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Sur une question de calcul de variations sous contraintes

par J. Poncet
Institut de Mathématiques, Université de Lausanne,

E. C. G. Stueckelberg de Breidenbach et P. B. Scheurer
Institut de Physique Théorique, Université de Genève

(29 I 71)

Abstract. This is a mathematical complement to [2]. We prove theorems 3.1 and 3.2 below,
which state that for a functional F representing an extensive quantity which is maximal under
constraints defined by conserved quantities of the same density type, the condition S^F 0,

ôlk~1F 0, ô2ckF > 0 for admissible variations, is equivalent to the condition ô1^/ 0,
<52*_1ijr 0, ô2kij/ > 0 for arbitrary variations, where y> is the Lagrange functional F + ftaGa with
the multipliers #„, the existence of which is also proved under our condition D).

1. Introduction et notations

Dans un travail [2] de deux des auteurs [E. C. G. St. de B. et P. B. Sch.], on a
considéré un système physique E décrit par des grandeurs continues. Les grandeurs
extensives sont représentées par des fonctionnelles dites de type densité. Nous allons
énoncer dans ce cadre les principes de la thermodynamique, en plaçant le deuxième
principe avant le premier, car c'est du deuxième principe que découle l'existence d'une
direction du temps (cf. p. 888 de [2]).

2e principe
a) principe d'évolution: si le système est adiabatiquement fermé (E Ef), il

existe une grandeur S(t) (l'entropie de E) qui est fonction monotone non décroissante
du temps t :

dS(t)

dt —

b) principe d'équilibre : si le système est isolé (E Enf) l'entropie atteint un
maximum fini quand le temps t tend vers + oo (ce qui donne la flèche du temps),
maximum désigné par lim S(t -> oo) Smax < oo.

1er principe: pour un système substantiel isolé (E E0f) qui a les propriétés d'homogénéité

dans le temps et l'espace, son énergie H, sa quantité de mouvement 77

{77;} et son moment cinétique M {Mik}, ainsi que la masse inerte totale M sont
conservées.

S, H, 77, M, M sont toutes des grandeurs extensives, et 5 est donc une certaine

fonctionnelle qui atteint un maximum Smax) sous les contraintes H H', FI 77',

M M', M M' (cf. 0.36 et 0.37 de [2]).
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Dans le présent travail, nous avons cherché sous quelles conditions
mathématiques le problème posé dans [2] peut être formulé avec précision.

Nous considérons des fonctionnelles de la forme

F=F[i()]= Jf(i(x),x)dV.
v

V est un ouvert connexe de Rd muni de la mesure ordinaire dV, f Ç(x) est mis

pour (f1, I"*), où £a ia(x) sont des fonctions continues de x (x1, xd) sur V.
La fonction /(J, x) des co + d variables réelles ff, tf°, x1, xd, qu'on appellera la
densité de F, est définie et continue de (£, x) sur un ouvert W XV,W ouvert dans Rm,

ainsi que les dérivées partielles

/ *L
'«•••¦«* d^.-.d^k
La fonctionnelle F[£( )] est supposée définie sur un ensemble E de fonctions

continues sur V soumis aux deux conditions :

a) toute i dans E satisfait à m contraintes Ga G'a, a 1, m, oùG'a est une
constante et G" Ga[|( )] une fonctionnelle de même type que F, de densité ga

ga(C, x) définie et continue de (f, x) sur Wx Fainsi que les dérivées partielles gaai... a ;

b) si f est dans E, si ô| èlftx) (di1, ô£m) est une variation continue et à

support compact dans V telle que f + <5| satisfasse aux contraintes, alors i + ô(
est dans E.

Les fonctions de E seront dites admissibles. Si r/ est dans E, et Ôr/ telle que
r\ + ôr) soit dans E (ôr) pas nécessairement de support compact) on dira que ôr) est une
variation admissible de r\, ou qu'elle satisfait aux contraintes, et on la notera ôcr,.

La variation AF correspondante de F sera notée ACF. Si r\ et ôr) ôcr\ sont admissibles,
on a AG" AcGa 0. Si ôrj est à support compact, la norme \\ôr) || sera le plus grand
des maxima des fonctions | ôrf \, | ôrf | | ôr)m \.

Notre hypothèse générale sur les densités / et ga sera, pour rj dans E, que

Af f(r1 + ôr,, x) - f(r), x) Z~fai...ak ôr,^...Ôr,^
h>l R-

Ag" g"(r, + ôr,, x) - g°(r,, x) £-- C,... a, *?* • • • ôV*k -

k>l »! *

(on écrit /ai... a ôr,*1... ôr,ak pour Jf /„,...„ ôrf1... ôrfF) pour toute varia-
ax ak<oi

tion ôr, de support compact donné et de norme ||<5?jj| assez petite, et que, pour ||&7||
assez petite,

Z4f Z I/«,...«Jii*ïH*.
*>1 Ki al...ak<<o

Z^ E IC.«JWk>l Kl ax <xk<ai

convergent uniformément en x dans le support de ôr,.
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Donc pour de telles variations,

AF=]TôkF, AG"=2JôkG"
k

OU

ô"F —- / /
a ôr,"1 ôr,*k dV

£ j J a, ak i i

V

okGa ~^fc,...Horia>---or]°*dV

et les fonctionnelles F et G" sont differentidbles, autrement dit : si

AF ô1F+ ...ôkF + e \\ôr)\\"
alors e -> 0 pour \\ôr) \\ -*¦ 0 (le support compact de ôrj restant fixe), de même pour AG".

Si i est dans E, et ôci de support compact et de norme assez petite, alors

AGa AcG°=£ôkGa 0
k

mais il n'est pas évident qu'il existe une telle ôc£ non identiquement nulle sur un
support compact donné. Cependant si les G" satisfont à une certaine condition
d'indépendance (condition D du n° 2), il existe toujours des variations ôc£ de f de

norme \\ôc£\\ 4= 0 arbitrairement petite, et de support donné (voir le n° 2).
Si F a un maximum relatif pour f, la condition (D) entraîne aussi l'existence des

multiplicateurs de Lagrange que nous avons démontrée pour être complet. Mais notre
question principale était la démonstration du théorème 3.2 (qui n'est pas vrai
généralement pour d'autres fonctionnelles).

Nous tenons à remercier ici le Fond national suisse pour son aide financière.

2. Existence des multiplicateurs de Lagrange
Supposons que F ait un maximum relatif pour f £0(x) sous les contraintes

G" G'a, ce qui doit signifier : quel que soit K compact, si ôc£ est une variation
admissible de f0, de support dans K, et si \\dc£\\ est assez petit, alors la variation
correspondante ACF est < 0.

Dans la suite, nous ne considérons que des i0(x) pour lesquelles la condition
suivante (D) d'indépendance des contraintes est vérifiée :

(D) pour toute direction u (u1, um) et tout ouvert V0 de V (V est dans Rd et supposé
connexe) il existe m points xlt xm dans V0 tels que la matrice de coefficients yah

ga(io(xb)> xb)< (a, b 1, m) soit inversible, gau(ifxf, xf étant mis pour
£(Uxb), xf) u-.
Considérons m fonctions positives et continues Ffx), Fm(x), dont les supports

sont compacts, et contenus dans des boules ouvertes disjointes, respectivement
Bi> ¦¦• Bm dans F0. On suppose encore que le support de Fh(x) contient le point xb de
la condition (D).

Soit F la matrice de coefficients

FZ=fg:(ï0(x),x)Fb(x)dV.
Par le théorème de la moyenne, on a

H £(£„(*»). *») [Fb(x) dV
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où xb est un point dans la boule Bb.

Si donc les supports des Fb(x) sont assez petits, les points x% sont assez proches de

xb pour que F devienne inversible en vertu de la condition (D).

Soient maintenant u (u1, um), v (v1, vm) deux directions de Rm, Vx une
boule ouverte de V, <5£ une variation de £0 de la forme

<5| e(x) u + Ç(x) v

avec

e(x) £ F Lfx) C(x) ^t'Mfx),
i<m i<m

s', t' réels, et Lfx), Mfx) étant 2 m fonctions continues, positives, de supports
compacts, disjoints, contenus dans Vx.

On suppose s', P, L{, Mj tels que

a) les matrices L, M de coefficients

Ll=Jg"uLbdV,

Ml fgfMbdV
soient inversibles;

b) ôÇ est admissible et 4= 0, et \\ô£\\ est assez petit pour que

AF ACF =2JôkF
k

AGa 0=AcGa=£ôkGa
k

(pour simplifier, on a supprimé les arguments de gau, g", Lb, Mb).

D'après ce qui précède, a) est possible. Pour satisfaire à b), il suffit de montrer
que le système

0 A G" ôxGa + ¦¦¦ =2JSJ Ê" + F &? + ¦¦¦
i

a des solutions sJ, tk non toutes nulles, et arbitrairement petites, ce qui est possible,
car si on se donne les tk assez petits, ce système détermine les s-> par le théorème des

fonctions implicites, L étant inversible, et si (t1, tm) tend vers (0, 0), (s1, sm)

tend aussi vers (0, 0).

Désignons rjarAF(sf tk), AGa(sf tk) les expressions en les variables sf tk des variations

AF, AGa qui correspondent aux variations de la forme <5f e(x) u + Ç(x) v.

Comme F a un maximum relatif sous les contraintes pour i |0, AF(sj, tk) a un
maximum relatif 0) pour sJ tk 0 sous les contraintes AGa(sf tk) 0. Mais par
la théorie des maxima sous contraintes d'une fonction d'un nombre fini de variables,
comme L et M sont inversibles, il existe des multiplicateurs de Lagrange êa

&a(u, v, Lj, Mf) correspondant aux contraintes AG"(sf F) 0, d'où

f fuLjdV+êaJglLJdV 0,

f fvMkdV + êa f gfMkdV=0.
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Le premier de ces systèmes montre que fîa ne dépend pas de v et des Mk, le deuxième

que êa ne dépend pas de u et des L,. Donc {ra ne dépend que de a, et est évidemment
unique puisque L est inversible. On peut encore supposer que les supports des Lj
contiennent des points donnés (par la condition (D)) dans un ouvert de Vx et deviennent
arbitrairement petits sans que les Lj cessent de remplir les conditions a), b) (les Mk
restant fixes) donc il existe des points x (appliquer le théorème de la moyenne au
premier système ci-dessus) dans tout ouvert de Vx en lesquels

/,(£o(*).*) + *.£(*o(*).*)-0
donc en tout point de Vx et de V (qu'on a supposé connexe). Nous voyons que:

(2.1) si F a un maximum relatif pour f f0 sous les contraintes G" G'a il existe

W= F + &aG*

de densité W f + d,aga telle que

ôW=ffaôiadV 0

V

pour toute variation ô£ de |0. Autrement dit, f0 est une extrémale de W.

Si on définit ôfF par
ôkcF ôkF + êa ôkG"

pour toute variation admissible ôci de £0 (pour laquelle les intégrales ôkF et ôkG" sont
supposées exister), on a donc

Ô"CF ôkX¥, Ô\F 0

et si ôci est de support compact et \\ÔC£\\ assez petit,

ACF £ ôhcF

par les hypothèses générales du n° 1.

3. Le signe de dfF et de ô2kxF

Pour simplifier la notation, nous n'écrirons plus les arguments (f0(%), x).

Si la condition (D) est satisfaite pour |0, on a l'énoncé suivant:

3.1. a) Pour que ô2fF 0 pour toute variation admissible, il faut et suffit que ô2kW 0

pour toute variation.

b) Pour que ô2fF soit <! 0 pour toute variation admissible, et soit =ß 0, il faut et

suffit que ô2kiF soit ^ 0 pour toute variation, et ^ß 0.

Pour démontrer 3.1, nous considérons des variations admissibles ôc£ de |0 de la
forme e(x) u + Ç(x) v (voir n° 2), de support dans une boule ouverte Vx, mais nous
prenons u — v, t1 * 0, t2 t3 tm 0.

Soit donc

d£= (e(x) + C(x)) u 6(x) u
où

6(x) s; Lfx) + f- Mfx)
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On a

(2 k)\ Ô?F fw^.^u«!... u«n d** dV

Si ô2W 0 pour toute variation, on a évidemment ôrfF 0 pour toute variation
admissible.

Si ô2f F 0, soit V-r assez petite pour que, u étant fixée,

ne change pas de signe ou soit nulle sur Vf. en prenant ôcÇ 6(x) u on voit que

sur Fj, donc aussi dans F, et d2*!?' s 0 pour toute variation de £0, ce qui démontre
3.1.a.

Si ô2kW < 0 on a évidemment ôfF < 0, et si d2*^ 0, alors <3fF e£ 0 par 3.1.a.

Enfin, si ô2fF < 0, on voit en prenant de nouveau ôci 6(x) u que

w„ „ uai... u*2» y o

en tout point de F, d'où ô2kXF < 0 pour toute variation, et si ô2kF ^ 0 il en est
évidemment de même pour ô2kXF.

Les fonctionnelles F satisfont au théorème 3.2 suivant, qui n'est pas vrai généralement

pour des fonctionnelles d'un autre type.
3.2. Si F a un maximum relatif pour f f0 sous les contraintes, alors

a) le plus petit entier nx (s il existe) tel que ôfF soit ^ 0 (pour des variations admissibles

ôj de if) est pair, et <5*»F < 0;

b) le plus petit entier n2 (s'il existe) tel que ô"2tF^ 0 (pour des variations arbitraires)
est égal ànx, et ô"lXP est < 0.

En tenant compte de 3.1., il suffit de démontrer 3.2.a, et de vérifier que àfF 0

entraîne ôNXP 0 pour tout N ^ 2.

Démontrons 3.2.a. Soit u (u1, ...uw) une direction fixée, et soit ôci une variation
admissible de i0(x) de la même forme que dans la démonstration de 3.1:

àci B u 27 F L{ + tM)u
i<m

et nous supposons que le support de 0 est dans la boule ouverte Vx.

Les s' sont considérés comme fonctions de t, définies pour t assez petit par le

théorème des fonctions implicites (voir n° 2). Par ce même théorème, la limite

s' ds'
P hm — -

*-*o t dt t_0
existe, donc ||<3e|||/i reste borné pour t -> 0, car

P<rf II ^ 2J I S' I maX Li + M maX M ¦

i<m
Soit d'abord n le plus petit entier > 0 tel que

Ô"F + 0
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On a

AcF ôncF + é»)\\ÔJ;\\tt

où e("> -> 0 si t -> 0, donc

A F ônF 1 rlim^-=lim-c - =— w„ „ u«i...«<"»( 5" V L{ + M)*dV
t-M> f t-*> t" n\ J *V--a» \f^ '^ '

Si n 2 k + 1, comme ZlcF < 0 par hypothèse pour t assez petit, cette dernière
limite doit être nulle, d'où

(H) 0=lln f wai ...Xnu«i ...ua» L\dV +...

+ lmn [v>ai...anuaF..u«»LnmdV

+ I w„ r,
u*1 ¦ ¦ ¦ wa~ M" dV

(remarquer que E P Lt + M)" E lin L? + M").
i<m i<m

On peut supposer Vx assez petite pour que

w„ „ u*1 ua»

soit eOou ait un signe constant sur Vx.

Le système qui définit s' comme fonction de t (voir n° 2) s'écrit aussi

0 fgauddV + e'°\\ôci\\
v,

avec e'a => 0 si t -> 0, d'où, en divisant par t et faisant t -> 0:

£l'[fu LtdV - fglMdV
i<m f f

et comme on peut supposer

Ll f&LbdV
v,

inversible par (D) :

V=- \y\MdV
v,

où

yi=Z(l-1)U:
a

Les L,- étant fixés, lb peut être considérée maintenant comme une fonctionnelle
linéaire lb[M] sur une boule F2 dans Vx. Fa. relation (H) s'écrit alors

(H') 0 £h (l"[M])" + f fai an
u^ ua" M"dV
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avec

Vi

Mais (H') entraîne que

V«!...«,«"1 ¦¦¦u*n

est nulle, car si on divise à gauche et à droite de (H') par

[m« dV
v,

et si on fait tendre le support de M vers un point y de F2 tout en faisant varier M
convenablement, on obtient

° YV..«„ (v) uai ¦••«"»

du fait que n > 1, comme on le voit facilement en prenant une boule fermée B centrée
en y (dont le rayon tend vers 0) comme support de M, et pour M une fonction à

valeurs comprises entre 0 et 1 dont l'intégrale soit assez proche du volume de B.
Comme V% est une boule quelconque dans Vx, la même expression est nulle dans Vx,
ce qui contredit n 2 k + 1.

Soit donc n 2 k. La limite
A F ô2k F Iflim-4— lim—-—= / w„ „ u"i ...u*2>> (V Ls + M)2kdV

t^o t2k t->o t2k (2k)) J !" 2h

est < 0, et on en déduit immédiatement que wa uai ua^ est < 0 partout dans

V, ce qui achève de démontrer 3.2.a.

Reste à montrer que ôfF 0 entraîne ÔNW 0 pour N > 2. Mais si ôfF 0

on a aussi

ÔfF
0 lim -%

(pour la même variation admissible de la forme ôci 6 u), d'où une relation identique
à (H), ce qui entraîne, par le même raisonnement, que Wa^ __aN«ai... u"n est nul
dans Vx, d'où ÔN W 0.
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