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Der phianomenologische Energietensor im Rahmen
der linearen Feldtheorie

von Willy Scherrer

Bern, Justingerweg 18

(29. 1. 71)

Zusammenfassung. Der phinomenologische Energietensor der Einsteinschen Gravitations-
theorie kann kovariant in die lineare Feldtheorie eingeordnet werden. Die Anwendung auf eine
ruhende, homogene und inkompressible Fliissigkeitskugel ergibt eine Losung, die sich von der
entsprechenden Schwarzschildschen Losung im wesentlichen nur dadurch unterscheidet, dass der
totale Energietensor in absolut kovarianter Gestalt erscheint. Durch die Berechnung der Total-
energie wird die Aquivalenz von Energie und Masse mit hoher Genauigkeit bestitigt.

In einem Anhang wird dargelegt, dass der Einsteinsche Gravitationstensor in der linearen
Feldtheorie exakt enthalten ist.

§ 1. Einleitung

Die lineare Feldtheorie liefert Energie und Impuls des Gravitationsfeldes von
vorneherein in Gestalt eines Tensors. Insbesondere kann man zeigen, dass die Total-
energie eines statischen und kugelsymmetrischen Gravitationsfeldes genau die
Einsteinsche Formel [1] ergibt:

E=mc. (1)

Trotzdem ist es mir nicht gelungen, zu beweisen, dass man ohne den phanomeno-
logischen Energietensor auskommen kann. Daher soll im Folgenden gezeigt werden,
dass dieser Tensor in die lineare Feldtheorie eingeordnet werden kann, derart, dass
auch die Totalenergie Tensorgestalt besitzt. Weiter kann man dann schliessen, dass
auch Einsteins ponderomotorische Gravitationskraft aus den Feldgleichungen folgt.

§ 2. Die Basis

Den einfachsten Zugang zur linearen Feldtheorie erhédlt man, wenn man von den
Koordinaten

(v ¥4 % ¥7) (1)
einer Lorentzwelt ausgeht. Dabei bezeichnet y° die Zeit, falls man die Lichtgeschwindig-
keit ¢ = 1 setzt.
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Das zugehorige Linienelement ist

ds? = e, dy* dy*, (2)
wobei
€iu = € 5,1} 3)

die Eisenhardtsche Diagonalmatrix darstellt. Abkiirzend haben wir also in (2)

Cyq = €, gesetzt.

Jetzt fithren wir gemass

y}* = yl(xo’ xl’ x2l x3) (4)
krummlinige Koordinaten — « Parameter» — ein und bilden die « Trigheitsmatrix»
oy*
1, _ _ .
. L Ox.u (51)
und deren « Transverse»
Ox*
1:” = Oyi (52)
Das Linienelement (2) geht damit {iber in
ds*= L, dx" dx" (6)
mit
Lo =8 1207, (67)

Die Leitidee der Theorie kann nun wie folgt beschrieben werden: Die Gedanken
des Beobachters bewegen sich in einer « Tangentialwelt» und deren Koordinaten y*
gelten hochstens im Kleinen. Fiir die wirkliche Welt miissen jedoch die totalen
Differentiale

dy* = tlj . axt (7o)
durch allgemeine lineare Differentialformen ‘ :
g}’ = g].:_u dx* (71)

ersetzt werden.

Das Linienelement (2) geht damit iiber in

ds? = e, g% g™, (8)
explizit also in

dst = G ,, dx" dx’ (9)
mit

Gy =, 8%, 8% )

In diesem Sinne wird eine Riemannmetrik induziert.

In der «wirklichen» Welt gibt es also keine Koordinaten y* im elementaren Sinn
des Wortes, sondern nur noch Parameter x*.

Die quadratische Feldtheorie stiitzt sich ausschliesslich auf die quadratische
Differentialform (9) (ohne (97)).
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Die lineare Feldtheorie dagegen legt die Differentialformen (7,) zugrunde. Ihre
vollstindige Durchfithrung ist aber nur moglich, wenn man neben der Parameter-
gruppe eine lineare Formengruppe einfithrt. Fiir diesen Zweck verdient offenbar die
Lorentzgruppe den Vorrang.

Die formale Basis der linearen Feldtheorie bildet also die Matrix

‘ gojo T gO:'s
Fem E N (10)
8% - &%
mit der Determinante
g=Det|gh, +0. (10')
Die Transverse zu (10) ist eindeutig bestimmt durch
gzl = (llgh, 117" - (11)

Die Zeiger rechts vom Komma beziehen sich auf die Parametergruppe, diejenigen
links auf die Formengruppe. Durch diese Angaben ist die Theorie im Prinzip bestimmt.

Die massgebenden Feldstdrken liefert der 24gliedrige Tensor

1 [ ogh,  ogh
f’*:w = ( - Ll I (12y)
2\ ox# 0x¥
Je nach Bedarf kann man denselben schreiben als einen Formentensor gemass
Pov=85"8 "0 (12,)
oder als reinen Parametertensor geméss
P =8 s (12,)
Durch Verjiingung von (12,) erhilt man den Formenvektor
s =ha (13,)
und desgleichen aus (12;) den Parametervektor
fa=1li, (13,)
und man kann beweisen, dass gilt
fa, Egoc:jl f,ﬂ,' (133)
Man kann jetzt drei Totalinvarianten bilden, ndmlich
H =l 117, (14,)
1
H=joepe, (14,)
q=ff. (14)
3

Die allgemeine Wirkungsfunktion, die innerhalb des bewdhrten Rahmens bleibt,
hat daher die Gestalt

W=A+AH+AH+AH. (15)

0 1 1 2 2 3 3
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Dabei sind die /1 Konstanten, /A insbesondere ist die kosmologische Konstante.
0
Methodisch wichtig ist noch folgende Bemerkung. Man kann die Basismatrix
immer darstellen als Produkt aus einer vorgegebenen Trigheitsmatrix und einem
Parametertensor 2. Stufe geméiss der Gleichung

gh, =t e (16,)
Aus ihr folgt
gr.u_:_t;aﬁa'.“- (162)

Dabei bedeutet h ' die Transverse von h“‘ Diese Darstellung ermoéglicht es, Lo-
sungen von Vorgeschrlebener Symmetrie zu ermltteln

Meine fritheren Untersuchungen haben ergeben, dass man die Einsteinschen
Vakuumsgleichungen genau dann erhilt, wenn man (15) wie folgt spezialisiert

1

W=-2+—H+H-2H. (17)
2 1 2 3

Fiir 4 > 0 ist die Krimmung des Raumes positiv.

§ 3. Die Feldgleichungen

Da die durch die kosmologische Konstante bedingte Ergidnzung leicht anzu-
bringen ist, verzichten wir darauf, sie weiter mitzufithren. Wir setzen also

1
W=—H+H-2H (1)
2, 2 3 ,
und notieren die zugeordnete Wirkungsdichte
W=Wg. _ (2)
Die zu (2) gehérigen Vakuumsgleichungen haben dann folgende Gestalt
0 oM 0
Wk = - — = (. 3
A, dx“’ a(dgﬂ, ) Oga:‘u ( )
0x”
Zur Vereinfachung der Schreibweise fithren wir ein den «Quellentensor»
0H
SA,'M I 0em \ (41)
o (98
(5)
sowie den Tensor der relativen Vakuumsenergie
0 OW
Syt =g + g W (42)

Og;{“u N .U

Entsprechend der Kombination (1) kénnen wir daher schreiben

i
Y uy N Sy
1 2 3
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und
1
Pt — Sk 4 Sp¥ 2 Sy, (52)
2 " 2 -
wobei die Einzelkomponenten aus folgender Tabelle zu entnehmen sind
s = — B R
1 ’ ’
s =gt (Pl — 10 L (6,)

2

s =@t P - P
3

Bt =—dge? bt gt B
1 1
St =28 bttt 2g fap O+ gt H L (6y)
2 2

Spt =28 ot =20 + glj"fg .

3

Unter Einfithrung der zu den Tensoren (4,) und (4,) gehorigen Dichten erhalten nun
die Vakuumsgleichungen (3) folgende Gestalt:

05;_"”

MWott = —=

% 0x”

Aus einer meiner fritheren Arbeiten [2] kann man nun folgern, dass die Gleichun-

gen (7) dquivalent sind mit den Einsteinschen Vakuumsgleichungen der Gravitation.
Formelmadssig ausgedriickt besteht ndmlich folgende Identitit:

05 Pid 1
’ _ s e 1Y N, Y 4 . . 8
o B =R R ®)
Dabei stellt die rechte Seite von (8) die Einsteinsche Gravitationstensordichte dar,
geschrieben als gemischte Tensordichte ®;# der linearen Feldtheorie.

-Gt =0. (7)

Aus (7) und (8) folgen unmittelbar die Einsteinschen Vakuumsgleichungen der
Gravitation.

1
mli'u_"‘é“gl:'um:o. (9)

Um nun Einsteins phdnomenologische Gravitationsgleichungen zu erhalten, miissen
wir die invariante Massendichte M einfithren sowie den Vierervektor der Geschwindig-
keit w# bzw. u; . Die Gleichungen

1
Ry — n g R=—nuMcgu, w" (10)
bilden dann das Analogon der Poissonschen Gleichung. Die Verbindung von (8) und

(10) ergibt schliesslich die phdnomenologischen Gravitationsgleichungen der linearen
Feldtheorie:
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VQSZ:‘LW — 6 [T M 2 s M
e at=— e Mc®gu, w*, (11)
Schreiben wir diese Gleichungen in der Gestalt
O e —amy, (12)
so stellt
T =—n1S+ MRgu, w” (12,)

die absolut kovariante und totale Energietensordichte dar, und aus (12,) folgt un-
mittelbar der differentielle Erhaltungssatz
0 p*
OxH
Der erste Term der rechten Seite von (12,) stellt nun offenbar die Energieimpuls-

Tensordichte des Gravitationsfeldes dar, die im Rahmen der quadratischen Feld-
theorie nicht kovariant gefasst werden kann,

=0, (13)

Die Energietensordichte T;# setzt sich aus 4 Stromdichten zusammen, von denen
jede einzelne einer Lorentzkoordinate y, der Beobachterwelt zugeordnet ist. Dem
Zeiger A = 0 entspricht der Energiestrom im engeren Sinne des Wortes, den iibrigen
Zeigern drei Impulsstréme. Diese Struktur ist ausschlaggebend fiir das Bestehen von
Erhaltungssitzen.

Jetzt stehen wir also vor der Frage, ob die Vakuumsgleichungen (7) oder die
phdnomenologischen Gleichungen (11) der Wirklichkeit besser entsprechen. Wie
schon oben erwidhnt, sehe ich beim heutigen Stand der Dinge keine Moglichkeit, diese
Frage zu beantworten. Ich méchte daher kurz erldutern, dass die Gravitationsstrah-
lung vielleicht ein brauchbares Kriterium liefert.

In einer meiner spédteren Arbeiten [3] habe ich eine kovariante Ndherungs
methode entwickelt. Diese Methode wurde in einer Dissertation [4] auf die Wirkungs-
funktion (1) angewendet, insbesondere auch zur Ermittlung von ebenen Gravitations-
wellen. Das Ergebnis ist {iberraschend: Energie und Impuls haben verschiedenes Vor-
zeichen! Dies steht im Gegensatz zur elektromagnetischen Strahlung, wo beide Vor-
zeichen gleich und also gemiss dem Strahlungsdruck positiv sind.

Bei der Berechnung des Vakuumsfalles in [1] gemdss (7) habe ich als Energie-
tensordichte

=t G | (14)
angesetzt. Das Ergebnis hat diese Wahl bestitigt, denn als totale Gravitationsenergie
erhielt ich den positiven Wert (1) von § 1. Falls man also die Moglichkeit erwdgt, die

Masse sei nur ein Attribut des Gravitationsfeldes, so trifft die Gleichung (14) gerade
das Richtige.

Wenn man jedoch die Strahlung berechnet [4], liefert die Gleichung (14) eine
negative Energie und einen positiven Impuls.

Wenden wir uns jetzt zu den phinomenologischen Gleichungen (11), so entnimmt
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man aus (12,) unmittelbar, dass im Grenzfall des Vakuums, also M — 0, statt (14) die
Gleichung

T =—al G (15)

resultiert. Fiir die Strahlung ergibt sich somit nach [4] eine positive Energie und ein
negativer Impuls. Man hétte hier einen «Strahlungszugy.

Die Gravitationsstrahlung liefert also ein Kriterium, das die beiden Varianten
unterscheidet.

§ 4. Das Schwerefeld einer Fliissigkeitskugel

Um die Einsteinsche Gleichung § 1 (1) im phinomenologischen Falle zu priifen,
eignet sich am besten eine ruhende, homogene und inkompressible Fliissigkeitskugel.
Der phanomenologische Energietensor wird gemaiss

Prrt=Mcu, w'—pgy” (1,)
durch ein Glied ergédnzt, das den Druck p enthilt, und die Gleichungen § 3 (11) gehen
iiber in

051:” v

ox" B == iy (12)
Als totalen Energietensor haben wir daher jetzt
T =~ B 01 By (15)

Die Durchfithrung der Aufgabe gestaltet sich ziemlich umfangreich, da die Komposi-
tion der Basismatrix aus Trdgheits- und Parametermatrix zum Wesen der Sache
gehort.

Ich begniige mich daher, diejenigen Angaben zusammenzustellen, durch welche
der Gang der Rechnung bestimmt wird. Anschliessend sollen die wichtigsten Ergeb-
nisse Platz finden.

1. Die Trigheitsmatrix ist nach § 2 (5) bestimmt durch folgende Gleichungen:

AW =i %0 = ¢t
yl = 7 sin cosg; xl=1y
2 : : [ (2,)
y? = 7 sind sing; $2=19
y3 =7 cost}; =
2. Die Parametermatrix sel gegeben durch
jooo|
0k00
A - g 2
”h,.,u” J 001 O’ ( 2)

iOOOl’

|
und

=(); h = h(r) . (25)
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Durch diese beiden Angaben sind nach § 2 ((16,) und (9)) die Basismatrix g*, und der
metrische Tensor G ,, bestimmt. Das Linienelement kann daher wie folgt geschrieben
werden:

ST=12c22 — (B2 + 2 (2 + sin2 ¢?)). (3)
Um aber die Kontrolle der Rechnung zu erleichtern, notiere ich noch die nicht ver-

schwindenden Komponenten des Feldstirketensors, falls man denselben geméss
§ 2 (12,) als reinen Parametertensor schreibt.

1
Riv=— 1, | (4)
1
— 71 (1 —h). (4,)
2
Hieraus folgt unmittelbar, dass der gemaéss § 2 (13,) zugeordnete Parametervektor f,
nur eine nicht verschwindende Komponente besitzt:

Bee . Fi%we
f,.12=f,.13:

fa= o AR (42

Dabei bedeutet der Strich die Ableitung nach 7.

3. Jetzt bendtigen wir noch die Angaben zur eindeutigen Festlegung des phdno-
menologischen Energietensors (14).

Nach Definition gilt

2

G 3 - 6
Dem Ruhestand entspricht

Wl=w =y =10, (51)
Aus (2;) und (3) folgt daher

w0 = f-1 (52)
und weiter ergibt sich

g =1; g, = 1. (55)
Die Inkompressibilitit wird nach dem klassischen Verfahren gewéhrleistet durch

Mc*—p=M:c?, (6)

0

wo M die konstante Massendichte bedeutet.
0

Jetzt haben wir alle Daten beieinander, welche den Gang der Berechnung ein-
deutig festlegen. Hauptergebnis: Die drei gesuchten Funktionen f(r), 4(r) und $(#)
liefern genau die klassische Losung von Schwarzschild [5]. Der Zusatz, den die lineare
Feldtheorie liefert, beschrinkt sich also auf die Energiewerte, die in der quadratischen
Theorie nicht kovariant gefasst werden kénnen.

Bezeichnen wir mit 4 den Radius der Fliissigkeitskugel, so ist die Linge

1
B=— L (7)
c ¥ M
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eine obere Schranke fiir A4, und
A
= — 8
= o (8)

eine reine Zahl.

Benutzen wir schliesslich 4 gemiss

r=4Adpg | ()
als natiirliche Lingeneinheit, so wird durch

0<e<1 (9,)
das Innere der Fliissigkeitskugel und durch

1 <p <o (9,)

der Aussenraum durchlaufen.

Dies vorausgeschickt liefert nun die Losung folgende Ausdriicke fiir die gesuchten
Funktionen.

a) innen:
1
f=7(3l/1—0ﬁ2 —'l/l—-—d.zg ),
N
= l/m ’ 3 (1Oa)
p—maVi-2e -Vl - o
e 31—k — )1 —?
b) aussen:
le/l — atp?, W
1
_ 10
h l/l—-o@g‘l ) ( b)
o e

Die Losung a) geht also auf dem Rande p = 1 stetig in die Losung b) tiber, wie es sein
muss.

Aus (10,) ergibt sich weiter, dass der fiir die Beobachtung im Aussenraum mass-
gebende « Gravitationsradius» den Wert

2a=u02 A (11)
besitzt.

Zu dieser klassischen Losung treten nun neu hinzu die Energietensordichten,
namlich

0
z4:1, 0: =

x

1
Vi—o?e* ( V1—ate?

A 3 2 L2 e ——
[ a? o _|_V1__a2 02 — 2)} sind (12,)
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im Innenraum und

A
(Zbo:():‘“—(

oA

1
/1 —o2pt

4+ Vi — 2 Q—l == 2) sim?
im Aussenraum.

Die zugehorigen Integralwerte sind
1

16w A o2
Lo ,0 -
Ea—-4n/100) dg = % (14 /1 — a2)?

0
und

o]
2

E,,=4n/z,,0;°dg: —%Ea.

1

Neben diese Werte stellen wir nun das Einsteinsche Energiedquivalent

x
E*—Mc?,

539

(13,)

(144)

*
wobei M die Masse der Fliissigkeitskugel darstellt. Bezeichnet man also mit V' das

Volumen der Kugel, so gilt

*

MceE=MTV.

0

Mit Riicksicht auf (7) ergibt sich daher

* 3V
M2: .
. » B2

Fiir das Volumen fordert die Metrik (3) die Formel
4

V=4nfk1'2dr
0

und die Berechnung liefert

2:1;:[3 (Arc sing — oc]/l—ocz) .

V =

e

Gestiitzt auf (14;) folgt also

*
M 2=

(Arc sing — oc]/l — ocz) .

” o

(145)

(145)

(155)

Fithren wir schliesslich in diese Formel den Gravitationsradius (11) ein, so erhalten wir

£ L] CHY
Mot 127 a _ Arc sing — « ]/1 — o2

x® o3

(16)
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Da die Beobachtung am Rande der Fliissigkeitskugel (Sonne) erfolgen muss haben wir
diesen Wert mit (13,) zu vergleichen, Wir fiithren daher auch hier (11) ein und kénnen
schreiben

8 2 2
E =" ( _ﬁ_) . (17)
% 1+ )1 — a2
Da offenbar o« << 1 sein muss, kann man (16) und (17) nach Potenzen von «?
entwickeln. Die Ote Ndherung liefert genau

%
E Mo 374 (18,)
X

also die Einsteinsche Formel.

Die erste Naherung ergibt

8 il
g, Bee ( 1+ wo@) , (18,)
® 2
und
* R 3
Mé= Vﬁia ( 1+ — ocz) " (185)
% 10 ,
worauf folgt
1 ®
E, = (1+~5—a2)Mc2. (19)

Fiir die Sonne findet man «? ~4 - 106, Die durch (19) gelieferte Erhohung der
Energie ist also nicht beobachtbar,

Die lineare Feldtheorie liefert somit wiederum den Ablenkungswinkel von 1,75”
der quadratischen Theorie. Grosses Interesse verdienen daher zwei neue Messungen
bei Radiosternen [6]. Sie lieferten die Ablenkungswinkel 1,77” und 1,82", welche ver-
glichen mit den fritheren Messungen eine Tendenz zum Einsteinschen Wert anzeigen.

Unter diesen Umstédnden ist vielleicht zu erwégen, ob eine Verallgemeinerung des
Schwarzschildschen Modells auf kompressible Fliissigkeiten eine beobachtbare
Modifikation der Gleichung (19) liefert.

Schliesslich wenden wir (19) noch an auf das Neutron. Mit den Annahmen
A =2.10"¥ cm und m = 5/3 - 10-2¢ g findet man «? ~ 10-%. Praktisch ist also die
Einsteinsche Gleichung genau erfiillt, auch wenn man erheblich gréssere Werte fiir 4
wahlt.

§ 5. Schlussbemerkungen

Uber das Verhiltnis der linearen Feldtheorie (LF) zur quadratischen Feldtheorie
(QF) kann man jetzt in Zusammenfassung fritherer Ergebnisse folgendes sagen:
Bei Beschrankung auf die Wirkungsfunktion (1) von § 3 liefert die LF alle Aus-

sagen der QF. Dariiber hinaus liefert sie einen kovarianten Energietensor, der im
statischen Falle Einsteins Aquivalenzgesetz § 1 (1) herzuleiten gestattet. Schliesslich
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liefert die LF eine kovariante Nadherung fiir ebene Gravitationswellen, die sich mit
Lichtgeschwindigkeit bewegen und als Uberraschung fiir Energie und Impuls ver-
schiedene Vorzeichen ergeben. In Ergidnzung der am Schluss von § 3 erwogenen
Alternative sei noch folgendes bemerkt:

Wenn man Einsteins Vergleich mit der Poissonschen Gleichung ausnahmslos
akzeptiert, ergibt sich in beiden Fillen eine positive Strahlungsenergie. Der Schluss
auf das Vorzeichen ist aber mathematisch nicht zwingend, weil keine nullte Naherung
existiert. Die Alternative kann daher nur durch die Erfahrung entschieden werden.
Die Energiedarstellung der LF liefert ein Verfahren, um energetisch unbrauchbare
Loésungen der QF auszuscheiden. Das einfachste Beispiel liefern die zylindrischen
Gravitationsfelder der QF. Dieselben reprisentieren nach der LF pro Lingeneinheit
eine unendliche Totalenergie.

Eine explizite Darstellung der Identitit § 3 (8) ist daher von Interesse. Sie wird
im beigefligten Anhang angegeben und erldutert.

ANHANG

Darstellung des verjiingten Riemannschen Kriimmungstensors R ,,
im Rahmen der linearen Feldtheorie

Diese Darstellung bildet die Grundlage fiir die fundamentale Identitit § 3 (8).
Ich habe sie schon 1955 [7] angegeben, allerdings ohne sie auf die Wirkungsfunktion
§ 2 (17) zu spezialisieren. Aber gerade diese Spezialisierung hat sich 1957 [2] als fiir
alles weitere entscheidend erwiesen. Sie soll daher hier in der in den Arbeiten [1] und
(8] bereinigten Zeigerbezeichnung Platz finden.

Der Kriimmungstensor 7 -4 -0 der LF ist aus den Drelzelgersymbolen ph ., genau
gleich aufgebaut wie der Krummungstensor R ’1 . der QF aus den Drelzelger—
symbolen I"* ’1 . Fir die Zuriickfithrung der OF auf die LT ausschlagend ist die
Identitdt

‘[‘l —7 ,uw—!_f,uv +fv,u ' (10)
Bezelchnen wir also die kovariante Ableitung in der QF mit D ;, in der LF mit 0
und definieren wir

A,Z.ED,A_O,A’ (11)
so werden durch den Operator
D;,=4,+0, (12)

die I auf die y reduziert.
Mit der Abkiirzung

Foisthui+ bl (2)
findet man dann

R’1 —r’ s = 0, o T ==l s B,

cUYa @ s HO .

- F';;,_F’L;é‘j‘-— o B, gy, e
’ > ’ . .

also eine I'-freie Darstellung.
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Jetzt empfiehlt es sich, gemiss A = g = f zu verjiingen. Das Ergebnis kann ge-
schrieben werden in der Gestalt

_ , e O , e O
R — Yoo = 0,«: F,oce- - d.oc F,QG~

00

.. B co L .« fB R 4 (4)
B B e — B F iy,

Alles Weitere verlduft nun ganz im Rahmen der LF. Jetzt zeigt sich ein wesent-
licher Unterschied zwischen der LF und der QF.

T,ga' = rzo.(g.:x;r (5])

1st asymmetrisch und besitzt einen ebenfalls asymmetrischen Partner

wihrend R ,, symmetrisch und in der QF einzig ist. Die wichtigsten Relationen fiir
die weitere Berechnung sind

0,0 Frap™ =700 = Faio 117 (61)
und

0,0( F:Q.&?ES,QO‘—i_S,GQ—i_f,a F:Q.;'?tuzf,aﬁgf:?-ﬁl;' . (62)
Ihre Eintragung in [4] liefert

R,r_)o’ = r,ag + r,ag - (S,go -+ s,ag)
—2f g FoaZ+ Far) = Foanla® (7)
o P R g B Pk B PO

In einer letzten Etappe haben wir noch die Skalare

F=G2"7 . 3 s=6 g, (80)

- zu ermitteln. Man findet
r=0,f*+H-H, (81)

2 3
E_O,af’a—g+i[' (85)

Aus (7) ergibt sich hierauf

R=4r+H_2H+4H,. (9)

1 2 3

Es gilt daher die Identitidt

1

Rou_
@ g

1
G’QUR = R,go‘_ 2 G,QG?—— G,go’ (7H — H + 2 H) £ (10)

1 2 3

Fiihren wir in der rechten Seite von (10) die rechte von (7) ein, so erhalten wir schliess-
lich
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1
R,QO——? G’QGR 2 ¥ ot F gy = (s,Q,I o s’gg) -2 G,Qg 4
—2f o (Fos®+ Fae?) —Fawsla P+ Fons P2+ Fanp P22, (11)
1
+ 2 PP — G oo (—H — H + 2 H)
2 1 2 3

Bemerkenswert an dieser Umrechnung ist die Tatsache, dass sich die rechte Seite von
(11) als explizit symmetrisch erweist.

Die rechte Seite von (11) ist also genau das, was man erhilt, wenn man die
Tensordichte MW" der Gleichung § 3 (7) in einen Parametertensor W ,, umwandelt
mit der Vorschrift, alle zweiten Ableitungen auf die Kriimmungsgrossen 7 ,,, $ o und 7
zu reduzieren. Die direkte Verifikation ist natiirlich umsténdlich.

Fir die Umwandlung von Tensordichten in Tensoren sind vor allem folgende
Identitdten wichtig:

0p®
_oxa =f (0,5: + f,(x) v* , (121)
oF P
%iﬁ =g0,+f p F*F, (12,)

wobei F'*f antisymmetrisch sein muss.
Wendet man (12,) an auf den Vektor »* = |-%, so erhdlt man
(g )
go, f*= il B (13)
: 0x 5
Multipliziert man also die Gleichungen (8;) und (9) mit g und eliminiert hierauf 7,
so ergibt sich

0
gR=——(e/ +28W, (14
x’

wobei W die durch § 3 (1) definierte Wirkungsfunktion ist.

Mit anderen Worten: Die Wirkungsdichte g R der QF unterscheidet sich von der
doppelten Wirkungsdichte 2 g W der LF nur um eine Divergenz.

Die QF und die LF miissen daher dquivalente Gravitationsgleichungen liefern,
was durch die Identitdt (11) bestitigt wird.

Schliesslich gibt uns die explizite Symmetrie der Identitdt (11) Anlass zu einer
wichtigen Folgerung. Fiihren wir den Parametertensor h’lu gemdss § 2 (16,) ein in
§ 2 (9'), so erhalten wir wegen § 2 (6") die Gleichung

Gy =L . % RE, (15)

Da nun die Trigheitsmatrix ¢, nach § 2 (5,) durch die Parameterwahl festgelegt ist,
gilt nach § 2 (6') dasselbe fiir den Lorentztensor L ;,. Aus (15) kdnnen wir nun er-
sehen, dass der Parametertensor der eigentliche « Kerntensor» der LF ist. Er muss ja
erst nach getroffener Parameterwahl noch bestimmt werden.
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Setzen wir jetzt die rechten Seiten von (11) gleich Null, so haben wir alle Glei-
chungen, welche die Wirkungsinvariante

1
W=_H+H-2H (16)
21 2 3
liefert. In anderen Worten, wir haben 10 Gleichungen fiir 16 Unbekannte.

Um also die tiberschiissigen 6 Unbekannten zu eliminieren, geniigt es, h,”h‘t zu
symmetrisieren. Dies geschieht am einfachsten durch den Ansatz

VA T,
W= L"%g s (17)
falls % ;, symmetrisch ist. Anstelle von (15) tritt dann
G .. = Lt Eouk g - (18)

Die rechten Seiten von (11) gleich Null gesetzt liefern also nach Festlegung des

Parametersystems genau 10 Gleichungen zur Bestimmung des 10gliedrigen Kern-
tensors.

Die in der QF nur implizit fassbare Willkiir der Parameterwahl tritt also in der
LF durch die Triagheitsmatrix explizit in Erscheinung.

Anstelle der Gleichungen § 2 (16,) und (16,) treten jetzt die Gleichungen

gi:ﬂ — 62 tl:a k,a# (191)
und

glz‘u — 31 tl:d ?6’ i . (192)

Dabei ist &*# der zu &, , transverse Tensor.
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