
Zeitschrift: Helvetica Physica Acta

Band: 44 (1971)

Heft: 4

Artikel: Der phänomenologische Energietensor im Rahmen der linearen
Feldtheorie

Autor: Scherrer, Willy

DOI: https://doi.org/10.5169/seals-114300

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114300
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


530

Der phänomenologische Energietensor im Rahmen

der linearen Feldtheorie

von Willy Scherrer
Bern, Justingerweg 18

(29. I. 71)

Zusammenfassung. Der phänomenologische Energietensor der Einsteinschen Gravitationstheorie

kann kovariant in die lineare Feldtheorie eingeordnet werden. Die Anwendung auf eine
ruhende, homogene und inkompressible Flüssigkeitskugel ergibt eine Lösung, die sich von der
entsprechenden Schwarzschildschen Lösung im wesentlichen nur dadurch unterscheidet, dass der
totale Energietensor in absolut kovarianter Gestalt erscheint. Durch die Berechnung der
Totalenergie wird die Äquivalenz von Energie und Masse mit hoher Genauigkeit bestätigt.

In einem Anhang wird dargelegt, dass der Einsteinsche Gravitationstensor in der linearen
Feldtheorie exakt enthalten ist.

§ 1. Einleitung

Die lineare Feldtheorie liefert Energie und Impuls des Gravitationsfeldes von
vorneherein in Gestalt eines Tensors. Insbesondere kann man zeigen, dass die
Totalenergie eines statischen und kugelsymmetrischen Gravitationsfeldes genau die
Einsteinsche Formel [1] ergibt:

E m c2 (1)

Trotzdem ist es mir nicht gelungen, zu beweisen, dass man ohne den phänomenologischen

Energietensor auskommen kann. Daher soll im Folgenden gezeigt werden,
dass dieser Tensor in die lineare Feldtheorie eingeordnet werden kann, derart, dass
auch die Totalenergie Tensorgestalt besitzt. Weiter kann man dann schliessen, dass
auch Einsteins ponderomotorische Gravitationskraft aus den Feldgleichungen folgt.

§2. Die Basis

Den einfachsten Zugang zur linearen Feldtheorie erhält man, wenn man von den
Koordinaten

(y°, y1, y2, y3) (l)
einer Lorentzwelt ausgeht. Dabei bezeichnet y° die Zeit, falls man die Lichtgeschwindigkeit

c 1 setzt.



tF-^-rrr- (5*)
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Das zugehörige Linienelement ist

ds2 y dya dy« (2)

wobei

<^ ^ (3)

die Eisenhardtsche Diagonalmatrix darstellt. Abkürzend haben wir also in (2)

««« ea gesetzt.

Jetzt führen wir gemäss

y1 y\x°, X1, X2, Xs) (4)

krummlinige Koordinaten - «Parameter» - ein und bilden die «Trägheitsmatrix»

* ^ (5!)

und deren « Transverse »

dx»

dy
Das Linienelement (2) geht damit über in

ds2 Lpr dx» dx" (6)

mit

L e F' F' (6')

Die Leitidee der Theorie kann nun wie folgt beschrieben werden: Die Gedanken
des Beobachters bewegen sich in einer «Tangentialwelt» und deren Koordinaten yl
gelten höchstens im Kleinen. Für die wirkliche Welt müssen jedoch die totalen
Differentiale

dy" Fß dx" (70)

durch allgemeine lineare Differentialformen

i' gA;„ dx" (7X)

ersetzt werden.

Das Linienelement (2) geht damit über in

ds*=eag"f. (8)

explizit also in

ds2 G>pv dx" dx' (9)

mit
G =e /?"• sr01' (9')

In diesem Sinne wird eine Riemannmetrik induziert.

In der «wirklichen» Welt gibt es also keine Koordinaten yA im elementaren Sinn
des Wortes, sondern nur noch Parameter x*.

Die quadratische Feldtheorie stützt sich ausschliesslich auf die quadratische
Differentialform (9) (ohne (9')).
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Die lineare Feldtheorie dagegen legt die Differentialformen (7X) zugrunde. Ihre
vollständige Durchführung ist aber nur möglich, wenn man neben der Parametergruppe

eine lineare Formengruppe einführt. Für diesen Zweck verdient offenbar die

Lorentzgruppe den Vorrang.
Die formale Basis der linearen Feldtheorie bildet also die Matrix

(10)

mit der Determinante

g Det\\g\+0. (10')

Die Transverse zu (10) ist eindeutig bestimmt durch

iig^iNdi^ji-1)'- (ii)
Die Zeiger rechts vom Komma beziehen sich auf die Parametergruppe, diejenigen
links auf die Formengruppe. Durch diese Angaben ist die Theorie im Prinzip bestimmt.

Die massgebenden Feldstärken liefert der 24gliedrige Tensor

dg"-,p,..=
1 (à?;, __dfjL\

'¦•»v 2 \ dx» dxy J (12i)

Je nach Bedarf kann man denselben schreiben als einen Formentensor gemäss

'•ßy oß, öy, 1 .,[xv > (122)

oder als reinen Parametertensor gemäss

y•• _ _ ,aj«,..
i .fiy Sa, ' • ,[iv ' (123)

Durch Verjüngung von (122) erhält man den Formenvektor

la — Laß (13i)

und desgleichen aus (123) den Parametervektor

l,i — !',. iß ' (13a)

und man kann beweisen, dass gilt
/« ga,' /,A • (133)

Man kann jetzt drei Totalinvarianten bilden, nämlich

tt i... iaßyn — laßyl '
1

(14i)

tt f... iyßa12 — laßyl >

2

(142)

H^fat-
3

(143)

Die allgemeine Wirkungsfunktion, die innerhalb des bewährten Rahmens bleibt,
hat daher die Gestalt

W A + A H + A H + A H (15)
0 11 2 2 3 3
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Dabei sind die A Konstanten, A insbesondere ist die kosmologische Konstante.
o

Methodisch wichtig ist noch folgende Bemerkung. Man kann die Basismatrix
immer darstellen als Produkt aus einer vorgegebenen Trägheitsmatrix und einem
Parametertensor 2. Stufe gemäss der Gleichung

£f=t\aK.l- (16l)

Aus ihr folgt

gfstfl-f*. (16,)

Dabei bedeutet Tff. die Transverse von h\". Diese Darstellung ermöglicht es,

Lösungen von vorgeschriebener Symmetrie zu ermitteln.

Meine früheren Untersuchungen haben ergeben, dass man die Einsteinschen
Vakuumsgleichungen genau dann erhält, wenn man (15) wie folgt spezialisiert

W =-!+---H + H-2H (17)
2 r 2

Für 1 > 0 ist die Krümmung des Raumes positiv.

§ 3. Die Feldgleichungen

Da die durch die kosmologische Konstante bedingte Ergänzung leicht
anzubringen ist, verzichten wir darauf, sie weiter mitzuführen. Wir setzen also

W — H + H-2H (1)
2 1 2 3

und notieren die zugeordnete Wirkungsdichte
2B W g (2)

Die zu (2) gehörigen Vakuumsgleichungen haben dann folgende Gestalt

d I dSB \ dm
dx* Ö8\

dx"

^ST7 H^TtI - FFJF- ° ¦ (3)

if

Zur Vereinfachung der Schreibweise führen wir ein den «Quellentensor»

\ dx"

sowie den Tensor der relativen Vakuumsenergie

Entsprechend der Kombination (1) können wir daher schreiben

sff^--sffv + s^-2s^ (5X)
4 1 2 3
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sf" — s,-»K 2 K Sjff-lSg,
2 3

(52)

wobei die Einzelkomponenten aus folgender Tabelle zu entnehmen sind

sff« -2fff\i
SX, gx, \f,..a l,..a) '
2

h-r g*r r - g„: f-» ¦

Sff^-^gfff'.^t.^ + gffH
i i
Sff -2gffPfFß-yf:^ + 2gffPffß;Pf.^ + gffH
2 2

Sxf 2g^P<".'aßf^-2ffP" + g,:''H.

(6i)

(62)

Unter Einführung der zu den Tensoren (4J und (42) gehörigen Dichten erhalten nun
die Vakuumsgleichungen (3) folgende Gestalt:

aux'""
(7)

Aus einer meiner früheren Arbeiten [2] kann man nun folgern, dass die Gleichungen

(7) äquivalent sind mit den Einsteinschen Vakuumsgleichungen der Gravitation.
Formelmässig ausgedrückt besteht nämlich folgende Identität:

dsxf
dx" ^xf %f-~gxf^ (8)

Dabei stellt die rechte Seite von (8) die Einsteinsche Gravitationstensordichte dar,
geschrieben als gemischte Tensordichte (&ff der linearen Feldtheorie.

Aus (7) und (8) folgen unmittelbar die Einsteinschen Vakuumsgleichungen der
Gravitation.

%:"- gff3i 0. (9)

Um nun Einsteins phänomenologische Gravitationsgleichungen zu erhalten, müssen
wir die invariante Massendichte M einführen sowie den Vierervektor der Geschwindigkeit

w» bzw. «y. Die Gleichungen

%'f--^gffX=-xMc2gu!l>u-» (10)

bilden dann das Analogon der Poissonschen Gleichung. Die Verbindung von (8) und
(10) ergibt schliesslich die phänomenologischen Gravitationsgleichungen der linearen
Feldtheorie :
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dSi»v " " " (11)

(12!

dx" wl, ~~ " "* " 6 "".l, " •

Schreiben wir diese Gleichungen in der Gestalt

dxv - x Xf»

so stellt

Zff ee - x-l Qf» + Mc2g uK w» (122)

die absolut kovariante und totale Energietensordichte dar, und aus (12!) folgt
unmittelbar der différentielle Erhaltungssatz

-~^- 0 (13)
dx"

Der erste Term der rechten Seite von (122) stellt nun offenbar die Energieimpuls-
Tensordichte des Gravitationsfeldes dar, die im Rahmen der quadratischen
Feldtheorie nicht kovariant gefasst werden kann.

Die Energietensordichte %%'» setzt sich aus 4 Stromdichten zusammen, von denen

jede einzelne einer Lorentzkoordinate yA der Beobachterwelt zugeordnet ist. Dem
Zeiger 1 0 entspricht der Energiestrom im engeren Sinne des Wortes, den übrigen
Zeigern drei Impulsströme. Diese Struktur ist ausschlaggebend für das Bestehen von
Erhaltungssätzen.

Jetzt stehen wir also vor der Frage, ob die Vakuumsgleichungen (7) oder die
phänomenologischen Gleichungen (11) der Wirklichkeit besser entsprechen. Wie
schon oben erwähnt, sehe ich beim heutigen Stand der Dinge keine Möglichkeit, diese

Frage zu beantworten. Ich möchte daher kurz erläutern, dass die Gravitationsstrahlung

vielleicht ein brauchbares Kriterium liefert.

In einer meiner späteren Arbeiten [3] habe ich eine kovariante Näherungs
méthode entwickelt. Diese Methode wurde in einer Dissertation [4] auf die Wirkungsfunktion

(1) angewendet, insbesondere auch zur Ermittlung von ebenen Gravitationswellen.

Das Ergebnis ist überraschend: Energie und Impuls haben verschiedenes
Vorzeichen Dies steht im Gegensatz zur elektromagnetischen Strahlung, wo beide
Vorzeichen gleich und also gemäss dem Strahlungsdruck positiv sind.

Bei der Berechnung des Vakuumsfalles in [1] gemäss (7) habe ich als
Energietensordichte

Zff K-i &ff (14)

angesetzt. Das Ergebnis hat diese Wahl bestätigt, denn als totale Gravitationsenergie
erhielt ich den positiven Wert (1) von § 1. Falls man also die Möglichkeit erwägt, die
Masse sei nur ein Attribut des Gravitationsfeldes, so trifft die Gleichung (14) gerade
das Richtige.

Wenn man jedoch die Strahlung berechnet [4], liefert die Gleichung (14) eine

negative Energie und einen positiven Impuls.

Wenden wir uns jetzt zu den phänomenologischen Gleichungen (11), so entnimmt
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man aus (122) unmittelbar, dass im Grenzfall des Vakuums, also M-^0, statt (14) die

Gleichung

V 3 - x-1 Sil" (15)

resultiert. Für die Strahlung ergibt sich somit nach [4] eine positive Energie und ein
negativer Impuls. Man hätte hier einen «Strahlungszug».

Die Gravitationsstrahlung liefert also ein Kriterium, das die beiden Varianten
unterscheidet.

§ 4. Das Schwerefeld einer Flüssigkeitskugel

Um die Einsteinsche Gleichung § 1 (1) im phänomenologischen Falle zu prüfen,
eignet sich am besten eine ruhende, homogene und inkompressible Flüssigkeitskugel.
Der phänomenologische Energietensor wird gemäss

Pff Mc2uKu>»-pgff (LJ

durch ein Glied ergänzt, das den Druck p enthält, und die Gleichungen § 3 (11) gehen
über in

dsff
dxv 6*" =-*$*:"¦

Als totalen Energietensor haben wir daher jetzt

Tff - K-i Sff

(li

(la)

Die Durchführung der Aufgabe gestaltet sich ziemlich umfangreich, da die Komposition

der Basismatrix aus Trägheits- und Parametermatrix zum Wesen der Sache

gehört.

Ich begnüge mich daher, diejenigen Angaben zusammenzustellen, durch welche
der Gang der Rechnung bestimmt wird. Anschliessend sollen die wichtigsten Ergebnisse

Platz finden.

1. Die Trägheitsmatrix ist nach § 2 (5) bestimmt durch folgende Gleichungen:

y° ct;
y1 r sin# cos<;

y2 r sin?? sinç

y3 r cos# ;

2. Die Parametermatrix sei gegeben durch

xL

X2

X3

-. et
¦ r

ê

-cp.

(2f)

f 0 0 0

0 h 0 0

0 0 1 0

0 0 0 1

und

f FW;

(2,

(23)
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Durch diese beiden Angaben sind nach § 2 ((16f und (9)) die Basismatrix g1, und der
metrische Tensor G „ bestimmt. Das Linienelement kann daher wie folgt geschrieben
werden :

S2 /2 c212 - (h2 r2 + r2 (è2 + sin2?? q>2) (3)

Um aber die Kontrolle der Rechnung zu erleichtern, notiere ich noch die nicht
verschwindenden Komponenten des Feldstärketensors, falls man denselben gemäss
§ 2 (123) als reinen Parametertensor schreibt.

/:?iö=4"/_1/'' (4l)

/;.i2=/;?i3=4r"1(1"Ä)- (4a)

Hieraus folgt unmittelbar, dass der gemäss § 2 (132) zugeordnete Parametervektor fx
nur eine nicht verschwindende Komponente besitzt:

/,, \f-1f' + r-1(l-h). (4f)

Dabei bedeutet der Strich die Ableitung nach r.
3. Jetzt benötigen wir noch die Angaben zur eindeutigen Festlegung des

phänomenologischen Energietensors (lx).
Nach Definition gilt

dx"„'-_. (50)

Dem Ruhestand entspricht

Aus (20 und (3) folgt daher

u'° F1 (50

und weiter ergibt sich

M,0 /; Un, 1 (53)

Die Inkompressibilität wird nach dem klassischen Verfahren gewährleistet durch

Mc2-p Mc2, (6)
o

wo M die konstante Massendichte bedeutet,
o

Jetzt haben wir alle Daten beieinander, welche den Gang der Berechnung
eindeutig festlegen. Hauptergebnis: Die drei gesuchten Funktionen f(r), h(r) und p(r)
liefern genau die klassische Lösung von Schwarzschild [5]. Der Zusatz, den die lineare
Feldtheorie liefert, beschränkt sich also auf die Energiewerte, die in der quadratischen
Theorie nicht kovariant gefasst werden können.

Bezeichnen wir mit A den Radius der Flüssigkeitskugel, so ist die Länge

*«-l/^ (7)
c y xm v ;
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eine obere Schranke für A, und

A

eine reine Zahl.

Benutzen wir schliesslich A gemäss

r A q

als natürliche Längeneinheit, so wird durch

o <e <i
das Innere der Flüssigkeitskugel und durch

1 < q < oo

der Aussenraum durchlaufen.

(8)

Po)

(90

(90

Dies vorausgeschickt liefert nun die Lösung folgende Ausdrücke für die gesuchten
Funktionen.

a) innen:

/=^(3|/T^"^-l/l-a2e

h
j/1 -tF Q2

'

p =Mc2 j/l - oc2 Q2 - j/l - a2

o 3 j/l - a2 - |/1 - a2 Q2
'

b) aussen:

(10J

/ )/ 1 - a2 y
1

Ä
j/l-a2^1 '

/> 0.

(10,

Die Lösung a) geht also auf dem Rande q 1 stetig in die Lösung b) über, wie es sein

muss.

Aus (100 ergibt sich weiter, dass der für die Beobachtung im Aussenraum
massgebende «Gravitationsradius» den Wert

2a cFA (11)

besitzt.

Zu dieser klassischen Lösung treten nun neu hinzu die Energietensordichten,
nämlich

^aO,
3 cF q2

X l)/l-X2 Q2 \ j/l - tF Q2
¦ |/l - oc2 Q2 - 2 sin# (120



Vol. 44, 1971 Der phänomenologische Energietensor 539

im Innenraum und

Xb 0f - A (j/Jy— +f^^ " *) sin# (120

im Aussenraum.

Die zugehörigen Integralwerte sind

0

und
00

Eb 4 7zfxb0»de=-^-Ea. (130

1

Neben diese Werte stellen wir nun das Einsteinsche Energieäquivalent

E*=Mc2, (140

*
wobei M die Masse der Flüssigkeitskugel darstellt. Bezeichnet man also mit V das

Volumen der Kugel, so gilt

M c2 MV (140
0

Mit Rücksicht auf (7) ergibt sich daher
* 3 F

Für das Volumen fordert die Metrik (3) die Formel
A

V 4 n j h r2 dr (150

0

und die Berechnung liefert

V i— (Are sinoc - a j/l - oc2) • (152)

Gestützt auf (143) folgt also

* b 71A
Mc2= (Arcsina-a|/l-a2) • (15

X OL v ' ' 3)

Führen wir schliesslich in diese Formel den Gravitationsradius (11) ein, so erhalten wir

MC2= X1^L Are sing - g j/l - oc2

(Iß)
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Da die Beobachtung am Rande der Flüssigkeitskugel (Sonne) erfolgen muss haben wir
diesen Wert mit (13a) zu vergleichen. Wir führen daher auch hier (11) ein und können
schreiben

_
8na 12 V

" ~
x {T+^yT^TJ (17)

Da offenbar a < 1 sein muss, kann man (16) und (17) nach Potenzen von a2

entwickeln. Die Ote Näherung liefert genau

£a=MC*=—, (180)
x

also die Einsteinsche Formel.

Die erste Näherung ergibt

„ 8na / 1 \**—(l+T«2)' (180

und

MW-hl**)- ™
worauf folgt

Ea= (i+--Amc2. (19)

Für die Sonne findet man a.2 ~ 4 • 10~6. Die durch (19) gelieferte Erhöhung der
Energie ist also nicht beobachtbar.

Die lineare Feldtheorie liefert somit wiederum den Ablenkungswinkel von 1,75"
der quadratischen Theorie. Grosses Interesse verdienen daher zwei neue Messungen
bei Radiosternen [6]. Sie lieferten die Ablenkungswinkel 1,77" und 1,82", welche
verglichen mit den früheren Messungen eine Tendenz zum Einsteinschen Wert anzeigen.

Unter diesen Umständen ist vielleicht zu erwägen, ob eine Verallgemeinerung des
Schwarzschildschen Modells auf kompressible Flüssigkeiten eine beobachtbare
Modifikation der Gleichung (19) liefert.

Schliesslich wenden wir (19) noch an auf das Neutron. Mit den Annahmen
.4 2- 10-13 cm und m 5/3 • 10-24 g findet man a2 ~ 10r41. Praktisch ist also die
Einsteinsche Gleichung genau erfüllt, auch wenn man erheblich grössere Werte für A
wählt.

§ 5. Schlussbemerkungen

Über das Verhältnis der linearen Feldtheorie (LF) zur quadratischen Feldtheorie
(QF) kann man jetzt in Zusammenfassung früherer Ergebnisse folgendes sagen:

Bei Beschränkung auf die Wirkungsfunktion (1) von § 3 liefert die LF alle
Aussagen der QF. Darüber hinaus liefert sie einen kovarianten Energietensor, der im
statischen Falle Einsteins Äquivalenzgesetz § 1 (1) herzuleiten gestattet. Schliesslich
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liefert die LF eine kovariante Näherung für ebene Gravitationswellen, die sich mit
Lichtgeschwindigkeit bewegen und als Überraschung für Energie und Impuls
verschiedene Vorzeichen ergeben. In Ergänzung der am Schluss von § 3 erwogenen
Alternative sei noch folgendes bemerkt :

Wenn man Einsteins Vergleich mit der Poissonschen Gleichung ausnahmslos

akzeptiert, ergibt sich in beiden Fällen eine positive Strahlungsenergie. Der Schluss
auf das Vorzeichen ist aber mathematisch nicht zwingend, weil keine nullte Näherung
existiert. Die Alternative kann daher nur durch die Erfahrung entschieden werden.
Die Energiedarstellung der LF liefert ein Verfahren, um energetisch unbrauchbare
Lösungen der QF auszuscheiden. Das einfachste Beispiel liefern die zylindrischen
Gravitationsfelder der QF. Dieselben repräsentieren nach der LF pro Längeneinheit
eine unendliche Totalenergie.

Eine explizite Darstellung der Identität § 3 (8) ist daher von Interesse. Sie wird
im beigefügten Anhang angegeben und erläutert.

ANHANG

Darstellung des verjüngten Riemannschen Krümmungstensors Re a

im Rahmen der linearen Feldtheorie
Diese Darstellung bildet die Grundlage für die fundamentale Identität § 3 (8).

Ich habe sie schon 1955 [7] angegeben, allerdings ohne sie auf die Wirkungsfunktion
§ 2 (17) zu spezialisieren. Aber gerade diese Spezialisierung hat sich 1957 [2] als für
alles weitere entscheidend erwiesen. Sie soll daher hier in der in den Arbeiten [1] und
[8] bereinigten Zeigerbezeichnung Platz finden.

Der Krümmungstensor r •" ' 'f der LF ist aus den Dreizeigersymbolen yff' genau
gleich aufgebaut wie der Krümmungstensor R'"f"a der QF aus den Dreizeigersymbolen

rf" Für die Zurückführung der QF auf die LF ausschlagend ist die

Identität

¦iffiv— y',.f*v a t'rfiv. +f'iVli.. Ao)

Bezeichnen wir also die kovariante Ableitung in der QF mit D\, in der LF mit d x

und definieren wir

A:^D,-diX, (10

so werden durch den Operator

DtlsAtX+dtl (10

die r auf die y reduziert.

Mit der Abkürzung

findet man dann

(3)

àd .F à Funa uro i> !> [io

+ F F-rFaa • a o fia

also eine _T-freie Darstellung.



542 Willy Scherrer H. P. A.

Jetzt empfiehlt es sich, gemäss 1 g ß zu verjüngen. Das Ergebnis kann
geschrieben werden in der Gestalt

R - r d F'-,a-ö F'-,a,Q<t ,t" ,o ,ag- ",a ,ga.

p, ¦¦ß p, ¦ ¦ cr ,ag. r,ßQ. p, ¦ • P p, ¦¦ o
(4)

Alles Weitere verläuft nun ganz im Rahmen der LF. Jetzt zeigt sich ein wesentlicher

Unterschied zwischen der LF und der QF.

r,ea — r',.fa'a (50

ist asymmetrisch und besitzt einen ebenfalls asymmetrischen Partner

s,ga —r,q.aa> (52)

während R ea symmetrisch und in der QF einzig ist. Die wichtigsten Relationen für
die weitere Berechnung sind

d F' " a r —/'¦•• i'Pa'
,a ,ag. ,gq l,aßal,..f}

und

u,a±,ga. — ",ga T s^g T /;Ct J-
>ea. *¦ faßg I, ¦ ¦ a

Ihre Eintragung in [4] liefert

R,e° t -\- y— ,aQ ><*Q - (S,ga A St„e)

-2/,» (/" - °' + /;;;?) t',gaßl',i
aß

r

+ t'e'a • faß.ßl, ..a + t'oa'ßf', .?- + 2/; a'ßgf'. aß.
a

In einer letzten Etappe haben wir noch die Skalare

r~&*°rita; s ^y
zu ermitteln. Man findet

r dJ'a + H-H,
2 3

s -d>af'a-H + H
2 3

Aus (7) ergibt sich hierauf

R=4r + H -
i

-2H + 4H.
2 3

Es gilt daher die Identität

Ä„„—r Gn„R R ,ta- 2 G^r-G,,. (~H- H+2h)
\ £ 1 2 3 /

(60

(7)

(80)

(80

(80

(9)

(10)

Führen wir in der rechten Seite von (10) die rechte von (7) ein, so erhalten wir schliesslich
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R,ta- ~2 G,gaR >-,ecr+ ^,ag ~ (S,eo + S,og) ~ 2 G,go

— 21 11' -'a 4- /' ••<x) — /' "•¦ h • aß f, ¦. ¦ f,aß. i f, ¦ f,aß.* 1 ,a M ,go r lt0nj I ,gaß I ,a r I )taß 11 ,a ' I ,aaß ', • .q

+ 2 /; àfe /; :ßf - Gtga (l-H-H+2 h)
\ * 1 2 3 /

(11)

Bemerkenswert an dieser Umrechnung ist die Tatsache, dass sich die rechte Seite von
(11) als explizit symmetrisch erweist.

Die rechte Seite von (11) ist also genau das, was man erhält, wenn man die
Tensordichte ty&x'f. der Gleichung § 3 (7) in einen Parametertensor W ea umwandelt
mit der Vorschrift, alle zweiten Ableitungen auf die Krümmungsgrössen rga, S:„a und r
zu reduzieren. Die direkte Verifikation ist natürlich umständlich.

Für die Umwandlung von Tensordichten in Tensoren sind vor allem folgende
Identitäten wichtig:

dü'a
',(d,« + fjv\dxa

d%,*t
dxß g(à.B+f,)F-^

wobei F'<*-p antisymmetrisch sein muss.

Wendet man (120 an au^ den Vektor v* f'a, so erhält man

(gf'*)
gà,J'a -gH.

(120

(120

(13)
dx« s

Multipliziert man also die Gleichungen (8X) und (9) mit g und eliminiert hierauf r,
so ergibt sich

à
gR dx-*

(gpa) + 2gW, (14)

wobei W die durch § 3 (1) definierte Wirkungsfunktion ist.

Mit anderen Worten: Die Wirkungsdichte g R der QF unterscheidet sich von der
doppelten Wirkungsdichte 2 g W der LF nur um eine Divergenz.

Die QF und die LF müssen daher äquivalente Gravitationsgleichungen liefern,
was durch die Identität (11) bestätigt wird.

Schliesslich gibt uns die explizite Symmetrie der Identität (11) Anlass zu einer
wichtigen Folgerung. Führen wir den Parametertensor h"f gemäss § 2 (160 e™ in
§ 2 (9'), so erhalten wir wegen § 2 (6') die Gleichung

T h'%' h" (15)

Da nun die Trägheitsmatrix t"-ß nach § 2 (5X) durch die Parameterwahl festgelegt ist,
gilt nach § 2 (6') dasselbe für den Lorentztensor L,^. Aus (15) können wir nun
ersehen, dass der Parametertensor der eigentliche «Kerntensor» der LF ist. Er muss ja
erst nach getroffener Parameterwahl noch bestimmt werden.
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Setzen wir jetzt die rechten Seiten von (11) gleich Null, so haben wir alle
Gleichungen, welche die Wirkungsinvariante

W — H + H ~2H (16)
2 1 2 3

liefert. In anderen Worten, wir haben 10 Gleichungen für 16 Unbekannte.

Um also die überschüssigen 6 Unbekannten zu eliminieren, genügt es, h'f" zu

symmetrisieren. Dies geschieht am einfachsten durch den Ansatz

h'X L'"«k,a/x, (17)

falls kXli symmetrisch ist. Anstelle von (15) tritt dann

G^^L^k^k,,,. (18)

Die rechten Seiten von (11) gleich Null gesetzt liefern also nach Festlegung des

Parametersystems genau 10 Gleichungen zur Bestimmung des lOgliedrigen
Kerntensors.

Die in der QF nur implizit fassbare Willkür der Parameterwahl tritt also in der
LF durch die Trägheitsmatrix explizit in Erscheinung.

Anstelle der Gleichungen § 2 (160 un(l (162) treten jetzt die Gleichungen

g\ ^tffktaß (190

und

&:" «* <*:,*• ""• (wo
Dabei ist ~k"» der zu kAß transverse Tensor.

LITERATURVERZEICHNIS
[1] Helv. phys. Acta 37, 317 (1964).
[2] Z. Physik 752, 319 (1958).
[3] Helv. phys. Acta 39, 513 (1966).
[4] Jean Chevalier, Theorie relativiste linéaire du champ gravitationel faible. Application au

problème du disque tournant, Dissertation, Bern, 29. 1. 1970.
[5] Herrmann Weyl, Raum, Zeit und Materie, § 35 (Darmstadt 1961).
[6] Sky and Telescope, Sept. 1970, S. 138.
[7] Z. Physik 747, 374 (1955).
[8] Helv. phys. Acta 38, 215 (1965).


	Der phänomenologische Energietensor im Rahmen der linearen Feldtheorie

