can be
shifted to the exterior of these subgraphs by theorem (3.2). Lemma (4.1) implies
that G is contractible.

By arguments we are already familiar with, we conclude that the Fredholm
alternative applies, in some Ba (6, pi), to the equation:

"Uafd \l,z)= "<Jay \l,z) + Aafl, z) Uafd I /, z) (4.7)

for « y 4 (A — 2). Together with our spectral assumption (2.13) this allows to
conclude that (4.7) has a unique solution in Bafd, pi) for z e IIea O {Re z < s4}, except
for a bound state pole at z Eafkaj). Now it is helpful to remember the definition of
Bafd, pi) as direct sum [7]:

Bafd,pt) © Bafd,pi,x3), (4.8)
as C «a

where, according to (2.5)

Bafd,pt,*3) Baf6,pi,R) ® BafQ,pt\aj). (4.9)

By construction "Paa3(«;, d \k,h, z) is equal to the Bafd,pt, «^-component of the
solution nC3afd \ h, z) of (4.7). Summarizing our discussion of (4.7) in graphical terms
we have:

Lemma: (4-10)

Tal ~ {C3 «3} + {^3 a3, C3 as} + {C2 «2} + {h a3, C2 ««}

4- ff^ {/3 — &%< c2 ®2> ris A {1% a2, c2 afj
r3 C «a

From (4.4) and (4.10) we deduce that the graphs to T%* E Q**ß>R0 T* are«2-
connected and contain a c-subgraph which is trivially contractible. This leads to the
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emma:
nra.. f*+m> {c2

+ {k

af + {In

2}

Alex Schtalheim

«2} + E ^3 a3' °2 U2' r^
»'s C »2

H. P. A.

(4.11)

(4.12)

Qll^Rn-E'-^f+fl^a'n.Cn
+ {k a%> c2 a2» r3/ H" 1/2 a2' C2

In 2"'" a2 is restricted by the conditions

3} A {k — a3, c2 — a2j

4} •

4L a:, a. a.,*1> "-3
all c3 6 oc2 such that c, 1 a2

,2

a2 J a\ ax, a'21 a2, a'2 and c, ranges over

x, and c, J aï «2, whereas r3 is subject to

si_«5 «2. (4.13)

The formula (4.13) is the basis for our study of the graphs G arising from (Qa Rf".
By performing all possible trivial and Privalov contractions we are lead to a graph G'.
G' (and therefore G) is contractible if it contains a connected c-line. If there is no
connected c-line in G', we cut G' at the 2-connected yiines into sectors. We shall
essentially show (Lemma 4.75) that the rth sector contains r(t); 1 < r(t) ^7 3, propagators

of the form:

[z + x2 - n\ pj - nj (pt + pi + f2 + nj p*i+rYl,

for 1 + 27 r(t') < i < 2J r(f) ¦ (4-14)
c < t v < t

Hence if G' contains at least 4 sectors, Faddeev's lemma (cf. Appendix I), applied to
the integration over p2, p3, pit provides the analytical tool for the contraction of G'

(and G). Example:

h Pj

h~

D -h Fig. 2

sector 1 Sector! Sector I
It will turn out that G' contains at least 4 sectors provided n > 5 (A — 2). This
shows that n0 5 (N — 2) is a possible choice for the contractibility statement (2.11).

It remains to verify (4.14). The following lemmas on the structure of the sectors are
devoted to this task.

Lemma: (4.15)

Let G be a graph obtained from (Q P0)", after all possible trivialcontractions
have been carried out. Then, every c-subgraph of G, containing more than one c-line,
contains at least one 2-connected c-line.

Proof: By assumption, the c-subgraph between dm and cL+j;,) contains at least

one p-line. If k(i), k(i + 1) > 3, the /»-lines A and li+1 must be 3-connected. Therefore,
they can be shifted to the exterior of the subgraph, which contradicts the assumption
that no c-subgraph is trivially contractible.
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Lemma: (4-16)

Let c', i > 1, be the ith c-line. If c' is 2-connected, c'_11 c' ax.
i — k~l i—h

Proof: c'^1 arises from the contraction of a c-subgraph to some Qa* ' a' R0,...

Qa* 'a'P0. Formula (4.13) implies: c'-1^) a]'1 with af11_ a{ ax. But A was
a,

i « »i i +1 i +1 +1
obtained from the contraction of a c-subgraph to Qa"a R0, ...Qa* • a* P0.

a, a.
Therefore c' af Hence c'^1 ] c' 3 «]""' 1 a* ax.

Lemma: (4-17)

Let clw, c]ff_x) be two c-lines in a graph G where trivial contractions and Privalov
contractions are not possible. If c' is 2-connected, c\ I c\\f+V) <h-

Proof: In view of (4.16) we can assume k (i + 1) > 3. The c-subgraph between c'

and c' + 1 takes the form {cf rf c'/ffrf after shifting li + 1 to the exterior, if necessary.
F must be 3-connected; otherwise it could be shifted to the exterior. Let r\ (R\, R\, P*)
and c2 (Rf P2, Rf). Theorem (3.8) implies ckff+1) A rf Therefore ci+1 connects
either R[ and P2 or R[ y R{2 and Rf In the latter case c'J ci + 1 ax, as the lemma
states. In the first case lemma (3.10); on the choice of loop momenta, tells us that
p k(R\) is independent of the external momenta of the subgraph and may therefore
be used as loop momentum. Denoting the remaining loop momenta with q, the c-

subgraph in question represents an integral of the form:

dq d3p f(k, h, p, q, z)

X{z+x2- n(R[) p2 - n(Rf (p + k(Rl))2 - n(R\) k2(Rl)}^
where

n(A) (2 m(A))-1. (4.18)

Therefore the contractibility of the c-subgraph follows from Privalov's lemma. This
contradicts the assumption of the lemma.

Lemma: (4.19

Let G be a graph to (Qa Rf", which does not allow trivial or Privalov
contractions. Then any subgraph of G, containing more than one c-line, is connected.

Proof: (4.15), (4.16), (4.17).

Lemma: (4.20)

Under the assumption of lemma (4.19), ^-lines which cannot be commuted to the
exterior of the graph are 3-connected.

Proof: Suppose there were a 2-connected p-line l2 in the interior of the graph.
The c-subgraph between c*-1 and ci + 1 must be of the form {cf1, rf~1,l2 a2,
c[ a2, Pff1, cf1}. Theorem (3.8) states rir1 £ l\ a2. Therefore rf1 J c\ ax.
But, repeating the arguments in the proof of (4.17), we see that the conditions

rf1 Cef1 and rf11 c2 ax are sufficient for the c-subgraph {cf1, rf1, c2} to
admit a Privalov contraction, contrary to the assumption.
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Lemma: (4.21)

with ci
Let G be as in (4.19). If {c\, r\, ck\f\xf is a c-subgraph of G, then r\ I

-j+i
ax. If {clU), If1, cf1} is a c-subgraph of G, thenc|(!-;

ck(i + l) — a2

If1 — â2with

Proof: We consider {cfrl3,
rf. J+ick(i + l)

.»'+1
Lk(i + 1) }. By theorem (3.10) r\ ¦$ ckff+x). Therefore

is at least 2-connected. If it were connected, the subgraph would admit a

Privalov contraction, according to the arguments in the proof of (4.17). The same

applies to the case where r3 I 4(i+i) ~a2 cf Therefore, to avoid a contradiction
with the assumption, we must necessarily have r\ J ctt+i) ~a2> with c* I a2 ax.
The discussion for the subgraph {cMi)

li + 1
' l3 • cf1} is similar.

Examples :

c« 4= ct2

G contractible
C2 ^- r3

'
Ck(i + 1)

-* G contractible

Fig. 3

From now on we shall refrain from graphical illustrations. For the readers ease we
remark that the 5 particle system provides examples for all the statements following
below.

Lemma: (4.22)

Let G be as in (4.19), and let {cf rf If1, cf1} be a c-subgraph of G. Then either
the relations a), (4.23), or the relations b), (4.24), are satisfied.

a) 41_ 4+1 — £*¦] Co 1 /"g Wj y 4 L_ 4+ 1
=t= ax (4.23)

b) 4l_4+1 * «x, or 4l_4+1 * ax (4.24)

Proof: Th« relations r\\ cf1 4= ax and c2 \ If1 4= a x cannot be satisfied

simultaneously because this would imply r\ Cef1 and li-H Cc2 However, two
partitions ak 4= bk have at most one common refinement ck + l [bf Hence /* _ ;t + 3- l3 ¦

in contradiction with theorem (3.2). It remains to show that the relation

r31— c2 c21—13 r31— l3 a,

is contradictory to the assumption of the lemma. Suppose (4.25) holds. Let

r\=(R\,RfR\), ci=(R[uRfR3),

(4.25)

(4.26)

(Iff1, Lf\ Lf1) cf1 (Lf1 u Vf1, Lf1) (4.27)

kx k(R3) and hx k(L'3+1) are external momenta of the subgraph. The relations

r\ C c* and r\ J cf1 ax imply that both, c1' and ci + 1, connect the clusters R} and R2.

By lemma (3.3) px s k(R}) may be chosen as a loop momentum. Similarly, it follows
from (4.25) that each of the connectivities c{, ci+1 and F connect Lf1 and P2+1.
Therefore ^>2 A(P* + 1) may be chosen independently as a second loop momentum.

ii + 1
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Thus a c-subgraph {c2, rf If1, cf1}, satisfying (4.25), represents an integral
of the form

Jdp f(k, h, p, z) [z+xl- n(Ri) k\ - n(R{) (px + kf2 - n(R\) pf]-1

X[z+x*- n(L\+1) pi - »(Ltf1) (p2 + hf2 - n(Lf') Ä2]~*. (4.28)

By applying Privalov's lemma twice, we see that the graph is contractible, which
contradicts the assumption of the lemma.

Lemma: (4.29)

Let {cf rf cf1, If2, cf 2}, k > 3, be a c-subgraph of a graph G satisfying the
hypothesis of lemma (4.19). Then the relation r\ I cf31 If2 4= ax holds.

Proof : Suppose rf cf1] If1 ax. The partitions c\,rf If2,cf2 are given by

r\ (R\, Ri, Ri) ci (R\ u P*, P*) (4.30)

/» + 2 lTi+2 ji + 2 ri+2\ „«'+2 /r»' + 2 ji+2 ri-t-2\ (A Ol \h — {-^l ^2 ^3 I c2 — \^1 kJ l2 J^3 j V*••>¦>¦ I

By lemma (4.21), r\ J cf1 and cf11 If2 are 2-connected partitions. On the other
hand it follows from lemma (4.19) that c2L_ cf1 4+1] cf2 ax. Thus cf1
connects Pj u P* with R's and Lf1 u Lf2 with Pj+2. If the clusters are suitably
labelled, we can write therefore:

r3L_cr1 (Pi,P^uP3). (4-32)

cf1 L_ If* (Lf\ Lf* u Lf*) (4.33)

kx k(R'n) and hx k(Lf2) are external momenta of the subgraph. c2\ cf1
cf1 I cf1 ax shows that px k(R[) and ^>2 s k(Lf2) cannot be determined by
external momenta. If furthermore r\ 1 (cf11 If2) ax,px cannot be determined
from the external momenta and p2. Therefore px and p2 are independent loop
momenta. Privalov's lemma, applied to the px and to the ^-integration shows that the
subgraph is contractible. Therefore r\ \ cf1 If2 ax must be false.

We are now prepared to verify the structure (4.14) of the propagators in a sector
of a maximal c-subgraph satisfying the assumption of lemma (4.19). There are two
kinds of sectors; exterior sectors, to the left of the leftmost cut and to the right of the
rightmost cut, and interior sectors. Let us turn to the interior sectors first. These are
in a one to one correspondence with the minimal c-subgraphs between two
2-connected c-lines.

We shall consistently use the following notation for the clusters in the
connectivities of the p- and c-lines:

li=(L[,LfÜn); ri=(R[,Ri,Ri). (4.35)

4 (L\ u Pi., Lf, (R[ u Ri, Ri) (4.36)

i.e. L'3 and R\ are the clusters of l\ and r\ respectively, which also appear in c*.

ci=(L\,LfL3). (4.37)

If no p-line is attached to cf we write: (4.38)

cl=(C[,...Ci). (4.39)
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We now start with the classification of minimal c-subgraphs g between two
2-connected c-lines. The main classes are given by:
I: g contains two c-lines: c\ and c\. (4.40)

II: g contains three c-lines: cf cf cf k > 3 (4-41)

Class I is subdivided further by:
1.1: g contains one /»-line: r\ or 1'3 (4.42)

1.2: g contains two ^-lines: r3 and if (4-43)

1.1: The structure of g is discussed in lemma (4.21). It implies rj C c\,r\ C c2

and c\\ c\ ax. Similarly l\Cc\,l\C c\ and c\\ c\ ax. Therefore r\ l\ is the
unique common refinement of c\ and c\. Hence, if r\ is the /»-line in g;

c\=(R\uRfR13), cl=(R\,R\uR\). (4.44)

In (4.44) and in all following similar discussions, it is understood that the clusters are
suitably labelled.

kx EEA(Pj)andAj =k(R\) are external momenta of g. By (4.44), k(R\) — (kx + hf.
Therefore, the quadratic form Q/ in the propagator r\ depends only on external
momenta:

Qr,(k, h) n(R\) k\ + n(R\) (kx + hx)2 + n(R\) h\ (4.45)

1.2: g {cf rf I2, cf}. According to lemma (4.22), there are two subcases:

a) F3 L_ c\ ax, c\\_l\=ax, r\ ]_ l\ 4= ax (4.46)

b) r\ I c\ 4= ax or c\\ I2 #= ax. (4.47)

1.2.a: It is easily verified [1] that there are essentially two possibilities: a, ß:

a) R\1)R\=L\ULI, Rl=Lf (4.48)

We set kx k(Rl) and hx es k(Lf).
According to lemma (3.10) p k(Rf) is a loop momentum. By (4.48) we obtain:

Qr,(k, h, p) n(Rff k\ + n(R\) p2 + n(R\) (kx + p)2, (4.49)

QtAk- h> p) »m) äi + n(LD p2 + n(LD (K + p)2 ¦ (4-5°)

ß) R\rjR\=L\, R\=L\KJLl. (4.51)

Here we set kx — k(R\), hx k(L23).

p k(Rf) —k(L\) is a loop momentum (lemma 3.10). (4.51) yields

Qr,(k, p) n(Rf) k\ + n(R\) (kx + p)2 + n(Rl) p2 (4.52)

Qv{h, P) n(L\) p2 + n(L\) (p - hf2 + n(L\) h\ (4.53)

I.2.b: We only treat the case r\\ c\ =t= ax, c\\ l\= ax, the discussion for
21 /f 4= ax is identical. r\ is the common refinement of c\ and c\.c

Because of c\ \ I2 ax, p k(L2f may be chosen as loop momentum. The external
momenta in the quadratic forms are k k(R\) and h k(L2). The explicit discussion
[6, 1] shows that the clusters of the common refinement r\ are (R\, Lf Rf). Thus, the

quadratic forms associated with the /»-lines r\ and l\ are :
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Qr> n(Rl) k2 + n(L%) h2 + n(R\) (k + h)2, (4.54)

Qif ML2f />2 + n(L2) (p + h)2 + n(L\) W (4.55)

Since Privalov's lemma, applied to the /»-integration, furnishes a new H-C numerator
of sufficient decrease, only the surviving denominator (z + x\^ — Qrf)^1 is of interest.

The graphs of class II may be further characterized by the number of /»-lines:

II.1: g {c\,r\, cl, l\, c\} k fr 3 (two /»-lines) (4.56)

II.2: g={c\,rf l\ =cl,e\,l\, c\} (three /.-lines) (4.57)

We discuss these cases separately:

III: By lemma (4.29) r\\ cf\ l\ 4= ax. (3.9) therefore implies rf. c\

ck I l\ a2. Using c2 1 cf c\ I c2 ax we conclude that
f either (L\, Liu P3)

a2=(R\,R\uR13) \ (4.58)
| or (LloLfLl).

k k(R\) and h k(L3f are external momenta, p k(R\) is a loop momentum.
With this choice we obtain k(R\) -(k + p), k(L3f +p k(L\) -(h± p),
according to (4.58).

a3. n(Rl) k2 + n(R\) (k + p)2 + n(R\) p2, (4.59)

Ç,,. n(Ll) p2 + n(Ll) (h + p)2 + n(L33) h2. (4.60)

II.2: We distinguish between two cases:

a) rl\_cll_tl=ax, (4.61)

b) r\l_c\\_ll^ax. (4.62)

II.2.a: As in the proof of (4.29), we apply lemma (3.3) twice in order to verify
that px k(R\) and p2 k(Lf) can be chosen as independent loop momenta. By
lemma (4.21) c| ] I3 a2. We label the clusters of c2 and a2 such that Ax C\.
Since eg I c\ ax, by (4.19), c2 connects L\ u P2 with L\. Therefore At 4= L\,
i 1, 2. This yields essentially the alternatives:

a) C2 L\ u L\ and ß) C\=L\. (4.63)

Similarly we have r\ \ c\= a2= (AX,A2). a2 4= à2since â2| â2= (r\\ c2)l (c\\

£3) r\\ c\ 1 l\ ax. Therefore we may label the clusters of c\ such that Ax

C\.c\ \ eg ax implies R\ 4= A,, i 1, 2. Again two cases are possible:

y) Cl=R\uR\, Ô) Cl=R\. (4.64)

Putting k k(Rl) and h k(L\), we have k(C\) + p2 in the cases a) and ß) respectively,

and k(C\) y px in the cases y) and ô).

Thus:

Qr, n(Rff k2 + n(R\) (k + pf2 + n(R\) p\ (4.65)

Qt, »(CS P\ + n(C\) (px + p2)2 + n(Cf pi, (4.65)

Qv n(L\) pi + n(L\) (p2 + h)2 + n(Ü3) h2 (4.67)
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In (4.66) the + sign holds for the combinations (a, y), (ß, ô), the — sign for (a, ô) and

(ß,y)-

II.2.b: As in II.1, we have r\ eg I l\ 4= ax. Repeating the discussion of II.1,
we obtain essentially two alternative identification schemes:

f either (L\, L* u LÎ)
(Rx, Rlu Rl) \ (4.68)

| or (Liu Ll.Lf,
and

| either (L\, L\u Ll)
(R\,R\uRl)=\

ç 9 f
(4.69)

| or (LlnLl,Lf).
As in II.1, we may choose px k(R\). Since the partitions cf r\ and c\ all connect
the clusters P| and L\ of /3, p2 k(L\) is a second independent loop momentum.
Setting k k(Rff and h (Li), we obtain:

&,, n(R\) k2 + n(Ri) (k + pf2 + n(R{) px, (4.70)

Qv n(Üf p\ + n(Lf) (px ± p2)2 + n(Ll) p\ (4.71)

Qv n(L\) p\ + n(L\) (px ± h)2 + n(L93) h2 (4.72)

The alternatives + in (4.71) and (4.72) arise from (4.68) and (4.69). After applying
Privalov's lemma to the />2 integration, only Çr3i and Q(j, survive.

This concludes our discussion of the interior sectors of maximal c-subgraphs.

An exterior sector to the left is confined by the c-lines c\ (k > 3) and c2. We may
assume that it contains one /»-line l\, since r\ could be commuted with c3. Lemma
(4.21) implies that c\ connects L\ u L2 with L2 but does not connect L\ with L\.
If G contains at least 3 c-lines, p k(Df) is a loop momentum of G and

Qv n(L\) k2 + n(Lf) (k + p)2 + n(Ü3) />2, (4.73)

with k k(L2). Similarly, an exterior sector to the right yields

Qrz n(R3) p2 + n(R2) (/» + h)2 + n(Rx) h2, (4.74)

with h k(Rx) and p k(R3).

We summarize our discussion:

Lemma: (4-75)

Let G be a graph which does not allow for trivial or Privalov contractions. Then
in each sector of its maximal c-subgraph, the number of surviving propagators
exceeds the number of (internal) c-lines at least by 1. The propagators are of the form

[z + x2 - n(Ax) p2 - n(A2) (/»,. + pi+x)2 + n(A3) pffr1. (4.76)

An immediate consequence is the theorem:

Theorem: (4-77)

In a quantum mechanical system satisfying (1.2-4) and the spectral condition
(2.13) the graphs arising from (Qai Rf)" (k, h, z), n y 5 (A — 2), Rez<sit are
connected and contractible.
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Proof: Either the graph is contractible by trivial or Privalov contractions or
lemma (4.75) applies. If n fz 5 (A — 2), it contains at least 5 c-lines, because the
graphs to (Qtti R0)k are at least A — k connected. Hence, by lemma (4.75), G contains
at least 4 surviving propagators of the form (4.76). Thus Faddeev's lemma can be

applied to the p2, p3, pi integration, proving that G is contractible.

This, together with the fall-off estimate (2.12), proves the Fredholm alternative

for the F-Y equation (2.10) in the region {z \ z e lTea Re z < s4}. Thus the singularity
structure of the full amplitude T*'(k, h, z) is determined, apart from the bound state

poles, by the low order iterations to the F-Y equations ('maximal regularity'):

Theorem: (4-78)

In a quantum mechanical system, satisfying (1.2-4) and the spectral condition
(2.13), the operators T*»(z) act as integral transformations in the momentum
representation of the C-M Hilbert space for z e IIeai O {Re z < sf}. We have (using the
matrix notation (1.21)):

5(iV-2)

Vafk, h,Z)= X (Qa, R0)" Uafi, h, Z) + Ùafk, h, Z) (4.79)
n-0

For z in the above region, the elements of the kernel matrix have, apart from a

boundstate pole yafi) fafh)* (z + xf)-1, H-C components TjffR, R), f^(at,R),
T%'(R, d) and Tll(at, d), where a( e (a2, a3) and d ranges over all partitions of {1,... A"}
into 2 or 3 clusters. ftti is H-C and satisfies an estimate

\Vai(k)\<cN(d,k), 0>3/2. (4.80)

The components, as well as their Holder derivatives, are bounded uniformly in k, h
and z elleai n {Re z < P0 < s4} by const N(6, k), N(6, h).

5. Remarks on Applications

In Ref. [1] the previous results are applied to the problem of asymptotic
completeness (cf. e.g. [13]).

The channel states of a system are called asymptotocally complete if the time
evolution of any state of the system tends for t -> + oo to a superposition of freely
moving fragments; i.e. if

P±S0ß±DaA=?/. (5.1)
ak

A proof of (5.1), using as main ingredients the formula
ß

[E(ß) - E (ß - 0)] y s-lim 2 ejn f dX R (X - i e) R (X + i e) f
— oo

(cf. [14]) and the connection between time dependent and time independent scattering
theory (1.12), is possible, provided the interchange of certain limits is allowed [7].
Theorem (4.78) (maximal regularity below sf provides a justification for ß < s4.
Partial asymptotic completeness follows [1] :
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P±(A) ee © Qfk Eab(X) Dak E(X) 7/, for X < s4. (5.2)

A second application, given in Ref. [1], deals with a proposal by Hunziker [13]
for the general definition of scattering cross sections aba(Û, @a) for the scattering of m
fragments in the initial channel state @a into n final fragments (channel b) with
momenta in the region Q < R3". One expects that the definition is only meaningful
if Q is chosen such that certain rescattering processes are screened out. Using maximal
regularity below s4 we are able to enumerate these processes for 2 — n processes
below s4 and for the 3 — 3 scattering in a 3 particle system.
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Appendix I: Singular Integrals

For the reader's convenience we state here the lemmas on singular integrals used
in this article; both due to Faddeev: A 3-dimensional version of Privalov's lemma and
'Faddeev's lemma' [2] (p. 44-45).

Privalov's lemma: (1.1)

Let /(-,.): Rm X P3 ->¦ C be H-C of index pt > 0 with an estimating function
N(k):

\j(k,p)\ ^N(k),
\f(k + h,p + q) -f(k,p)\ sfN(k) (|*|" + \p\") for |*| <1, \p\ <1,

and let / vanish outside some ball \p\ < P.

Then

F(k, z) d3p ^-^ (1.2)V ' J F z+x2- E(k, p)
{ '

is H-C in Rm x /7 „, with Holder indices pt' < pt and v < min(l/2, pt/2). In (1.2)

E(k, p) denotes a positive definite quadratic form and/7_x2 is the complex plane slit
along [— x2, oo) and completed by the limit points from above and from below.

Corollary: (1.3)

Let /(*, />): R3n x P3" -> C be H-C of index pi > 0 with an estimating function
N(k) and let / be absolutely integrable in p, uniformly in k. Let furthermore x\ < x\
for a C b. Then

FftI'=/'-'T7«FWiS) (M)

is H-C in regions P3" x [ü_xi D {Re z < P0}], x2 max (xf x\), with indices pt' <pi
and v < min (1/2, pi/2) and estimating function N(k).

Proof: Outside a sufficiently large ball j/»| < R(E0), the denominator is non
singular for Re z < P0. The contribution to F(k,z) from the integration over
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\p\ > P(P0) has the desired regularity properties. If a C b or b C a, the singularities
can be separated and the corollary results from applying Privalov's lemma in both
subregions of \p | < R(E~). If a 4= b and b <+¦ a then, by lemma (3.3), the loop momenta
can be chosen such that E2(p) p\ + Ex(p), Eb(p) p\+ E2(p) and EX2(p) do not
depend on px and p2. The corollary follows from applying Privalov's lemma twice.

Faddeev's lemma: (1.5)

Let f(kx, kn,px,p2, p3) be H-C with index pi > 0 and estimating function
N(k) such that f(kx, pf) 0 for \p, | > R, 1 < i < 3. Then

F(lx, kn, z) / /Jdtp, f(k, p)fj[z+x*- Qfi, /»)]-!, (1.6)
J i-i t=i

where

Qfi, p) «; $_, + «; (p^x + pj)2 + njpj, 1^:1^4,
with

Po Po(k) and />4 pfk)
is H-C with some index pi' > 0 and estimating function A(£) in R3" x 77_xs, where
x2 max x2.

l<i<4
Appendix II: On the Definition of Bafß, pi)

In analogy with the definition of B(B, pt) in Ref. [7] we define B (d, pi) as direct

sum of function spaces RaN —> C normed by

ll/IL,^ sup Nah(p, 6)À\f(P) I + ^^Äi} (II.1)

Nak(P'0)^E'li(1+\tij\)-@'
i i=l

E' extends over all (A — Ä)-tupels /»,. ¦ of partial sums
iV

Pi) E°ijr Pr Gi}r 0, ± 1

r-1
?3/
Uk "¦""¦ oixvii una... w(.^r u^rwhich span Rljj and such that er,- ,r er,-r 0 if r and r' belong to different clusters of aA.
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