Zeitschrift: Helvetica Physica Acta

Band: 44 (1971)

Heft: 4

Artikel: Sur une question de calcul de variations sous contraintes

Autor: Poncet, J. / Stueckelberg de Breidenbach, E.C.G. / Scheurer, P.B.
DOl: https://doi.org/10.5169/seals-114299

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-114299
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

522

Sur une question de calcul de variations sous contraintes

par J. Poncet

Institut de Mathématiques, Université de Lausanne,

E. C. G. Stueckelberg de Breidenbach et P. B. Scheurer

Institut de Physique Théorique, Université de Genéve

(29 1 71)

Abstract, This is a mathematical complement to [2]. We prove theorems 3.1 and 3.2 below,
which state that for a functional F representing an extensive quantity which is maximal under
constraints defined by conserved quantities of the same density type, the condition §}F= 0, ...,
02k-1F =0, 2% F = 0 for admissible variations, is equivalent to the condition d'¢ =0, ...,
82k-1y = 0, 82y = 0 for arbitrary variations, where y is the Lagrange functional F + #,G% with
the multipliers #,, the existence of which is also proved under our condition D).

1. Introduction et notations

Dans un travail [2] de deux des auteurs [E. C. G. St. de B. et P. B. Sch.], on a
considéré un systéme physique X' décrit par des grandeurs continues. Les grandeurs
extensives sont représentées par des fonctionnelles dites de type densité. Nous allons
énoncer dans ce cadre les principes de la thermodynamique, en plagant le deuxiéme
principe avant le premier, car c’est du deuxiéme principe que découle I'existence d'une
direction du temps (cf. p. 888 de [2]).

2e principe
a) principe d’évolution: si le systéme est adiabatiquement fermé (X' = 2), il

existe une grandeur S(¢) (I’entropie de X)) qui est fonction monotone non décroissante
du temps ¢:

as(t)
dt
b) principe d’équilibre: si le systéme est isolé (X' = 2\, l'entropie atteint un
maximum fini quand le temps ¢ tend vers + oo (ce qui donne la fleche du temps),
maximum désigné par lim S(f — o0) = S, . < o<,

=0 ;

Ter principe: pour un systéme substantiel isolé (2' = ) qui a les propriétés d’horgo-
généité dans le temps et l'espace, son énergie H, sa quantité de mouvement /7 =
{11} et son moment cinétique M- {M,,}, ainsi que la masse inerte totale M sont
conservées.

S, H, T , Z\Zf , M sont toutes des grandeurs extensives, et S est donc une certaine

fonctionnelle qui atteint un maximum (= S,,,,) sous les contraintes H = H’, =11 %
~

S
M= M', M = M’ (cf. 0.36 et 0.37 de [2)).
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Dans le présent travail, nous avons cherché sous quelles conditions mathé-
matiques le probléeme posé dans [2] peut étre formulé avec précision.

Nous considérons des fonctionnelles de la forme
F = F[E0)] = [#e@), ) av .
i

V est un ouvert connexe de R? muni de la mesure ordinaire dV, & = &(x) est mis
pour (&%, ... &%), ou &* = &%(x) sont des fonctions continues de x = («%, ... ) sur V.
La fonction f({, x) des w + d variables réelles (%, ... {?, «1, ... x4, qu’on appellera la
densité de F, est définie et continue de (£, x) sur un ouvert W X V, W ouvert dans R%,
ainsi que les dérivées partielles

o oraty =
oy ..o 05“1...06%

La fonctionnelle F[&()] est supposée définie sur un ensemble E de fonctions
continues sur ¥ soumis aux deux conditions:

a) toute £ dans F satisfait & m contraintes G* = G'2, a =1, ... m, ou G'2 est une
constante et G* = G%&()]une fonctionnelle de méme type que F, de densité g* =

g(C, x) définie et continue de ({, x) sur W Vainsi que les dérivées partielles gg _ ,,;

b) si & est dans E, si 6& = 8&(x) = (08, ... 6&”) est une variation continue et a
support compact dans ¥V telle que & + 6 satisfasse aux contraintes, alors & + 0&
est dans E.

Les fonctions de E seront dites admissibles. Si 7 est dans E, et dn telle que
7 + 0n soit dans E (dn pas nécessairement de support compact) on dira que dz est une
variation admissible de i, ou qu’elle satisfait aux contraintes, et on la notera d.
La variation AF correspondante de F sera notée A _F. Sin et dn = 8,7 sont admissibles,
on a AG* = 4,G* = 0. Si dn est & support compact, la norme ||z || sera le plus grand
des maxima des fonctions |dxt|, |dn?]| ... oy

Notre hypothése générale sur les densités f et g2 sera, pour # dans E, que

1
Af: f (77_‘_6?7: x) - f(77, x) =k§Hfal...akan 1"‘-dnak1
1
Agt =g (n+om, x) — g*(n, 0) = o 8oy o OV o 0%,
=1 k! k
(on écrit f, . 4 On*...0n% pour X f, .. . o On*...0n%) pour toute varia-
0y o v« akﬁw

tion dn de support compact donné et de norme ||dn| assez petite, et que, pour |7 ||
assez petite,

1
DI | SR L

k>1 1...ak£m

1 . .
ké:kl Z < |ga1...ak|”6"7“
Foei al...ak_w

convergent uniformément en x dans le support de .
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Donc pour de telles variations,

AF:Z‘M«", AGe = 3 okGe
k

k

akF_mffal,__ Sy .. oy dV

ak(;uyfg{m%a “ . oy dV

et les fonctionnelles F et G sont différentiables, autrement dit: si
AF = 0'F + ... 6%F + ¢ ||on|*

alors ¢ — 0 pour ||d7 | — 0 (le support compact de d» restant fixe), de méme pour AG=.
Si £ est dans E, et §,& de support compact et de norme assez petite, alors

AGs = A,G* = Y 5+Ga = 0
k

mais il n’est pas évident qu’il existe une telle §,& non identiquement nulle sur un
support compact donné. Cependant si les G°¢ satisfont & une certaine condition
d’indépendance (condition D du n® 2), il existe toujours des variations §,& de & de
norme |[0,£ || + O arbitrairement petite, et de support donné (voir le n° 2).

Si F a un maximum relatif pour £, la condition (D) entraine aussi l'existence des
multiplicateurs de Lagrange que nous avons démontrée pour étre complet. Mais notre
question principale était la démonstration du théoréme 3.2 (qu1 n’est pas vrai géné-
ralement pour d’autres fonctionnelles).

Nous tenons a remercier ici le Fond national suisse pour son aide financiére.

2. Existence des multiplicateurs de Lagrange

Supposons que F ait un maximum relatif pour & = £)(x) sous les contraintes
G* = G'?, ce qui doit signifier: quel que soit K compact, si §,& est une variation
admissible de &, de support dans K, et si ||§,£]| est assez petit, alors la variation
correspondante A F est < 0.

Dans la suite, nous ne considérons que des &,(x) pour lesquelles la condition
suivante (D) d'indépendance des contraintes est vérifiée:
(D) pour toute divection u = (u', ... u®) et tout ouvert Vyde V (V est dans R? et supposé
connexe) 1l existe m points x, ... x,, dans V, tels que la matrice de coefficients y¢ =
g¥(&o(x,), %), (@, b =1, ... m) sout inversible, go(&(%,), %,) élant mis pour

gal&olxs), %) u* .

Considérons m fonctions positives et continues F;(x), ... F,,(x), dont les supports
sont compacts, et contenus dans des boules ouvertes disjointes, respectivement
B,, ... B,, dans V. On suppose encore que le support de F,(x) contient le point x, de
la condition (D).

Soit F la matrice de coefficients

By - [ (o), %) Biw) av .

Par le théoréme de la moyenne, on a
Fy = gu(El). 1) [ Fot) av
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ou #¢ est un point dans la boule B,.
Si donc les supports des F,(x) sont assez petits, les points x} sont assez proches de
x, pour que I devienne inversible en vertu de la condition (D).

Soient maintenant u = (u?, ... #®), v = (v}, ... v*) deux directions de R”, VV; une
boule ouverte de V, §£ une variation de &, de la forme

0f = e(x) u + {(x) v

avec

) = J)s' Li(x), L) =Dt Myx),

<m 1<m
si, ¢ réels, et L,(x), M,(x) étant 2m fonctions continues, positives, de supports
compacts, disjoints, contenus dans V.

On suppose s/, ¢/, L;, M; tels que
a) les matrices L, M de coefficients
z‘bt =] gft Lb dV ’
M — f ¢ M, dV
soient inversibles;
b) 0§ est admissible et =+ 0, et ||0&]| est assez petit pour que
AF = ACF :ZakF )
%
AG*= 0= A4.G, :26’“0’

%
(pour simplifier, on a supprimé les arguments de g%, g%, L,, M,).

- D’aprés ce qui précéde, a) est possible. Pour satisfaire a b), il suffit de montrer
que le systeme

0=AG* = §Ge + --- :ZSJ ﬁ;_t+¢j]r4?+...
7

a des solutions s/, # non toutes nulles, et arbitrairement petites, ce qui est possible,
car si on se donne les ¢ assez petits, ce systéme détermine les s/ par le théoreme des
fonctions implicites, L étant inversible, et si (£, ... #) tend vers (0, ... 0), (s%, ... s™)
tend aussi vers (0, ... 0).

Désignons par AF(si, t¥), AG2(s/, t*) les expressions en les variables s/, #* des varia-
tions AF, AG* qui correspondent aux variations de la forme 6& = g(x) # + {(x) v.

Comme F a un maximum relatif sous les contraintes pour & = &,, AF(s/, #*) a un
maximum relatif (= 0) pour s/ = #* = 0 sous les contraintes AG%(s/, ) = 0. Mais par
la théorie des maxima sous contraintes d'une fonction d’un nombre fini de variables,

comme L et M sont inversibles, il existe des multiplicateurs de Lagrange @, =
?,(u, v, L;, M;) correspondant aux contraintes AG%s/, ) = 0, d’ou

ffu LjdV+ﬁafg‘;LjdV:o,
fvade+19afgﬁMde=O.
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Le premier de ces systémes montre que ¢, ne dépend pas de v et des M,, le deuxieme
que ?, ne dépend pas de u et des L;. Donc #, ne dépend que de a, et est évidemment
unique puisque L est inversible. On peut encore supposer que les supports des L,
contiennent des points donnés (par la condition (D)) dans un ouvert de V, et deviennent
arbitrairement petits sans que les L; cessent de remplir les conditions a), b) (les M
restant fixes) donc il existe des points x (appliquer le théoréme de la moyenne au
premier systéme ci-dessus) dans tout ouvert de V; en lesquels

 AlEl), %) + DG, %) = 0
donc en tout point de V, et de V' (qu'on a supposé connexe). Nous voyons que:
(2.1) s2 F a un maximum relatif pour & = &, sous les contraintes G* = G'* 1l existe
Y=F+9,G
de densitée ¥ = f + 9, g* telle que

W = [y, 0% dV =0
/

pour toute variation & de &,. Autrement dit, &, est une extrémale de V.
Si on définit 6*F par
OF = 6KF + B, 0FGe
pour toute variation admissible §,& de &, (pour laquelle les intégrales 6*F et §*G¢ sont
supposées exister), on a donc
OF = 6+, 0F =0
et si §,£ est de support compact et ||§,& | assez petit,
AF =3 &F

k>2

par les hypotheéses générales du n° 1.

3. Le signe de ¢°*F et de 6** ¥

Pour simplifier la notation, nous n’écrirons plus les arguments (&,(x), x).
Si la condition (D) est satisfaite pour &,, on a I'énoncé suivant:

3.1. a) Pour que 6**F = 0 pour toute variation admissible, il faut et suffit que 625 = 0
pour toute variation.

b) Pour que 6°*F soit << 0 pour toute variation admissible, et soit = 0, il faut et
suffit que 6**¥ soit < 0 pour toute variation, et = 0.

Pour démontrer 3.1, nous considérons des variations admissibles d,& de &, de la
forme &(x) # + {(x) v (voir n® 2), de support dans une boule ouverte ¥, mais nous
prenons # = v, 1 £ 0, 2= ... =" =0,

Soit donc

0. = (e(x) + (%)) u = O(x) u

ou
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On a
(2 k) O*F =fzpa1_._a2ku°‘l...u°‘2k62"dV.

Si 2% = 0 pour toute variation, on a évidemment 6**F = 0 pour toute variation
admissible.
Si 0% F = 0, soit V, assez petite pour que, # étant fixée,

o0 [e 4
(] u*l 4 “2k
al..‘agk

ne change pas de signe ou soit nulle sur V;: en prenant 0,& = 6(x) » on voit que
wdl...ou)k %al o %an = O

P

sur V,, donc aussi dans V, et 2% = 0 pour toute variation de &,, ce qui démontre
3.1.a.

Si 825%¥ < 0 on a évidemment §%*F < 0, et si §2*¥ == 0, alors 6?*F == 0 par 3.1.a.
Enfin, si 62*F < 0, on voit en prenant de nouveau §,& = 0(x) # que

*1 A2k
Vogoooogy ¥ w2 <0

en tout point de V, d’ou 2% < 0 pour toute variation, et si 6**F == 0 il en est
évidemment de méme pour §24%.

Les fonctionnelles F satisfont au théoréme 3.2 suivant, qui n’est pas vrai générale-
ment pour des fonctionnelles d’un autre type.

3.2. 51 F a un maximum relatif pour & = &, sous les contraintes, alors

a) le plus petit entier n, (s'il existe) tel que 6™ F soit== O (pour des variations admrs-
stbles 0.& de &) est pair, et ™"F < 0;

b) le plus petit entier ny (s’il existe) tel que 6™ == O (pour des variations arbitraires)
est égal a ny, et ™Y est < 0.

En tenant compte de 3.1., il suffit de démontrer 3.2.a, et de vérifier que éYF =0
entraine 0¥ = 0 pour tout N > 2.
Démontrons 3.2.a. Soit » = (u, ... ") une direction fixée, et soit §,& une variation
admissible de &y(x) de la méme forme que dans la démonstration de 3.1:
0f=0u= () sLi+tM)u
i<m
et nous supposons que le support de § est dans la boule ouverte V.

Les st sont considérés comme fonctions de ¢, définies pour ¢ assez petit par le
théoréme des fonctions implicites (voir n° 2). Par ce méme théoréme, la limite

) . st dsi
/i=1lim— = ——
t—0 ¢ dt -

existe, donc ||d,£||/¢ reste borné pour ¢ — 0, car
1651 < 3 |s'| max L; + |¢#| max M .

1<m

Soit d’abord » le plus petit entier > 0 tel que
NF £=0.
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On a
AF = 0"F + & ||8,& |
ou " —0sit— 0, donc
. AF . O"F 1 ;
1<m

t—0 f» t—0 (" n !
v,

St w=2Fk+1, comme A F < 0 par hypothése pour ¢ assez petit, cette derniere
limite doit étre nulle, d’ou

(H) 0= [, ut. . u L}V +...
v,
+ zmnf%l,__% wh L7 4V
Vi

[ Va0 MY
Vi

(remarquer que ( X I L, + M)"= X lin L* + M").

i<m i<m
On peut supposer V, assez petite pour que
wal e {Inual e Ztan
soit = 0 ou ait un signe constant sur V.
Le systéme qui définit s’ comme fonction de ¢ (voir n° 2) s’écrit aussi

0= [&0av+ee)of]
7y

avec ¢'? >0 si t — 0, d’oti, en divisant par ¢ et faisant £ — 0:

Zﬁfgf; L de—/g‘;MdV
i, V,

1<m
et comme on peut supposer
. f ¢ L,dV
Vi
inversible par (D):
o= [ b M av
Vi
ou
vy =2 (L

a

Les L, étant fixés, [ peut étre considérée maintenant comme une fonctionnelle
linéaire /°[M] sur une boule V, dans V. La relation (H) s’écrit alors

(H) 0= 33 (M) + [y, u™t...u MadV
2

b<m
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avec

o oy 4 n
A, f’gual___anu coutn LY dv .
Vi

Mais (H') entraine que
o [+ 4
wal...a%ul"'%n

est nulle, car si on divise a gauche et a droite de (H') par
[ av
Ve

et si on fait tendre le support de M vers un point y de V, tout en faisant varier M
convenablement, on obtient

0=y, o () u .. un

du fait que » > 1, comme on le voit facilement en prenant une boule fermée B centrée
en y (dont le rayon tend vers 0) comme support de M, et pour M une fonction &
valeurs comprises entre 0 et 1 dont l'intégrale soit assez proche du volume de B.
Comme V, est une boule quelconque dans ¥V, la méme expression est nulle dans V',
ce qui contredit n =2 % + 1.

Soit donc » = 2 k. La limite

AF 62k F 1
. c s . 70“—7 . .a aof i . 2k
= = T | a0 Lt MO
est < 0, et on en déduit immédiatement que Voy...a, ¥ .. w2k est < 0 partout dans
V, ce qui achéve de démontrer 3.2.a.

Reste 4 montrer que 8¥F = 0 entraine ¥ =0 pour N > 2. Mais si 67F =0
on a aussi

(pour la méme variation admissible de la forme §,& = 0 %), d’ol1 une relation identique
a (H), ce qui entraine, par le méme raisonnement, que ¥, . #® ... u*N est nul
dans V,;, dot 6¥ ¥ = 0.
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