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Field Theory and Unstable Particles

by O. Steinmann
Schweizerisches Institut fiir Nuklearforschung, Hochstrasse 60, 8044 Zirich

(2. II. 71)

Abstract. The purpose of this paper is to give a field theoretical description of scattering
processes involving long-lived unstable particles. A model with one kind of unstable particles,
the B, and their stable decay products, the A4, is discussed. The B are described by poles on the
second sheet in the otherwise smooth Green’s functions of a relativistic quantum field corresponding
to the 4. The decay is assumed to be due to a weak interaction, and the quantities of the theory
are considered only in the two lowest non-vanishing orders in its coupling constant. Strong
interactions of the B among themselves and the A4 among themselves are admitted and are
rigorously taken into account. The consequences of unitarity are studied. It is shown that a pole
with a factorizing residue on the second sheet of the 4-point function enforces the existence of such
poles in the higher functions. The spatio-temporal development of scatterings involving B-particles,
as seen in experiments, is analysed with the help of a formalism developed in an earlier work.
A natural definition of incoming and outgoing scattering states and of the S-matrix is given.

1. Introduction

There are two types of unstable particles in high energy physics: metastable
particles and resonances. The former are sufficiently long-lived to travel over macro-
scopic distances between production and decay. Resonances are never seen in a free
state but manifest themselves only as humps in cross sections. In principle this
distinction is not sharp, but in practice it turns out to be quite unambiguous, the
metastable particles being the ones that decay through weak or electromagnetic
interactions.

To both types the methods and concepts of scattering theory, originally developed
for stable particles, are applied freely with little scruple about the lacking foundation
in an exact underlying theory. In the case of resonances this is a highly questionable
procedure, acceptable at best as a very crude approximation. But in the metastable
case the method is clearly reasonable and, indeed, works very well. It is therefore
desirable to find for it some underpinning in a rigorous theory. This is what we shall
attempt to do in the present paper, the underlying theory being quantum field theory.
In what follows, the word ‘particle’ will always denote stable or metastable ones, to
the exclusion of mere resonances.

In relativistic field theory we have a rigorous definition of an S-matrix only for
strictly stable particles. This is so because the notion of particle itself is only defined
asymptotically, for { — 4 co. (We exclude the trivial case of free fields.) But in this
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limit an unstable particle has long ceased, or not yet started, to exist. The definition
of an S-matrix for unstable particles is therefore possible only in an approximate
sense.

Consider the case of a strongly interacting particle B that can decay via a
different, weak, interaction into two stable particles 4. How do we describe scattering
of B-particles ? An obvious idea is to simply forget about the weak interactions and
treat the B as strictly stable. This is clearly impossible if we are interested in the decay
process itself or in other processes that can only proceed weakly. But even if we are
not interested in weak processes we are confronted with difficulties. In reality we
cannot switch off the weak interaction, we can only neglect it, and this is a different
thing mathematically. In particular we find that the state spaces are entirely different
in the two cases. The Hilbert space of the exact theory is completely spanned by the
asymptotic A-particle states. The approximation in which the weak interaction is
neglected must be formulated in this space. On switching off the weak interaction,
however, we obtain a much larger Hilbert space spanned by the asymptotic 4-states
and B-states together. The summation over a complete set of intermediate states
occuring in the unitarity relations will thus look quite different in the two cases, and
this apparent paradox has to be resolved.

We shall analyse such a model with the help of ideas introduced in an earlier
paper [1], herafter quoted as 1. It will be shown how, under certain natural assump-
tions, scattering processes involving the unstable B can be described satisfactorily.
We shall define notions like ‘incoming and outgoing particles’, ‘n-particle states’ and
‘S-matrix’ in the two lowest non-vanishing orders in the weak coupling constant g.
This is a sufficient approximation if g is small enough, which is the case in praxi for
the weak and the electromagnetic interactions.

In I we distinguished the experimentalist’s particle from that of the field
theoretician. The latter is an object with a sharp mass, which definition disqualifies
unstable particles from the start. The former can roughly be defined as an object
which produces in a bubble chamber well defined straight tracks, or, more generally,
which behaves under tracking with any sort of detectors like a classical particle.
That such a tracking is, in practice, not possible for neutral particles is here of course
irrelevant. We are only concerned with the principal aspects of the situation and shall
generously assume the existence of counters which can detect any kind of particle
directly (not via their decay products) without absorbing them. This experimental
definition of a particle excludes resonances and includes the stable particles of field
theory only if certain conditions are satisfied (see I). It is, however, the most appro-
priate definition for dealing with metastable particles.

As in I we consider the theory of a local field 4(x) with an energy-momentum
spectrum corresponding to the existence of stable particles of mass m > 0. In I we
have shown that such a theory describes stable particles in the above experimental
sense, if its Green’s functions are sufficiently smooth in p-space. We have also shown
that unstable particles appear, if this smoothness is disturbed by poles on the second
sheet near the real axis. In what follows we shall examine this model more closely.

In Sections 3 and 4 the consequences of asymptotic completeness (= ‘unitarity’)
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will be discussed. It will be shown that a pole with a factorizing residue on the second
sheet of the 4-point function generates such poles also in the higher functions?). It
will also be shown how the sudden increase of the number of intermediate states in the
limit g — 0 is produced in a natural way.

Section 5 is the central part of the paper. We define states of unstable B-particles
and study the phenomenological development of scattering processes. This will lead
to a natural definition of an S-matrix.

Section 6 is devoted to a brief discussion of a more conventional but less natural
definition of the S-matrix with the help of some pseudo-asymptotic conditions.

Section 7 deals with the question whether a local field can be associated with the
B-particles. The problem will be formulated, but no attempt at its solution will be
made.

Note that we do not assume a priori the existence of a B-field but use the
analytical structure of the Green’s function for the introduction of unstable particles.
In this our approach differs basically from the earlier work by Matthews and Salam [2].

2. The Model

We consider a model with two kinds of particles: the stable, pseudoscalar,
uncharged A-particles with mass m > 0, and the unstable, scalar, uncharged B with
mass M, Zm << M < 3 m. The B are strongly interacting among themselves. The 4
may also interact strongly among themselves but not with the B. Between 4 and B
exists an interaction with a small coupling constant g, through which a B can decay
into two A.

This model 1s unrealistic insofar as it does not allow strong production of the B.
This deficiency could easily be eliminated: we could either admit a strong interaction
between A and B with the strong decay B — 2 4 forbidden by a selection rule, or we
could add another type of stable particles, the C, which interact strongly with the B
but are too massive to allow the process B — 2 C. These expanded models can also be
treated with our methods. No essential new features appear, wherefore we shall restrict
ourselves to the simpler version.

The underlying field theory is the theory of a pseudoscalar, hermitian, local,
asymptotically complete Wightman field A (x) [3] with a spectrum corresponding to
particles of mass m. Let # be the Hilbert space of this theory. It is generated from
the vacuum £2 be repeated application of the asymptotic fields 4, ().

Let T(x,,..., %, be the amputated time ordered product of the fields A4(x,).
Formally:

Ty, oo, 1) = (=)=t [T K, X000, %) Alr,) ... Alx,) 1)

n n

1) The reader who is willing to accept this not surprising result without proof may omit Section 4,
which makes use of the not generally known generalized retarded functions.
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where K, = — [l = m?, 0(...) =1 if the arguments are in chronological order,
0 = 0 otherwise, and the sum extends over all permutations (4,, ..., 7,) of the indices
(1, ..., n). The vacuum ecpectation value of T is called z(x,, ..., %,), its truncated
(= connected) part 77(x,, ..., %,). T and 77 are the Fourier transforms of 7 and z7.
7 is of the form

T(pr, s ) =01+ o+ P Thraon B0 (2)

where 7 is only defined on the manifold p, + -+ + p, = 0. In what follows this
restriction of the arguments of 7 will always be tacitly assumed. Equation (2) holds
also for the truncated part.

We develop 7, as well as all the other quantities of the theory, into a power series
in g, which we assume to be asymptotic:

N
%(le"'lpn):z;gy%v(plr""Pn)_l_ O(gN+1)’ (3)

This equation is to be understood in the sense of distributions, i.e. it holds after
integration over sufficiently smooth test functions.

Relevant to the discussion of scattering is the behaviour of the Green’s functions
7 on the mass shell and in its vicinity. We assume that in thisregion the 77 are smooth
apart from the physically necessary singularities, including second sheet poles
corresponding to the B and the threshold singularities generated by them.

More exactly: consider the variables p,, 95, ¢1, g2, Q = ¢, + ¢5, in the region
preV_,pi ~m2 g, e V., gi ~m? Q® ~ M2, (4)

with 7, the forward and backward cones, and the sign ~ denoting approximate
equality. In this region we assume 77(p,, ps, ¢1, ¢s) to be of the form

) b(py, ...,
T(pr---uqe) = apy, ..., @) + Q2 _(pMz—!—ig.;)JF &

with a, b smooth, i.e. infinitely differentiable and without strong oscillations. This
means that the derivative 0a/0p; is at most of the same order of magnitude as the
difference quotients [a (p; + Ap,) — a(p,)]/Ap; with macroscopic Ap;, and the same
for &. This property shall hold independently for all coefficients of the perturbation
expansion of 4 and 4. a and b are, of course, only defined on p, + -+ + g, = 0.

Here we have assumed that M is roughly in the middle of the elastic interval
(2m, 3 m), so that interferences between the (Q-pole and the 2 4 and 3 A thresholds
can be neglected.

For Q% far from M? we assume 7 to be as smooth as is compatible with the
possible vicinity of physical singularities.

We assume /" and & to start with terms of order g2:

I=T,g+ -, b=byg?+ . (6)
A possible g-dependence of M will be ignored for simplicity.

The pole in (5) shall occur only in the s-wave, so that b depends only on the
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variables $7, ¢7, Q2. For the moment we admit a possible dependence of I" on pZ, ¢Z.
We do not exhibit this dependence explicitly because it will turn out later that I”
must be constant.

The residue b shall, at the pole emplacement Q? = M?2, factorize in the two lowest
orders:

bo(p1, -, q2) =27 %1(751’ P2, Q) %1(Q1’ 72» — Q) ,
by(p1, ..., qs) =2, {%1(1”1 P2, Q) %2(91: 72, — Q)
+ %2(?1: P2, Q) %1(911 92, — Q)} : (7)

The factors 7,(py, ps, Q), ... are defined on p, + p, + Q =0, Q2 = M?, and are smooth
functions. 7;(p;, s, Q) is a Green’s function of two A and one B. It is not equal to
the 3-point function T,(p;, s, ) for ¢ = Q. We shall also use this notation in the
future: small letters denote A-variables, capital letters B-variables, differences of
small and capital letters (e.g.: Q — &) are A-variables. We hope that this will not lead
to confusion.

The definition (7) does not fix the factors 7, unambiguously. The definition
becomes unique up to a sign, if we add the CTP relation

'E(Ibli P2, Q) :%(_?1:'—1{72’_@) (8)
as a condition. This condition can be satisfied, since T (py, ..., ga) = T(—P1,---, — )
due to the CTP theorem [3]. We obtain

T (b1, P2, Q) = (27)~12 [b(p1, Pas —P1, — Do) 12 (9)
for (p; + ps)2 = M2 The Lorentz invariance of 7(p,,...,¢,) gives invariance of

T (p1, P2, Q), which depends then only on $?, p%. Furthermore, it is invariant under
exchange of p; and p,. The value of 7 on the mass shell will be called ¢:

fos B (P1, Pa» Q) for Ib% = ?g =m>. (10)

The higher functions shall contain the singularities that are necessary for satisfying
unitarity and shall be smooth otherwise. The poles generated in the higher functions
by the 4-point pole (5) will be discussed in Section 4.

3. Elastic Unitarity

Let 64(k) = 0(ky) 6 (k2 — m?) be the d-function of the positive mass shell. Define
gk = d.(k) 0.(Q — k) d*k . (11)
The unitarity equation for the 4-point function reads in the region (4)

%T(Plr )92) _ 'ET*(PI) e ,512)
i

=——5 W)4/5Qk TIq1, Gas — R —Q + R) T (pr, pa k Q — F) (12)

We develop this equation in powers of g and consider the terms of second order, this
being the lowest order in which the B-poles appear. The pole itself can be expanded:
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! - ! L 1 AR QT (13)
O*— M4+ iMI  Q*—Mtie 0 — M2 tic i

which equation holds again in the sense of distributions.

The pole terms on the left-hand side of (12) are in second order

T1(p1, P2s Q) T1(¢1, 92, — Q) o %T(Ppibz, Q) %T(Qp‘h:"g) _ (14)
Q*— M2 +i¢ Q?— M2 —ie¢

On the right-hand side we obtain poles from the terms with one factor of second order
and one of zeroth order:

iy

1 1* ¥ e gy —
S %" (2 715)5 { lel_(quz_ 1,6(“)) ]0(p1’ Ibz, Q)
251 %l(pli ?2: Q) *
-+ Qz—Mz-F?:&‘ JO(QIx Q2’_Q)} (15)
with
Joltrs b, Q) = [80k by, $a b Q — B
Jo(d1, 42, — Q) =f6Qk N, g, — kR —Q + &) . (16)

But we have also poles of second order from the terms in which both factors are of

second order. This is so because on inserting the exact poles in both factors we obtain

the product (Q2 — M2 — ¢ M I')-! (Q* — M2? + ¢« M '), and this diverges for g — 0

like g—2. We can develop: -
1 1 1

O*—M:—iMIT Q: _M2+iMI 2iMT

g 1 1 3
- - 1 — g+ Ot
X{QL—M?~iMJ’ thML+HMF} 2¢MJL{ gIE+ @4

1 1
— g2\ 4 17
%mww—u @-w+n+g4 a7
and obtain in (12) the additional pole term
(272)° - ~ g
TAMT, I|t[* v4(prs b2y Q) T1(q1, 20 — Q) ¥
. )
PR-—M2—de QPP-—M2H1e¢
with
I=fan, 02 — M2, (19)

a phase space factor.

The residues of the pole (02 — M? + 7 ¢)~1 must be the same on both sides of (12).
This yields, after division by 27 7,(p;, P2, 0):
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Tigr, 2 — Q) = — — @)ty T¥ar, 40, — Q)
I -
+ 2P A =0, | (20

for Q% = M?2. For ¢ = m? this becomes, with the definition

]02]0(%’(]2’_@)Iq%=q§:m2, 0= M2, | (21)
after division by #:
1 4 8
l=——_ _(2m)% T* 5~ 1 22
2(3z) Jo + (2m) 40T, | (22)
(We exclude the case ¢, = 0 in which the B are stable in first order.)
Define
1
Qo=1——2‘(2”)4]0- (23)
0o 1s the s-wave part of the S-matrix for A-A4-scattering in order g°:
Qo = €XP (217 dy,) (24)

with d, the s-wave phase shift, d, , its zero order contribution.
(22) becomes

I
00 = (2 ﬂ)sm (25)
I’y must be real positive. Hence
tl = ‘t1| (31;6010 § (26)

the phase of £, is the zero-order s-wave phase shift. This is a special case of Watson’s
final state theorem [4].

From (25) we obtain finally

AMI, = (2nm)°1 |42, (27)
another well-known relation.

As a side remark we can now sketch the proof that I, is a constant. If I, depends
on pZ, ¢7, then 2 1I', gets replaced in (20) by I'y(p?, p2, m2, m®) + L'y(m?, m2, g%, ¢2).
According to (20) this expression cannot depend on $7 and for reasons of symmetry
also not on ¢7. It is therefore equal to its mass shell value 2 I',. If we consider now the
terms of order g* in (12) and use (13), we find double poles (Q* — M2 + 1 £)~2. Equal-
izing the residues of these double poles on both sides yields an equation, which is
obtained from (20) by multiplying on the left with I'y(%, ..., g3), on the right with
I',. This is compatible with (20) only if I'(p3, ..., ¢2) = [, q.e.d.

Equation (20) becomes with (27):

- - ) -
Tl(Ql’ q2»_Q) - Tr(QIJQ% - Q) = __2_ (2 n)4fan T:(Q’l: 92, "_k! _Q +k)

X T,k O—Fk, —0Q). (28)
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(Remember that Q — % is an A-variable.) This equation has the form of an unitarity
equation, if we interprete 7(g,, ¢, — Q) = 6% (¢1 + g2 — Q) 7 (¢, g2, — Q) as amputated
Green’s function of two A-fields and one B-‘field’, the latter being defined only on
Q% = M2 (see Section 7).

The second order contributions to (12), including the extraordinary term (18),
are in extenso

-Eg(pl, s qa) _%g*(fbp s o) =

—— (2m)* Z; 0ok T *(q1, 92—k, —Q + B) T5_ (b1, P, B, Q — K)

—1(2%)25(02"— M?) 7¥(q1, 42, — Q) T1(p1, P2, Q) - (29)
The last term on the right has the form that would be obtained by inserting a stable
1-B-state as an intermediate state. In other words: if we write down the unitarity
equations for 7 in a larger Hilbert space ' spanned by A-states and B-states
considered as independent and develop the right-hand side according to the simple,
as we know faulty, rule (4 B) 4 =204, B,_,, then we obtain in second order the
equation (29). This is the solution of the paradox mentioned in the introduction.

4. The Higher Functions

For the discussion of the higher Green’s functions it is convenient to work with
the generalized retarded functions (g.r.f.), since they satisfy simpler unitarity relations
than the time-ordered functions. We use the definitions and notations of reference [5],
hereafter quoted as II. We are especially interested in the ordinary retarded products
R%ys 5w o X5) @lid the prodicts Blwy, v s %, T W5 vme 5 M)y Bl oss o 5 & g v0s 5 9)
associated to the following cells C4 (the symbol J means 4 or |).

Let X be the set {%;, ..., %,}, Y the set {y,, ..., ¥,,}- Then
—inC + in C
_ 't _ ' 30
= {+ in C, 7 {— in C, )
The other o are the same in both C 1, namely

or = {f} if I CYandy, {Z}I

= {f} if I C X and {Z}I

O'I]_UIgzo-IlifI].CX’ IzCY, I]_='=¢1X-

We shall work only with totally amputated products, i.e. with Klein-Gordon operators
in all variables applied to them (compare (1)). The vacuum expectation values of
R(..), R(.. 7 ..) are called #(..), #(.. J ..). Their Fourier transforms are of the form

;(Pl’ ""Pn) =64(¢1+ e +pn) ;’(plﬁ M ’pn) H
;(plx i ’Pn 1 Q1’ ’Qm) :64 (EP,‘FZQI) ;(Pl’ i ’qm) d (32)

(31)
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The 7 are defined on the manifold X' p, = 0, or X' p, + X' ¢, = 0, respectively.

The g.r.f. are real in x-space. Hence, for g, any g.r.f.:

Eulbrs s b0 = Eh(=D1, s — 1) - » (33)
For ¢,, g, on the positive mass shell or sufficiently close to it, we have
;(?"1:---:%1\9’1:92): (P1y e s Bus Q15 92) 5 (34)

the difference —1 (£, [R(py, ..., bn» @2), R(q1)] 2) of the two sides vanishing for
g7 << 4 m?. Furthermore, in the region (4):

;(1’1» P21 q1, qo) = ;(Plr P2s G1s 92) = ;T*(Pl»?bzs 91> 92)

;(PI’PZ‘I/QI’QZ) = %T(Plxﬁz:‘h"h) . (35)
Hence 7 (p1, p» T ¢1, ¢5) contains the same B-pole as 7%, etc.

We define

;1(?51» pzT Q) = %1*(?51» 752’ Q) )

;1(P1: 752\L Q) = :51(751: Pas Q) » g (36)

The R(.. ] ..) satisfy the identity

Rxy, ..o, Y1y ooe s Ym) — R, o s % d V1 oo V) =
=1 [R(xy, oo, %), Ry, -0, Y] (37)

from which we obtain the unitarity equations

~ - (2 )2
r(pl""tpnqul:"'rqm)_r(pl""‘l’""qm):"zl_z:( ;::)
l !
X fdkl... dkl{ﬂm(ki) —Hd+(—ki)} F(Pey e Por Bry ey )
1 (TP S 1, I (38)

For the proof see II, equation (80) (note a sign error in this reference).
For m = m = 2, in the region (4), (38) is the same as (12) because of (35).

Consider the case m = 2, n arbitrary, for ¢,, ¢, close to the positive mass shell,
Q% = (q; + g2)* ~ M?2. Equation (38) becomes

;(?51» v P 41y 42) — ’:(?D oo Pt 015 @)

7 » %
= (2 n)“faek P (Prseees P B Q@ — R) 7 (01, 920 —h, —Q + £) . (39)
We expect 7(.. ] g1, ¢5) and 7 (p,, ..., g,) to contain poles of the form
b(Pl!""pnIQI: f]z) L b(plr_r""pn:QIJQ2) (40)
Q—M2_iMI ° Q*— M2—iM T

respectively. The upper sign in the first denominator goes with 4, the lower with |.

We develop (39) in powers of g and take again the terms of second order, assuming
the b, to be as smooth as is compatible with unitarity. This implies in particular that
b, does not itself contain any B-poles. That the I, used here is independent of # can
be shown by a similar argument as the one given after (27) to prove the constancy of
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I'y for n = 2. Comparison of the residues of (@2 — M2 + 7 &)=t on both sides yields

— by(Prs s PV G102 = '7(273)5'5 7’ (91, g2 — ©O)

X Joprs - s tnt Q) — T+ 71(g1, 924 — Q)

Xfégk bo(py, .o s by Q — E) (41)
with

]O(Ibl: wew g pnT Q) :/6Qk ;O(Plr""Pmk: Q - k) - (42)
The last term in (41) is analogous to (18). From (41) we see that by(.. | ..) factorizes:

balbr, v s Pad G192 =2 74(p1, o s B b Q) 72001, G2} — ©) (43)
with

Falbrr s bud Q) == — @)ty Jolprs o Put Q)

1
— kb e — k) . 44
by [ B0k btk Q= (4
From the —1 ¢ pole we obtain in the same way

by(P1, ""PnTQI:Q2)=%(2 75)4/562]3 bo(Prs «v s Pns B Q — K)

0(91’ de, — k’ _Q+k)

1 .
e n(ql,m—cz)fagkbg(pl,...,pn,k,Q—k). (45)

.+.

We put ¢, = &', ¢, = Q — &', multiply both sides with 74(q;, g2, — &', —Q + &)
and integrate over dgk’. Using (35), (41) and (12) in Oth order, we obtain

fﬁQk bolbss e s Pur ks Q — k) 7o(q1, 2, —h, — Q + F)

It* ]O(QIJ 92, _Q)fan bz(Ph oy Pus R, Q - k) :
Substitution of this expression in (45) yields, with the help of (28) and (36):

bo(Prs - s P 1, G2) =2 ;1(?51» rea s Byl @) ;1(‘]1: 7.1 —0) (46)
with

2 1
rl(pl’ ’Pn )I\ Q) szan b2(p1: :Pn’k’ Q— k) 3 (47)

Thus this residue factorizes too.
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Comparison of (44) with (47) gives
FalBr s 2ut Q) = Palbrs ey B b Q) = - @A)y Jolpr, e 1 O)

7 - .
=5 (2 75)4/5(2]3 YolPrs oo v P B @ — R) 74(Q, — %, —Q + &), (48)
where we have defined
;1(@ —q1, —¢3) = fl("‘(h» —qs, Q) . (49)

(48) is a generalization of (28), and can in the same way be considered as the first
order part of an unitary equation with » A-fields and one B-field, the latter being
defined on its mass shell only. It is an unitarity equation either in § or in §’, since
in the latter case intermediate states containing B do not contribute.

(48) shows that the #,(p,, ..., p, ] Q) cannot both vanish if #, and [, are different

from zero:a B-pole must appear in at least one of the functions 7, (py, ..., 9,1 91, 2).
We proceed now to the case of arbitrary » and m. We expect that 7 (p,,...,
p. 1 @1, .-, g,) contain B-poles in the variable Q = 2" g,. To fix ideas, we assume
QeVy. 74..] ..) will contain a pole term
balps, - o P L 1 oo ) -
Q*— M2 Fie¢

in complete analogy to (40). In the by now familiar way we insert (50) into (38) and
obtain, using the results of the case m = 2:

bo(pys o b L s o s @) =27 74(p1, oo £0 T Q) 7al01s -, 0 T Q) (51)
with 7, defined by (44) and (47). The factorization (51) holds for Q2 = M2. The
direction of the arrow is the same in all three intervening functions.

The general unitarity equations for any g.r.f. have been given inII, equation (80).
(The overall sign on the right-hand side ought to be a + in this reference.) With their
help we can derive the 2°¢ order B-poles in any g.r.f. from those in 7,(.. ] ..). The
result is the following.

Let g,(p1---» Pu>» 1> -+ » 4) be a gr.f. corresponding to the cell C,, with a
d-factor split off as in (32). Let Q = 2}" ¢,. Then the second order term g ,, containsa
pole

b yere s O
pe2(pL 'q ) . (52)
Q*— M2 —10q¢
0¢ 1s the sign attached to the set {¢,,...,¢,}in C,.
The residue b, factorizes in Q2 = M2
b,uz(Pp s Gm) =2 gal(pl’ ooy Dy @) g’m(gl: oo s Gy — Q) (53)

g.1(8 1) can be interpreted as the terms of first order in g.r.f. of # (m) A-fields and one
B-field, whose cells C, (C) are as follows: the sign of the one-variable set {4 Q} is
the og of (52) and the o7 for proper subsets I of {p,}, {g;} are asin C,. The g, satisfy
the appropriate unitarity equations. Let C,, C; be two adjacent cellswith the boundary
{$1, ..., ps} (for simplicity) and the partial cells C, in {p,...,p,} and C, in

{ps‘i'l’ s ibn’ Q}'
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Then
éml(ﬁl""’pn’ Q)_éﬂl(plx" pni Q)

2n2£ ol

/ J]dk; {IT6 (k) — T8, (—F,)}

X gg(,(pl,...,ps, Faveo s k) iosns oo s Bur O3 —Bay ooy — k). (54)

For the notation see II. Note that we consider totally amputated g.r.f. so that the
suffix amp of II can be dropped.

Again we can consider (54) as unitarity equation in §’, since intermediate states
with B-particles will, in first order, contribute nothing to the right-hand side.

From the connection of the 7T-product with the retarded products (see II) we

learn finally that the functions 7 have also the expected pole structure: 71 (p,, ..., 9,
¢1s ---» 4,,) contains the pole
zn%f(le"‘Jpn’ Q) %;F(QI«:"'JQm’“'Q) , (55)
Q?— M2+ ¢

where the residue is given at the pole emplacement (02 = M2, The factors TI(py, ...

P., Q) can be interpreted as truncated Green’s functions of #n A-fields and one B- f1eld
i.e. they satisfy the appropriate unitarity equations. As usual, z(..., Q) is only
defined on 2’ %, + Q = 0, Q2 = M?2.

As yet we have only discussed the B-poles in a single, arbitrarily chosen, partial
sum of the variables p,. We wish to know whether poles in different partial sums
combine according to the rules that are valid for stable particles [6].

We have assumed that the residues b, of (52) are smooth outside the A-singu-
larities. Products of B-poles can then not occur in second order. (B-poles in all
possible partial sums occur of course additively.) In order to get products of two poles
in different partial sums we must proceed to the terms of order g3. It is easily shown
that multiplicative poles in partially overlapping sets of variables cannot occur.
A pole in a certain partial sum can equally well be written as a pole in the complemen-
tary sum. Hence we can always write a product of two poles as poles in non-over-
lapping partial sums. Consider the function g ,5(py, ... Pps D15 e » Pops P1s --- 5 P1)
and suppose that it contains the pole product

C,u3(?51’ T p;) (56)
(P'2— M? —i0p &) (P2 — M2 —igp,, &)
=Xp;, P"=2Xp;. c,y is supposed to be smooth apart from the necessary A-
singularities. g;. , 0p, are defined as in (52).

We insert this ansatz into the 3rd order unitarity equations and compare the
residues of corresponding pole products on both sides, taking proper account of terms
of the type (18). By using the same type of arguments as earlier, we find that ¢,
factorizes as expected:

Clu3(p17 sy 1):) = (23‘6)2 éal(plr LR ?n’ P” P”) gﬁl(pi’ ’ﬁ:n' —P,)
% GyrlPrs vow s Ps— P (57)
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for P'2= P"2= M?® g 5, and g, are the functions already occuring in (53). g, is a
g.r.f. of n A-variables and two B-variables, with its cell C, given by o}, op- and the
or of C, for subsets I of {p,}, including the full set. The g,,(p;,..., 0., P', P’)
satisfy the appropriate 1% order unitarity equations in §’.

In the same way we can successively build up products of any number of poles
by going to sufficiently high orders in g. The procedure must be slightly modified
when we reach the case in which all the variables p; are contained in one of the partial
B-polesums. Let, e.g., { P1}, ..., { P,} be pairwise disjoint subsets of { P} = {p,, ..., .},
such that y,{P;} = {P}. Let P, = Zjp, p;. The g.r.f. g (¢4, ..., #,) will contain in a
suitable order the pole product IT (P? — M2 + 7 &)~ with the residue (for P} = M?)

c,u,(pli""pn) = (237:)3 éa({Pl}l _P1)§8({P4}’ _P4) ée(Pl"“!P4)' (58)

The g,, ..., g5 are the functions introduced above, with lowest nonvanishing contri-
butions in first order. Since we want the B to be strongly intracting we must admit
a non-vanishing contribution of order g° in g,.In this case the residue of the step
before, i.e. of a three-pole product, cannot be maximally smooth but must be allowed
to contain another B-pole. Our procedure can be modified in this sense without
trouble. The g o(P, -.., P,) defined in this way satisfy the exact zero-order unitarity
equations in §)’, where this time intermediate states containing A-particles do not
contribute but the B-states do.

Analogous results can again be proved for the time ordered functions ‘Ef ¢ —
pna Pl: vy Pm)’ Ig‘(Pll caey Pm)'

It can also be shown that not only the one-B-poles turn out as expected, but
also the #n-B-thresholds. We will not discuss this point explicitly since these higher
singularities are not important in what follows.

Without proof we remark that the results of this and the preceding section are
still valid in the next higher order in g. The same poles as above appear in this order,

with residues which factorize as in (7). The factors To(py, .-+, Pu» P1s--- s Bn),
7.(p1, ..., P,) satisfy the correct unitarity equations in §’, in the same way as (29).
As analogon to (27) we obtain
2MUTy= 2nm)5 1 |t ] (59)
and as analogon to (26)
27T
arg t, = 0y, + arc tg [TE 60,1] : (60)
3

d,1 1s the 1%%-order term in the s-wave phase shift d;.

In still higher orders in g the higher terms of (13) have to be taken into account,
so that poles of high degree appear. This means that the finite distance of the B-poles
from the real axis becomes important. Factorization of the residues can then no
longer be expected in Q% = M2, but possibly in Q% = M? 4 ¢ M I'. This complicates
the situation considerably. We have not considered this problem. The existence of
poles in higher functions and their location will presumably come out as expected,
but on the form of the residues it is more dangerous to make prognostications?2).
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Let us briefly summarize the results of sections 3 and 4. We started from the
Green’s functions 7(p,, ..., p,) of the field A and assumed the presence of the pole (5),
(7) in the 4-point function. Apart from that we assumed the 7 to bejmaximally smooth.
We then introduced Green’s functions 7(p;, ..., P,, Py, ..., P,), P2= M2, of n A-
variables and m B-variables. They are defined up to third order in g for m = 0, to
second order for # + 0, m =+ 0, to first order for » = 0, and satisfy, up to these
orders, the unitarity equations

Tolprsoos Py) — T¥ (P, ..., P - 222

L,h=0 LR 0=0
275 2(1+h)
X — T fﬁék [ okt ({;b P} ,—Fky,...,—k,—K,,...,—K})
To—pl{t: PR, Ryy oo s By Ky, oo, Ky) (61)
Here
0k = O(ky) 6 (B2 — m?) d*k, OK = 0(K,) 6 (K2 — M?) d*K (62)
and the L, R summation extends over all partitions of the set (p,, ..., P,) into two

complementary, non-empty, subsets {p, P}y and {p, R}r. The subscripts ¢ etc.,
denote the order in g. The 7 , are Lorentz invariant and symmetric under permutations
of the p, and the P, separately.

This result is hardly surprising. It states exactly what has always been assumed
to be true. What is new here is this: we have not only shown that the pole structure
described above is consistent with unitarity, but that it is actually enforced by it,

-once we assume the presence of a pole with a factorizing residue in the 4-point
function.

5. Scattering Processes

We want to give a theoretical description of scattering processes involving B-
particles as seen by the experimentalist, i.e. as processes monitored by detectors. For
simplicity we shall always talk of ‘counters’, but our considerations are applicable to
other types of detectors like bubble chambers, etc. Even a target can be considered
as a counter in our sense, since it does localize particles in a given region.

We use the formalism developed in I, of whose basic notions we shall now briefly re-
mind the reader. A stafe is an ensemble of identical systems (particles or groups of partic-
les), prepared in a certain prescribed way. It is represented by a vector ¢in$. In a
counting process these systems are allowed to interact with a counter. The systems

2) Since the completion of this manuscript we have obtained the following result, which holds
outside of perturbation theory: if the 4-point function contains a pole (5) with a factorizing
residue, then all the higher functions contain the corresponding poles, also with factorizing
residues. Assumed is that all the functions can be analytically continued sufficiently far
across the relevant Q%-cut.
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which have triggered the counter form the new state ¢’. This operation can be repre-
sented by a bounded operator C in the field algebra generated by 4, which is essentially
localized in a bounded space-time region G with diameter d,. (See I for the definition
of essential localization.) We choose G such that it contains the origin of our system of
co-ordinates. Translation of the counter by the 4-vector x gives the counter C(x),
which is essentially localized in a neighbourhood of x. The Fourier transform

~

C(l) = 2m)-2 / dtx " C(x) (63)

has an essential support of diameter d, € m. { is the momentum transfer to the
counter from the observed particle.

We shall use the letters {, {,, ... for counter arguments in momentum space,
while p., P, — p,, (P,) retain their meaning of A- (B-) variables. 7 ({;, ..., {y, P1, -+ »
Pg & AP PY) and 7(,, ..., P},) are the time-ordered and retarded functions of a
counter-‘fields’ C(0), p A-fields and y B-‘fields’, where the latter are restricted to the
mass shell P7 = M2. 7, 7 are amputated with respect to the p; and P, but not the ;.
7, rare defined as in (32). They are defined on the manifold X' ¢; + Z p; + 2 P =0.
In what follows this restriction will always be understood.

The counter fields C ({) can be easily introduced into the considerations of the
preceding sections: 77({;, ...) and 7({;, ...) have in the two lowest non-vanishing
orders the expected singularity structure. We assume again that 77 and 7 are smooth
outside the physical singularities, i.e. they are C* and do not oscillate.

Let |py, ..., P,y DE n~particle in or out state, with the normalization
ex<q1:""qrz‘P1)" pn ex:' Z szqz 63 ﬁpji)]’
! (f1yeensdp) o=
w(g) = (g* + m?)!=2. (64)
Let
~MS(4.1) reey Cappl’ )Pn’ qu’ igE —qm) =
1 (ST ", S 65
! P 7 ‘ Pio = O(P:), 4o = ®(q;) (©3)
be the mass-shell restriction of 7 and define 7p5(¢,, ..., —¢,,) analogously. Then,
according to the LSZ reduction formulae (see II):
(n! m)=12 (2 m)n+m T pr5(Cy, ..., — Q)
= out<P1’ Jpn I T(Cl) very Ca)‘ ql’ LA} qm>in ] (66’)
(n! m)"Y2 2 m)rm y 45y, ..., —-q,,)
= wlP1y - Pu | RCys -, 8D [ Qs oo s QD (66”)

up to disconnected terms containing factors 6% (p; — q;). Hence Ty s and 75 are

concentrated in the essential supports of f(; ;) and I"é(é' ;) respectively, i.e. in a small
neighborhood of the origin if 7 and R are defined with the smooth 6-functions of I.
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Let us consider, for the moment, the stable A-particles. From I we know that the

counter C(0) transforms the 1-4-state with wave function f( p)into a 1-4-state with
wave function

~

Zb) = f 5k 3 as(C, P, —) 7(K) . (67)

Remember ¢ = —p + k. Because of the smoothness of 7, g will be smooth even if /
was not. (Note that f cannot be arbitrarily wild but must be square integrable.)
More generally, application of C(a) to the f—state yields a state with wave function

g4(P) = exp{i[a,w(p) + (a, p)]}
. / 5k 7 ars(C, P, —k) f(k) exp{—i [ao (k) + (g, B)]} . (68)

This is a smooth function (the integral), multiplied by the oscillating factor £#4.
Such a function will be called ‘smooth in a’. The corresponding solution of the Klein-
Gordon equation in x-space is at the time 4, concentrated in a neighborhood of a.
Preparation of a 1-4-state with counters gives, then, a state with a wave function
which is smooth in the position of the last counter.

Experimentally one works usually with 1-particle states with ‘sharp’ momenta.
They are states whose wave functions are smooth, but concentrated in a narrow region
around a given 4-momentum $’. Such states are prepared with the help of counter
telescopes. Ideally a telescope consists of a set of counters C(x,), C(x,_), ..., C(%),
C(x), with x° > 2 > ... > %9, arranged such that the relative distances x — %, ...,
%,_; — %, are all parallel to $". The telescope is described by the operator

Cp,(x) = C(x) C(xy) ... C(x,) . (69)
All variables x, x; are translated by the same amount if the telescope is translated.
The differences x — x; are internal parameters and are therefore not exhibited. C,,
is a counter in the usual sense, except that its region of localization is stretched in the
direction p’ over a length of many times 4,, and that its sensitivity depends strongly
on the momentum of the particle to be observed. The kernel of (67) becomes in this
case

Tt (C, p, —F) :/H{(Ski et Py TusC, p, —ky)
1

X %MS(C]_J kly_kz) '-'%MS(é-z:kz) _k) » (70)

with §;, = —k; + k;, 1, i = — w(k;) + w(k;,,). This function has a small essential
support not only in £, but also in p and k, namely in a small region around p’. Appli-
cation of C,.(x) to a 1-A-state results in a 1-A-state with a wave function which is
concentrated around p’ and is smooth in x. Of course, this wave function describes
the state in question only for times larger than x°.

In a wide sense a target can also be considered as a telescope, the particles in the
target having narrow wave functions around p’ = 0.

States. with two or more A-particles are prepared with the help of several
telescopes. There is one difficulty to be considered here. We expect to obtain a 2-4-
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state with approximate momenta ', ¢’, by applying the product C,.(0) C,.(x), 2* = 0,
to an incoming 2Z-particle-state with total momentum ' 4 ¢'. However, these two
telescopes will in general not satisfy the condition introduced in I, that the localization
region of C_.(x) lie outside the causal shadow of C,.(0). Assume C,,, C . of the form (69):
Cp(0) = C(0) C(y1) ... Cly,)
Cplx) = C(x) Cxy) ... C(x,),

with 2y = 97, so that C(x,) and C(y,) with the same ¢ are essentially localized in space-
like separated regions. Application of the telescopes to |p, g);, gives the state

¢ = C0) C(x) C(y1) Clxy) ... C(y,) C(x.) [P, @i - (71)
By discussing the matrix element in {p”, q” | ¢> with the methods of I we find that
it is essentially different from zeroonly if p ~ p" ~ p”, ¢ ~ q' ~ q” (or another such
combination), and is then in a sufficient approximation given by the disconnected
term {(p” |C(0)...C(y,) | p><{q" |C(x) ... C(x,)| g>. But this is also the dominant
term in ;,{p”, q" |C,(0) C.(x)| p, ¢>;,, so that the expected expression

¢ = Cp(0) Cplx) | P, @i (72)

1s correct.

Let us now turn to the preparation of B-states. We shall use the results of the
preceding sections, 1.e. we shall work in the two lowest non-vanishing orders in g,
without showing the order indices explicitly.

A 1-B-state with momentum P’ can be prepared similarly to a 1-A-state, by
applying a counter telescope Cp to an incoming 2-A4-state. In order that the particle
character of the B can become manifest it is necessary that its life time be longer than
the length of the telescope: we must have I'! > d,, which implies

'€ dy. (73)
We apply Cp/(0) to the state

bin=[ 0p1 0P [1(P1) [a(P2) | P1, Podin - (74)
The wave functions ]?l have small supports not containing P’, concentrated around p;,
and are smooth in points x; with x? < 0. The 1-B-state
exists for times larger than 0. It can be expanded into incoming A-states. Because
of the essential support of C pr only 2-A-states contribute non-negligibly:

. =f(5k1 Ok, w(kb k) | ki, ky),, (76)
with

"P(kl: ky) = ,,{ky, Ry | Y. (77)
With (66) this becomes

2 )2 - ~ ~py
p(ky, ky) = (“En)*‘/aﬁ Opq 1(P1) fo(P2) 7;5(4‘» ky, Ry, — D1, — Do) - (78)
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7' is the retarded function of the telescope field Cp and four A-fields. Disconnected
terms in (77) do not contribute because a single A cannot trigger the telescope in view

of the support. of fz

7®<(...) is concentrated in { around the origin, in p, + p, and in k,; + k, around

P’. According to assumption the f; are smooth in a past point. With the methods of I
we see that the only relevant term in #*’ is the pole term

;P’(C: - P: k] ’ k2) 7 (P1 T?l: _'?52) (79)
P2—M2+4i¢

with P = p, + p,. More exactly: The contribution of (79) to (78) is the only one that
1s possibly large enough to have measurable effects. This may look like a contradiction
since this term is of order g2, while 7¥" also contains terms of order g°. These lower
order terms are, however, strongly damped in our geometry in the way described in
I and are therefore negligible. They are, of course, larger than the (79)-term for
sufficiently small g. But this means only that in this case the latter term is also
negligible, so that production of B is not observable at all. We must therefore assume
that g is not too small. This slight difficulty is not present in models with strong
B-production (see the second paragraph of section 2).

In the region P2 ~ M?, K2 = (k; + k,)2 ~ M? in which we are interested the
factor #¥'(¢,— P, k,, k,) in (79) is dominated by the pole contribution

rP(C, K, —P) 7 (=K, ky, k)

2

8
2 K~ M*—ie ’ )
so that we obtain finally
(27)*
k = 2 81
3 = ;P'(C, K) - P .
F(K) =faplap2 fl(Pl) f2(p2) Pz . M2 + 71{)',' * (82)

Remember P = p, + p,, K = k; + k,, and the equations (10) and (49). F is a smooth
function which is essentially non-zero only for K ~ P'.
For the norm of ¥ we obtain

(27)® 1 :
2 _ 4 o
HYJH 4 “l\/‘éklakzlp(KH KZ—M2+?:8 K2 _ M2 _ 3¢ (83)

We remember that (K2 — M2 + 7¢)~! occurs here as a first approximation to
(K2 — M2 4+ 4 M I")~' and use (17), (27) and the relation ok, 6k, = d*K Okgk,:

(2 7m)4
| #|?= 2) |t\2faK|F(K)|2. | (84)
We see that ¥ can be interpreted as 1-B-state with the wave function
- (2 )2
(K) ===t F(K). (85)
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The fact that | ¥|2 is only of order g2 despite of y being itself of this order, confirms
the previous assertion that (80) is the only relevant term. For the terms without a
K-pole this reduction of order does not occur.

Scattering states of two B-particles can be prepared with two B-telescopes. Both
are applied to 2-4-systems converging on their entrances. (That such a simultaneous
production of two converging unstable particles hardly ever occurs in practice need
not concern us here.) In this way we obtain the product of two states of the form (76):

(27)8 - - FL(K)
P, = 7 {t|4v/ Ok, Ok, Ok, O, R
Fy(K')

X - . M2 . ’!':8 ‘kl’ MR k2>in ’ (86)

with K =k, + ky, K' =k, + k). F,; is smooth in the exit of the corresponding
telescope. The form (86) is valid for sufficiently large times.

We interprete ¥, as a state [I:“l, F o> with two incoming B-particles with wave
functions F ;- In order that this interpretation is consistent we must have

(Fy, Fy | Fy, Fop = (F | Fi) (Fy | Fyy + (FL | Fo) (Fy| Fy). (87)
This scalar product can be computed with (64). On the one hand, we obtain terms in

which only variables occurring in the same F ; are paired. These terms sum up to the
desired result (87). On the other hand, there are cross terms of the general form

ops [on, on, FECath)  Frlitk)
! 2ok R —MEydie (Bt R)E— M2iie
Fy (Ry + ko) Fy (ky + k)

(fy + k)2 — M2 —ie (B +k)2— M2—ic¢
It is easy to see that this integral exists. Hence the wrong terms are of order g® and
are negligible with respect to the terms of order g occuring in (87).

Analogously we can construct states with any number of incoming 4 and B.

The outgoing particles, after scattering has taken place, are again analysed with
telescopes. A telescope with entrance in x, will react mainly to particles with appro-
priate momentum, whose wave functions are smooth in x,. This is so because C,
acting to the left on a state ,,,{...| gives a state with a wave function smooth in «,,
which is practically orthogonal to wave functions oscillating strongly in x,.

A scattering process will, then, look like this: any number of 4- and B-particles
are directed with telescopes to a given small region in Minkowski space. The outgoing
particles after scattering are analysed by further telescopes. The interaction region,
i.e. the common target region of the i» telescopes, is of a macroscopic size. This means
that its dimensions are large compared to the Compton wave length 1/m of the A.
We assume, however, that the distances involved are small with respect to 1/I", so
that the B-beams suffer no noticeable attenuation through decay during the experi-
ment. In a 2 4 — 2 A scattering experiment the processes proceeding through for-
mation of an intermediate B will then not be observed. But these events are of order
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g% and are negligible with respect to direct scattering which is of order g°. The indirect
events can, of course, be observed in a different counter geometry. We need not
discuss this further, since such a process can be treated as a sequence of two inde-
pendent simpler events: the creation and the decay of a B.

The probability that all the telescopes of such an arrangement are triggered in an
event can be calculated with the methods of I. Let us first consider the simplest
possible process, the decay B — 2 A. In this process we can study the novel features
introduced by the presence of unstable particles.

Take the 1-B-state ¥ defined by (76), (81), (82), for P’ = 0. We analyse this
state with two A-telescopes C,(;) and C (a,) which are aimed at a region around
b = (0° 0) with 1/m < b° < 1/I'. The entrances of the telescopes shall be later than
8%, and a; — b shall be parallel to  and ¢ respectively. These telescopes can register
B-decays into two 4 with momenta  and ¢ occurring near b. The probability that
both telescopes are triggered is

W — (lp’ C?;(‘ﬁ) C3(as) Gq(“glgg(%) ]P)) . (88)

/[ 6K | F(K)[*
The numerator N of this expression can be calculated by summing over a complete
set of out-states as intermediate states. Only two-particle states contribute essentially:

N :/ Ok, Ok, |out<k1’ k, lcq(“z) Cp(al) l b 12 . (89)

The matrix element ,,,(k,, ky |C, C,| k;, k}>,, in this expression is dominated by its
disconnected part 1/2<k, |C, | k;> <k, |C,| ky> + ..., so that

N = (2m)® |¢]s / Ok, Ok, Ok, Ok, Ok, Ok T0(Cy, by, — k) T1(Ca, Ray — ko)

o~ W % . F(K') F*(K")
X Tt (C3: kl: mkl) 7 (64’ kZ’ —k2) K!g_Mgw,l:ég K”Z_M2+i8
x exp[iay (b — k) + 4 ay (ky — k)] (90)

The exponentials come in like in (68), and as usual K' = k; + k,, K" = K, + k.
Under our assumptions on a; we can replace the factors (K'?2 — M2 —i¢)~1 and
(K" — M?*+ ie)"' by 24 0. (K') and —2 7 ¢ 04(K") respectively, since the expres-
sion obtained from (90) by changing one of the e-signs decreases rapidly for af — oo
and is already negligible for our a,. Hence

N = 2(2 ) / Sk, Ok, Ok, 0k, 8, (K') 0 (K") F(K') F*(K")

X 7 (ky, by, —K')T*(ky, by, —K") exp [i ay (k] — ky) + @ ay (ks — ky)]

X Ly(ky, ky) L, (ks, ky) (91)
with

L,k k") :/ SkTtX(,, k, —R) TEX(C,, kB, —R") . (92)



638 0. Steinmann H.P. A.

The function L, characterizes the efficiency of the telescope C,. It is essentially
different from zero only for k" ~ k” ~ p. Because of this and the support of F, N is
not negligible only for (p + ¢)% ~ M?, as was to be expected.

(91) shows that ¢ = 7(k,, ky, — K), all variables on their mass shells, can be
interpreted as S-matrix element for the decay of a B with momentum K into two A
with momenta %, &,. If L, , factorized:

L,(k', k") = [ (k) [,(k") ,
(91) would be the familiar S-matrix element for decay of a B with wave function F

into two 4 with wave functions f; and qu. Since the telescopes C, , do not actually
determine wave functions but analyse states in a more complicated way we obtain
the more complicated expression (91).

If #° is increased to something of the order 1/I" we expect a factor exp(—56°1")
in W. Such a factor does not appear directly in our approximation since exp (—8° [") =
1 + O(g?). Indirectly it can be inferred from (27) and the physical interpretation of ¢
as S-matrix element for decay, which tells us that the attenuation 4W/db° is propor-
tional to |#|2. As has been shown in I the exponential factor does appear if we work
with the exact Green’s functions, assuming the existence of the pole (5).

In the same way as decay we can treat scattering. We can, for instance, set up a
2 B scattering process by preparing a 2 B-in-state according to (86) and analysing
the final state with two telescopes Cp(a,), Cg(a,) in a suitable geometrical arrangement.

For normalized wave functions F, , we obtain for the probability that both counters
are triggered:

W = (2m)6 / 0K, 0K, 0K, 0K, 0P 6Q’ 6P" Q" 7 (K., K, — P', — Q')

x T¥(Ky, Ky, — P", — Q") Fy(Ky) FY(K;) Fo(K,) F5(K,)

X exp [t ay (P'— P") +1iay (0" — Q")] Lp(P', P") Lo(Q’, Q) . (93)
Lp is defined in analogy to (92). We see that 7 (K,, K,, — P, — Q) can be interpreted
as S-matrix element for elastic 2 B-scattering. If 7 is essentially constant
in the supports of F,; and Lp ¢ we can draw the factor |7(K,, K,, — P, —Q)|%, K, 2

point in supp F,, in front of the integral. The remaining integral is an experimental
factor depending on counter efficiency and geometry.

6. Asymptotic Conditions

In this section we shall indicate briefly how an S-matrix for B-particles could be
defined in a more conventional way, using an approximate asymptotic condition.

We introduce a quasilocal field for B-particles:

~

B(Q) :fd4k 2B [T* (2Q — k20 +F) — 7% (30 — & 10 + A). (94)
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x(k) is a smooth C*®-function which decreases at oo sufficiently fast to make the
integral (94) converge. Remember that T and 7 are amputated.

~

Choose f(Q) in the space § of tempered test functions, with support in
4 m? < Q* < 9m?, Q, > 0. Define

HQ) = 1(Q) 0, — (02 + M) - (95)
We introduce the ‘creation operator’
B0 = [ @105 fig) (o). (%6)

Q™ = Qp — (Q* + M?)!2. We wish to obtain information on the behaviour of B for
large |£].

Under our assumption that the decay products A are strongly interacting we
cannot expect any convergence in the strong Haag-Ruelle sense, because the time-

®
independent quantity ||Bf(¢) £]? does not vanish, in contrast to the stable case.
It is of order g° hence not negligible.

With respect to the LSZ asymptotic condition we are in a better position. Let
@(p1, .-, b,) € S be a smooth test function with support in p, € V4, so that g(x,, ..., %,)
is concentrated around the origin. Let |g,, ..., g,,> be a m-A-particle in-state with
smooth wave functions g;. (Remember that our definition of smoothness excludes

strong oscillations.) The g ; shall not overlap with f and among themselves. For sim-

plicity we assume also that no partial sum of Q € supp fand p, € supp g,, withg,
a continuation of g, in a small neighborhood of the mass shell, lies on a threshold.
We are then not forced to know anything on the nature of the threshold singularities.

Consider
M(¢) :fdpi dg;dQ dkg}(}bl, e 5 D) Hé’z’(qz') f(Q) g % (k)
X Q| Ty, o ) T RO =B 20+ 1) | @iy o Gndin - (97)

T™ i1s the unamputated 7-product. According to a result of II we can replace the
matrix element in (97) for sufficiently large |#| (|#| > 1/m) in a good approximation by
T Dys e Py Q — k, O + &k, —qy, ..., —q,). Here the p, are not amputated but
the other variables are.

We develop 77 in a cluster sum. The terms containing the two ()-variables in
different factors decrease rapidly for ¢ - — oo because of our assumptions of smooth-
ness. In the remaining terms both (Q-variables will occur in a factor which is again
of the form (97), but with a truncated 7”. The terms of order g° and g! in this 777
are smooth in the relevant region, so that the corresponding terms in M decrease
strongly. In 2°¢ order the pole

TGO R TQ+ R —=0) 7" (b, 000 — 01, — )
0 —M2+ie
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is present. Its contribution to M (¢) converges for £ — — co toward the same expression
with (Q? — M2 + i ¢)~! replaced by — 27 ¢ §.(Q). This is not negligible if g is not too
small (see the remark after (79)). This limit agrees with the LSZ limit of the stable
case.

In higher orders in g occur multiple poles (Q2 — M2 + 7 ¢)=°. They generate
terms in M (f) behaving like [£|°~ 1, which are not small compared to the g2-terms for
large |#|. The convergence in 2°¢ order does thus not constitute a genuine asymptotic
condition but only an approximate one: the 2°¢ order limit is a good approximation
to M(¢) for large enough but not too large |¢|. This becomes clear if we introduce the
exact pole (Q2 — M2 + ¢« M I')~! in place of the approximate ¢ e-pole. M (f) decreases
then like e~7Il: it converges to 0 for  — — co. For |£| < 1/I" this exponential factor
is, however, not distinguishable from 1.

In the same way we can discuss the pseudo-asymptotic behaviour of the de-
struction operator B,(f). The result is that B¥(¢), B,(t) can, for —1/m > ¢ > —1/I’,
be replaced in a good approximation by the creation and annihilation operators
Bi*®™ of a free field with mass M. With them we can form incoming B-states. Out-
going states are constructed analogously. An S-matrix can then be defined as usual,
and reduction formulae can be derived.

This procedure for the definition of S is formally simpler than the one used in the
preceding section. Nevertheless, we prefer the latter because it is physically more
transparent. The physical meaning of the mathematical constructions is clear there,
which can hardly be said for the considerations of the present section.

7. Is There a Local B-Field?

An obvious question to be asked is whether a scalar local field B(x), local relative
to A(x), can be associated with the unstable B-particles, at least to some low order
in g. We do not know the answer. This section will only contain a more explicit
statement of the problem.

A quasilocal field B without simple covariance properties has been introduced in
(94). Formally this field becomes local for the choice ¥ = 1, because we have then in
x-space

B(x) = T(x, x) — 7(x, x) . (98)
After multiplication with a suitable renormalization constant this field gives indeed
the desired on-mass-shell Green’s functions (P, ..., P, p1, ..., P,,). However, we

have every reason to expect this renormalization constant to be zero, i.e. the right-
hand side of (98) does in general not exist as it stands. It is not known at present how
to make sense of an expression like 7'(x, x) outside of perturbation theory.

Another possible approach proceeds via the Haag expansion (see II). If the
desired field B(P) exist in § then it can be expanded as

) % (2 ) 7(P, Py, on.,

Xl f‘im(“ibl) v Ap(=2)1, (99)

~
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where 7 (P, 4, ..., $,) is the amputated retarded function of 1 B-field and / A-fields.

B is scalar if the 7 are Lorentz invariant. B is local relative to 4 if r(x, y,, ..., ;) is
retarded in the variables x — y,, i.e. if # (P, p,, ..., p,) is analytic in Im p, € V_ for
all 7.

In Section 4 we have defined 7 (P, ¢4, ..., p,) up to order g2 for P? = M?2. Nothing
has been said about the analyticity properties of these objects, for the good reason
that there is not much that we can say about it.

The problem is simplest for the functions 7 (¢, ..., #, ] ¢1, .- , ¢,,) Which were
the primary tools of our study of unitarity. They can be written as functions of the
variables p,, ..., 9,, G5, ..., ¢, and Q = X g,. They are then analytic [7] in the domain

Imp,eV_, Imq, eV_, ImQ eV, for|, ImQ eV_fort.

It is reasonable to demand the same analyticity for the numerator 4(.. ] ..) in (50).
The restriction of b to real Q, Q% = M?, is then still analytic in the remaining variables
i, q;- In particular, 7 (py, ..., 9,7 Q), Q2 = M2,isin p,, ..., p,analyticif Imp,eV_,
as desired. The question is whether this function can be extended to arbitrary Q in
such a way that the result is also analytic in Q for Im Q € V1 and satisfies the correct
unitarity equations. The question is not solved at present.

The problem is still harder for the functions 7 (Q, #,, ... , #,) which occur in (99)
and are therefore of the greatest interest to us. They should be analytic in Im p, e V_
for all 5. Because of Q + X', = 0 we are forced to make all the p, real if we want to
approach a point with real Qfrom this domain. This means that 7 (Q, #,, ... , p,), with
@ restricted to its mass shell, will not show any analyticity, not even in a lower
number of variables3). It is not known under what conditions the 7 (Q, #4, ..., $,)
defined earlier for Q2 = M? is the restriction to the mass shell of a function with the
correct analyticity and unitarity properties.
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