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Stationary State Scattering Theory )

by W. O. Amrein, V. Georgescu and J. M. Jauch

Institute of Theoretical Physics, University of Geneva, Geneva, Switzerland
(9. XII.70)

Abstract. We give a rigorous mathematical derivation of the stationary state scattering theory
from the time-dependent theory. The basic tool used is the spectral integral for operator valued
functions with an operator valued measure. The chief result is the correct interpretation and
validation of the formal expressions often used in stationary state scattering theory.

1. Introduction

There are two main approaches to the mathematical formulation of quantum
mechanical scattering theory, the time-dependent and the time-independent or
stationary state scattering theory. Most of the textbooks present both, but the precise
relation between the two methods has remained elusive [6]. In this paper we shall
establish the link between the two methods and thereby incidentally also justify some
of the purely formal manipulations of the stationary method.

In the time-dependent scattering theory one considers the actual time-evolution
of a wave packet for a particle under the influence of the interaction with a scattering
center or with another particle. The asymptotic behavior of such wave packets in the
remote past and the distant future is then approximately that of a free particle and
the transition operator which connects the two asymptotic states is the scattering

operator (or S-operator) which contains all the observable information on the
scattering system.

In the stationary theory one studies solutions of the time-independent Schro-
dinger equation with an eigenvalue parameter belonging to the continuous part of
the spectrum of the total Hamiltonian operator. These solutions lie outside the Hilbert
space. They are characterized by certain asymptotic properties for large distances
from the scattering center which are partly motivated by physical considerations.
(For instance incident wave plus oufgoing scattered wave.) The observable quantities,

in particular the S-operator, are then obtained from the asymptotic properties of such
solutions.

The two methods are mathematically very different, and it is not at all obvious
that the final objects of the calculations, the S-operators, are indeed indentical for

the two cases. It is therefore a natural question to ask whether the two methods are in
fact equivalent.

1) Based on a diploma thesis by V. Georgescu.
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The question is difficult to answer because most presentations of stationary
scattering theory use only formal mathematical manipulations which must first be
interpreted in some sense before they can be made rigorous and then compared with
the time-dependent method. The latter has become a well developed mathematical
theory. An exposition and review of much of this work is found in Kato [15].

It is thus clear that, in order to carry out such a comparison and a study of the
possible equivalence of the two methods, the stationary theory must first be developed
on the same level of mathematical rigour as it has been possible for the time-dependent
one.

This problem has been the object of much research during recent years. It does
not have a unique solution. Indeed there have been at least four different methods
used in order to complete the stationary scattering theory in the sense indicated above.
A review of some of these methods will be found in the lectures of Kato and Kuroda [1].

In our opinion some of these methods, although completely correct from the
mathematical point of view, use techniques which are sometimes rather removed
from the conceptual context of the physicists. Thus for instance in the method of
Kato and Kuroda one introduces a subset X C H of the Hilbert space, considered
itself as a Banach space with its own independent norm, and one interprets some of
the operators of the theory in this space. In the end result, after the construction of
the wave and scattering operators has been accomplished, this space disappears. This
fact and the fact that the choice of X is to some extent arbitrary may make this
theory, in the view of a physicist, appear somewhat artificial, in spite of the fact that
some very powerful results have been obtained with it.

Another technique which has been used is that of a generalized eigenfunction
expansion for the total Hamiltonian operator. Here, too, some very important
results were obtained but for their validity one needs assumptions for instance in the
form of some gentleness or regularity conditions for the perturbation operator [16]-[18].
These assumptions, although certainly quite reasonable and very weak, have the
disadvantage that they cannot easily be motivated in terms of the physical inter-
pretation of the theory.

In view of these circumstances we have found it useful to develop further a
method first proposed in connection with scattering theory by Galindo [14]. A similar
approach was recently considered independently again by Prugovecki [3] and by
Birman and Solomjak [4].

This method has the advantage that it does not need any other assumptions than
the so-called strong asymptotic condition, which itself is directly interpretable in
physical terms, together with the usual assumption concerning the range of the wave
operators which is necessary for the unitarity of the scattering operator.

The essential mathematical tool used in this theory is a type of integral of an
operator-valued function with an operator- (or vector-) valued measure which we shall
call the spectral integral. Integrals of this kind have been used by mathematicians for
some time [5]. Their usefulness for scattering theory is a relatively more recent
discovery. Physicists have not yet used this kind of integration to any extent. We
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hope that through this paper they will become familiar with this mathematical tool
and recognize it as the appropriate language for stationary scattering theory.

The spectral integral may be considered as a natural generalization of the func-
tional calculus for operators, and its use permits us to formulate some of the important
results in scattering theory with a certain conciseness and elegance. The manipulation
of the integral is extremely easy and we shall show that several deeper lying results of
scattering theory are readily obtainable with the help of this tool.

The principal problem that we propose to solve in this paper is the passage from
the time-dependent to the stationary formalism. The basic quantities in the former
theory (e.g. the wave operators) will first be expressed in terms of a Bochner integral
of certain operators over the time variable. These integral formulas have been known
for a long time and are indispensible in the mathematical development of time-
dependent scattering theory. By the use of the functional calculus some of the
operators in this Bochner integral will be expressed as a spectral integral. The two
integrals can be interchanged and the time integral can then be evaluated. The
remaining spectral integral is then the desired formula for the quantity in question.
The main problem of mathematical nature is to establish under what conditions these
two integrals can be interchanged and to verify that these conditions are in fact
satisfied for the integrals that we encounter in scattering theory.

The organization of the paper is as follows: In Section 2 we introduce the two
types of integrals used in this paper, the Bochner integral and the spectral integral.
Section 3 gives the known results of the integral representations in the time-dependent
formalism. Section 4 contains the main result in the form of theorem 3 which permits
the passage from the Bochner integral to the spectral integral. In Section 5 we apply
this result for the establishment of the principal basic formulae of the stationary state
theory, and finally in Section 6 we give similar results for the scattering operator.

2. Mathematical Preliminaries

We shall need two types of integrals of operator valued functions, one with
respect to a numerical valued measure on the reals and one with respect to a spectral
measure for a selfadjoint operator. The former are called Bochner integrals, the latter
spectral integrals.

The Bochner integral has been extensively treated in the literature. It suffices
to give a brief summary of this integral here. For details we refer to the literature.
In the applications that we have in view the functions to be integrated will always be
continuous. We shall therefore give the definition of the Bochner integral for con-
tinuous functions in the form of a Riemann-Stieltjes integral. However, our main
result (theorem 3) will be proved without continuity assumptions and makes use of
the more general definition of Bochner integrability for arbitrary Borel functions [8].

Let I be a Hilbert space and f: (a, b) — H a function from the finite interval
(a, b) to vectors in Y, continuous in the strong (that is norm-) topology of H. Let
7 a=2Ry <A <---<A,=b be a partition of (a, b), define |x|=sup |4; —4;—]|

i=1,..,m
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and choose for every 7 a point 4; € (4;—,, 4;). We denote by P(a, b) the set of all such
partitions.

We define the Riemann sum

- ém;) (=2 . M

If {rn,} is a sequence of partitions from P(a, b) such that |z, | — 0 for 7 — oo,
the strong limit of X', (f) can be shown to exist and is called the Bochner integral of f

with respect to the Lebesgue measure. We shall write
b
[ 1) 2= - im 2, @
a

and say that the function f is integrable (B).

If f: R — F is continuous and ||f(4) || is Lebesgue integrable on (4, o), then

b
&Eghfﬂ@dz 3)
exists and defines the Bochner integral of f(1) over the interval (a, oo), and similarly

for the lower limit a — — oo.

We have chosen the Riemann type integral and the strong limit. One can
generalize the measure and use a weak definition of the Bochner integral. For the
relation between the two see [9].

The fundamental theorem of Lebesgue is valid for Bochner integrals ([8],
theorem 3.7.9). We shall use it in the following form:

Theorem (Lebesgue): Let (a, b) be a finite or infinite interval and f,: (a, ) - ¥ a
sequence of integrable functions (B) which converges almost everywhere to a function
f: (a, b) — H. 1f there exists a Lebesgue integrable function g: («, b)) — R such that
almost everywhere I1£,.(A )|| < g(A) for all #, then f is integrable (B) and

s-lim f ) dA= f}‘ (4)

This theorem gives thus the condition under which a limit can be interchanged
with a Bochner-integral. It will be essential in the following.

The B-integral can easily be extended to functions whose values are bounded or
even unbounded operators in H. Indeed let u: 42 — u(4) (A€ (2, b)) CR) be such a
function and let D,y C H be the domain of the operator (). Let y € # be such that

b

u(A) p is defined for all A € (a, b). If [ () v dA exists, we define

(ﬁmmﬂ)w=fmmwﬂ (5)

a a

so that [ u(4) dA is an operator defined on
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D =

b
peN| fu(l) y dA exists } (6)

b
Note that [ #(d) dA may be unbounded even if all the operators #(4) are bounded.

Furthermore the domain D may not be the largest domain on which the operator
exists. In fact it may happen that the operator defined by (5) can be extended by
continuity to a larger domain than D. We shall presently see examples of this from
scattering theory.

The foregoing theory of the B-integral can now be extended to the spectral
integral in a formally analogous manner. To this end let us consider a spectral
family E,, that is a non-decreasing family of projections as a function of A€ R. Let
y € H be fixed, (a, b)) C R an arbitrary bounded interval and #(4) as above.

In complete analogy with (1) we define

Z,0) = 3140) (Exy = Ery)v )

In order that this makes sense we require that

E,y e,ue((;,b)D“( » forallle(a,b).

This is always the case if D, D Dy and y € Dy where H = [ AdE,.

If the strong limit of 2 (#) exists and is the same for all sequences of partitions

m e P(a, b) such that |z| — 0, then we define
b

f u(d) dEyp = s- lim Z,(w) . (8)
Just as before we can extend the definition to infinite intervals by taking strong
limits. For instance for the interval (@, oo) one defines

00 b

f w(d) dE,p =s-lim [ u(i) dE,p . (9)

a a
A similar formula gives the integral for (— oo, @) and for (— oo, 4 o0).

The integrals defined here are special cases of a more embracing integral theory

which we shall not need here but only indicate briefly, in order to situate the theory
in a more general mathematical context.

Let X, Y, Z be three Banach spaces and let there be given a continuous bilinear
map from XX U into Z such that

(x,y) >xy=2z2€Z.

Let m: B — U be a measure defined on the g-algebra B of Borel subsets of a
finite interval (a, b) of the real line. Let u: (a, b) — X be a function on (a, b) with
values in X.

We are interested to define an integral of this function with respect to the
measure 7.



412 W. O. Amrein, V. Georgescu and J. M. Jauch H.P.A.

We define a partition 7 of (, 8) as a finite family of intervals A, € B with the
property

A;04;,= ¢ ifi + jand (a,0) = U 4, .
i-1

Let u be the Lebesgue measure on (a, b) and |z | = sup u(4,).
For every partition we form the generalized Riemann sum

Z,00) = 3 ulE) m(A) e Z (10)

where ;€ A;. Since u(X) € X, m(4;) € Y, the sum of products of such terms is in Z
as indicated in formula (10). If the sum (10) converges for all sequences of partitions 7z
such that |z | — 0, then one defines the integral as the limit

b

f u(d) dm = lim T, (). (11)

The limit is understood to be taken in the topology defined by the norm of the
Banach space Z.

It is clear that the spectral integral defined by (8) is a special case of the integral
(11) if the operators #(4) are bounded. To see this it suffices to identify

X=81, Y=H#, Z=%,
u:R—>B(H), mA=E,vp.

Integrals of the type (11) were studied by Bartle [11] and by Gowurin [12]. The
theory is non-trivial in the sense that not every B-measurable and bounded function
is integrable. An additional property of the measure is needed in order to ensure
integrability of such functions [12]. In the special case which interests us we do not
need the theory in its full generality so that the integrals in question always exist,
as we shall demonstrate in the following.

For future reference we list five properties of the spectral integral that we shall
frequently use in the rest of the paper.

(1) The operator valued function #(A) defined on the finite interval (a, b) is

integrable with respect to the vector-valued measure A\— E, y if and only if there
exists a vector w € # such that for every ¢ > 0 there exists a > 0 with the property

€ P(a,b) and || <o = o — 2 (w)] <e.

(2) If u is integrable on (a, b) and on (b, ¢) (finite or infinite) with respect to
E, v, then « is integrable on (a, ¢) and

¢ b c

fu(z) dEAy;:/u(l) dE, v +fu(/1) dE, v .

a a b

(3) If u,, u, are integrable on (a, b) (finite or infinite) with respect to E, v and
if B: { — Y is bounded, then A — B u,(A) + u,(4) is also integrable and

b b b
J (B () + 0BV dEyp = B [1,(3) dEy p + [12) dEyyp.
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(4) If » is integrable on (a, b) (finite or infinite) with respect to E, y, if A4:
Dy — W (D4 CH) is closed and if 4 u(4) is integrable on (a, b) with respect to E, v,
then

b b
Afu(A) dE“p:fAu(z) dE, .

(5) If u is integrable on the interval (a, b) (finite or infinite) with respect to £, ,
and E, y,, then it is integrable on (a, &) with respect to A — E;, (xy, + 9,) (x € C),
and
b b

b
[ ) 4By yy +p0) = [w(d) dE, py + [uld) By, .

a a
Only property (1) is not immediately obvious, so we shall prove it here.
Proof of (1): Suppose first that « is integrable, and assume that the statement of (1)

is not true. Then there exists an g, such that for all § > 0 there exists a 7; € P(a, b)
with |z;| < 8 and

lo — ., (w) | > .
Here we have written w for the integral (which is supposed to exist). Choose 6, = 1/7,

r=1,2,..., then m, =, satisfies |z, | <1/r and |w — 2, (u)]| > &. Thus the
sequence 2, () does not converge to w, which contradicts the hypothesis.

Conversely, suppose there exists a vector satisfying the conditions required in (1).
Letm, (r=1,2,...) be a sequence of partitions with |z, | — 0 for » — oco. It follows
that ||w — X, (#) ]| — 0 for » — co. Since the sequence is arbitrary, the function «(4)
1s integrable.

This proves property (1) in full.

3. Integral Representations in the Time-Dependent Formalism

We shall assume in this section that we are dealing with a simple scattering

system (for the definitions, cf. Jauch [13]). More specifically we impose the following
conditions:

(0) Hyand H = Hy+ V are selfadjoint on a common dense domain
and V is symmetric on a domain Dy D D.
(A) For all p € H the strong limits
s-lim V*U,p=9p.=0.9p ’ (13)

t—F oo
exist where V, = ¢=¢, U, = ¢~H¢,
(B) H, has absolutely continuous spectrum.

(C) Ry=R_= N where R, denotes the range of 2, and N is the orthogonal
complement of the subspace spanned by the eigenvectors of H.
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The conditions (A), (B) and (C) suffice for a complete theory of the time-de-
pendent scattering formalism for simple systems.

The important quantities in this theory are

1) the wave operators (Moller operators) £2.,

(1)
(2) the scattering operator (Heisenberg operator) S = Q* Q.,
3) To=Q0.—-1,
4 R=S-1,
The Moller operators have the interesting property
HQ=QH, (14)
and S as well as R commute with H|,

]:R, Ho] =0= [S» Hu] s (15)

The following theorem was proved in references [13, 14]:

Theorem 0:

(1) If (A) is satisfied, then
.Qj: = S-iif;l} Q:l:g

where
0
Q. =¢ [ VU
0 = afe—"" VU dt .
0
(2) If (A), (B) and (C) are satisfied, then
2 = S_yf% Q%,

where
0
%, = sfe“Ut* V,dt,
— 00

o0

Q% = sj e U* V,dt.
0
The integrals which are used here are integrals in the sense of Bochner, defined in
Section 2. The proof is considerably simplified because the integrand consists of
bounded operators only.

In the following we shall also use integral representations with unbounded
integrands. In this case we need a further property which ensures sufficient regularity
for the domains. This is exactly the property (0).
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Theorem 1:

(1) If (0) and (A) are satisfied, then

— o ]h : —&t *
T_ ]D =5 hmo 7 f e V*VU,dt
° (16)

0
T, |y = s-lim - z'fe” VAV U, dt

— 00

(2) If (), (A), (B) and (C) are satisfied, then in addition to the above repfesentation
(16), one has

o0

T* |y = slim — ife““’t U*V V, dt
0
(17)

0
Tt |y = slim 'ife” U*V V,dt

—0C0

In the above formulae T |'p denotes the restriction of the operator T to the domain D.
Although T = £ — I represents a bounded operator, the above equations are valid
only on the common dense set D.

Since the set D is dense, the operator T is the continuous extension to the entire
Hilbert space of the operator T |p as defined by the Bochner integrals of Theorem 1.

We precede the proof by establishing first

Lemma 1: Let A be a selfadjoint operator on a complex separable Hilbert space #,
D4 C Hits domain of definition and R, = (4 — z)~1its resolvent operator (z& C — R).
If B is a linear operator with dense domain Dy and if

Dy CDg, D4 CDp
then
(1) B R, is bounded for all ze C — R,
(2) there exist two finite numbers a, b > 0 such that for allye D4
1Byl <aldypl+blyl. (18)

Proof: The operator B R, is defined everywhere, since R,(H#) CD4 CDg. If
we Dy C Dpe, then for all p e Y, we have by using the definition of an adjoint
operator

(BR,p,y) = (R, @, B¥y) = (p, R* B*y) = (¢, (B R)*v).
We write

(BR,@,y) = (@, y*) forallpe #,yeDy.

We shall next verify that this relation is valid for all € H. To see this, let y e |
and consider a sequence y, € D4 such that g = s-lim y,. Such a sequence exists,
H—>00
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because D4 is dense in J{. For every n =1, 2, ..., we have (B R, ¢, y,) = (p, v}).
Since the left-hand side converges for #» — oo and for all ¢ € 3, we have established
that the sequence ¥ converges weakly to a limit ¢*, so that for this y*

(B R,@,y) = (p,y*) forallpe .
This shows that p € D(BRz)* . Since p was arbitrary in 3, it follows that D (gR y» =.

It follows then that (B R,)* (B R,) is symmetric and defined everywhere. Hence
it is bounded. From this, it follows that B R, is also bounded, since for all y € H

IBR,y|P=(BR,y, BR.y)=(y,(BR)*BR,p) <
< lwll (B R)* BR,y| < |[(BR)*BR,| |lypl?.
Furthermore, we have for ally € D 4
1Byll= B R, R || < IBR;|| IR ¢l < 1B R (149l + llwll) -
This finishes the proof of Lemma 1.

Lemma 2: 1f (0) is satisfied and for y € D we define
o=V Uy, v=U*Viy.

Then
d:
2L —i VXV Uy
- (19)
d ¢
2= iUV V,p

Furthermore the functions { — V,* V U,y and ¢t — U* V'V, p are strongly continuous.

Proof of Lemma 2: We prove one half of the lemma, for instance that which
refers to y,, the other half is then almost identical. By Stone’s theorem one has for any
peED

Vite — V,
s~lim(—t—+s t-}—z'HVt)(p=0,

e—0 &

B — ]
s-1im(‘““5———’+iﬂo Ut)(p:O.

e—0 &
Therefore
dy . 1 o1
—dt_tm = S—};l_l;% ? (wt-ks - y"t) = S_EE;%T (T]tie (]H—a— ]73* Ut) L4
. [1 1
~ slim |- (74, U= VL D) p 4 (VA Ti= W T) 9

We decompose the first term on the right-hand side into two as follows

1 1
(VA= VD) Upe = W)y + V*— Uy = Uy
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Here the second tends to V*(—¢ H,) U,y and the first tends to zero, because

1
”(.Vtis - Vt*) —{-.‘— (Ut-{-s - (]t) ’PH <

&

. 1 .
< ||(th-.s - Vt*) (_ZHO"P) | + ”(th—e - Vt*) [ (U:t-{-e— U,) + "Ho:l vl

and each term on the right tends separately to zero. Thus we find

ay,
dt

and this proves the first half of the statement of Lemma 2.

=V¥ (i Hy+iH)Uyp=1iV*V Uy

Let us verify next that the function {— V,* V U,y is strongly continuous for
y € D. Since by assumption (), Dy, = D C Dy C Dy« , we can use Lemma 1 to give
forallye D

Wyl <alHepll+0bllpll 0<a<oo, 0<bd<0).
Also, for any p € D
WV Uyp—=VIVUp | <IIVFVU-UT)pl+ IV =V VUl

The second term obviously tends to zero since V, is strongly continuous. The first
term also tends to zero with £, — ¢ because it is equal to '

IV (U, = U)pll <all(U,—U) Hopll + b |(U,— U,) p[[ 0.
This proves all of Lemma 2 referring to the functions y,.

Now, we proceed to the proof of theorem 1.

Proof of Theorem 1: We prove the first of the relations (16). Let y e D and ¢ > 0.

With lemma 2, we find that dy,/df is strongly continuous. Thus for any finite interval
(a, b)) C R we can integrate the left-hand side of
b b

P d
je*“%dﬁ= z‘fe—“ VXV U,y dt

a a

by parts and obtain
b b

Yo~ — e+ afe"”tqpt at = ife—s’: V¥V U, pdt -
We set a = 0 and pass to the limit 4 — + co. Finally we take the limit ¢ | 0 which
exists because of condition (A) and theorem 0. Hence

o0

T_|p= slim f e VEV Updi.
This establishes the first of the relations (16). The proof for the other relations is
similar and will be omitted.



418 W. O. Amrein, V. Georgescu and J. M. Jauch H.P. A
Theorem 2:

If conditions () and (A) are verified, then
. : —&t *
T_|D-.s£1¢rr(1)tfe U*V Q_U,dt,
0
(20)

0
T,|p= slim - zf UV O, U, dt
—0
Proof: Let y € D. The intertwining relation H Q_ = Q_ H, implies Q_(D) C D. Thus
Q_ye D. Hence it follows from the second relation in (19) that

ad(Q2_yp)*
AN peyva,
Reasoning in the same way as in the proof of theorem 1, we get
— 0yt sfr“ UXV, Q_ydt — Hife—” UV V,Q_ypit .
0 0

Since 2y € R, the strong limit as ¢ | 0 of the integral on the left-hand side exists
as a consequence of assumption (A) and equals 2* Q_y=1v. UsingalsoV,Q2_= Q_U,
for the right-hand member, we obtain
— (‘Q——I)‘P‘_”S'Pﬁ_ ife_etUjg*V‘Q—mwdt-
0

This proves the first of the relations (19). The second is proved similarly, and this
establishes theorem 2.

The integral representations which are the content of theorems 1 and 2 have
been known and used for a long time. We have established them here again in order
to bring out the conditions and range for their validity, and to give a unified treatment

in parallel with the spectral integral representations to be established in the next
section.

Here we remark for the moment only that the formulae (16) and (20) have a
certain kinship with the so-called Lippmann—Schwinger equations which one often

finds in the literature on scattering theory as the basic equations for the stationary
theory [6].

These equations are given in two forms

1
< (—) _ . ] ¢ 16 ?
W) = ) =V ald) (16
Y0) = ) =~ VDY ‘(20
m H() . Z + 7:8' i

In these equations some sort of limit ¢ | 0 is to be taken. We have put them in quotes
in order to emphasize their mathematically doubtful meaning and we have given
them the equation numbers to which they correspond.
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A similar pair of equations is obtained by reversing the sign of e. They correspond
to the second of the pair of equations (16) and (20).

From the integral representations (16) and (20), one obtains easily other integral
representations for the S-operator which are also known but which we shall not need
for the moment. We shall now rather concentrate on our main task of transcribing
these integral representations into spectral infegrals which furnish us the exact
interpretation of equations such as ‘(16)" and ‘(20)’.

4. Spectral Integral Representations

In this section we shall derive the basic equations for the stationary state
scattering theory. The procedure to be followed is the following:

In anintegral such as the first of equation (16) we replace for instance the operator
U, by its spectral resolution U, = [ exp(—1: A¢) dE}, where EY is the spectral family
associated with the selfadjoint operator H,, the generator of the group U,. We obtain
then a double integral, one over the spectral variable 4 (the energy in the physical
interpretation) and the other one over ¢ (the time). If we interchange the order of
integration, we observe that the resultant integral over ¢ can be carried out to give a

resolvent operator, and we arrive at the spectral integral representation of the
operator £2.

The important point in this sequence of manipulations is the interchange of the
two integrals. If we were dealing with Lebesgue integration such an interchange could
readily be justified by basing it on the fundamental theorem of Fubini. However our
integrals are not of the Lebesgue type. There are three points of difference: the
integrand is an operator-valued function, one of the measures is operator-valued and
we have defined (for technical reasons) the integrals as Riemann-type integrals.

For these reasons the interchange of the two integrals needs a separate proof,
which is the main content of this section. The proof is based on Lebesgue’s theorem

quoted at the beginning of Section 2 concerning the interchange of a limit with an
integral.

Once this interchange of the integrals is established, we have a stationary state
formalism which can be derived from the time-dependent one, and which has therefore
the same degree of mathematical precision as the latter.

We begin this section with the crucial theorem which establishes the validity of
the mentioned interchange of integrals.

Theorem 3:

Let

I. F, beaspectral family defining a selfadjoint operator 4 = [ A dF in a separable
Hilbert space #,

II. (a,d)and(c,d)two (finite orinfinite)intervals on thereallineand u:(a,b)x (¢,d) - C
a complex valued function denoted by %(4, #), A € (a, b) and { € (c, d),

ITI. B, (t € R) a family of (not necessarily bounded) linear operators in #,
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IV. we D4 a fixed vector in the domain of A.
Assume that:
(1) The integrals

b

b
Jf u(d,?) dF,y and f w(d, ) dF, A
exist for all ¢ € (c, d).

(2) For allte (c, d) one has D4 C Dy, and there exist positive constants «,, f#, such
that for every p e Dy

1B, pll <o |4 @l + B, llell.

(3) Forallpe D4 and for all A € (a, b) the function ¢ #(4, t) B, ¢ is integrable (B)
on (c, 4).

(4) There exists a function v: (¢, d) — R such that
(a) lu(d, t)| <v(t) forall e (a,d) and t€(c, 4d),
b) o)) @ A pl+ B, Ipl)
is Lebesgue integrable on (c, 4).

Then the existence of one of the two integrals

Fo= f (fude)dt
T f(fztht)de

entails the existence of the other one, and J = [,

Proof: Suppose that | exists. We shall first establish that the operators B, can be
taken inside the spectral integral, i.e.

7 f( u(d,?) B dFMu)dt (21)

This is an immediate consequence of the assumptions (1) and (2) of the Theorem and
of the following lemma:

Lemma 3: Let F, be the spectral family of the selfadjoint operator A = [ A14F,, and
let #: R — C be an integrable function on the (finite or infinite) interval (a, ) C R
with respect to both of the measures F, y and F, A  for some p € D 4. Suppose the
linear operator B: Dy — H (Dz C W) satisfies the conditions D4 C Dy, and there

exist «, f# = 0 such that for allpe Dy

1Byl <alldpl+ B llyll. (22)
Then Al u(A) B is integrable with respect to the measure F, y and

B fu(z) iF, v :fu(l) BdF,y. (23)
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Proof of Lemma 3: Assume first that (4, b) C R is a finite interval. Let = e P(a, b)
be a partition of (a, b) and write

= Jull) (B~ E, )y

for some y € D4. Evidently if B » denotes the function 4 |— %(4) B, we have

BE,() = Y u(k) B (B, —F, )p=Z,(Bu).

=1
To prove the lemma, we must show that (cf. Property (1) of section 2)

A= IIB/M(A) dF,p— Z,(Bu)| >0 with || =0,

According to the preceding remark this amounts to showing that
b

Juth B p - 2,

a

||B || >0 with|z|>0.

If B were bounded the conclusion would follow trivially. For unbounded B we note
that wye D4 and X (u) € D 4. Next we verify that also fb ) dF, w e D 4. This follows
from the fact that 4 is selfadjoint and hence closed For |m| — O both 2 (#) and

2 u(A;) (Fy; — Fy; _,) A w converge by hypothesis. Hence f A dF,pe Dy

and
b | b
A f u(d) dFyp= [ u(d) dF, Avp. (24)
It follows with (22) that
b

[utny ar,p—2,(

a

and with |z | — 0 both terms on the right tend to zero. Hence s—rlilrgo 2 (B u) exists

A<ad |+ B nf ) dFp— X |l

b
and is equal to B [ u(A) dF, v.

Suppose next that the interval (a, b) is infinite. It suffices to prove the case
(a, 00). Since u is integrable on (a, oo) it is by definition integrable on any finite
interval (a, b) with a < b, and

b o0
s-lim j w(d) dF,p = f u(A) dF 5 .

For any finite & we have shown that

b b
Bfuu) dﬁw=fu(z) BdF,v.
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Hence

Alanfu( dFyyp— f ) BaF =

e e]

According to (24), one has for finite &
b

b b
fu(z) iF,peD4 and Afu(l) dF“p:fu(z) iF, Ay

a

and by hypothesis both expressions converge with b — oco. Since 4 is closed one can
conclude

o

fu(;{) dF,ye D4 and Afu(z) de:fu(z) AF, Ay .

a

Hence, according to (22)

]ou(ﬁ) dFAy)—fbu(;{) aF,y

Since both expressions on the right tend to zero with b — oo, one can conclude that
A, — 0 with & — co. This proves lemma 3.

A1 Sy ”A

00 b
I+ 81l [ ui) aFyp— [u(d) dFypl.

We now continue with the proof of Theorem 3. Suppose first that (a, b) is finite,
and let zy € P(a, b) (N =1, 2,...) be a sequence of partitions of the interval (a, b)
with |7y | — 0 for N — oco. By definition

I = / s-lim fy(t) | dt (25)

N—00

with
Zuth FN—,F,1 )y)

By assumption (3) each fy(¢) is integrable (B) on (¢, d). Hence the proof of the theorem
will be accomplished if we can prove the interchange of the (strong) limit N — oo
with the integral.

In order to do this, we apply the theorem of Lebesgue quoted at the beginning
of Section 2. In order to show its applicability it suffices to show that the functions
fn(?) are uniformly bounded by an integrable function on (¢, d). For every N we have
inequalities (we omit the index N on the right to simplify the notation)

500 = 1B, 3wl ) (Fy,— F,_)
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<o l| Julle, ) (Fyy = F_) Al + B S ulhis ) (Fyy = Fy ) vl (26)

Now, using condition (4a) of the hypotheses, we obtain for any ¢ € H

| 37l ) (B = By ) ¢IP = 3wl )2 |y = Fy, ) 9P <

< o2t) Y I(Fa, — Fy,_ ) @I = o%(t) HZ n— Fi_JelP<

i-1
o3(2) llg P -
After substituting this inequality once with ¢ = 4 g and once with ¢ = y into (26),
we obtain finally
1@ | < v@) (@ (1Al + B; llwl) (27)

and this is integrable (L) by hypothesis (4b). This accomplishes the proof of theorem 3
for finite intervals (a, b).

Two more applications of Lebesgue’s theorem permit us to extend the proof to
infinite intervals. It suffices for instance to consider (a, oo) with finite a.

Let by (N =1, 2, ...) be a sequence a2 < by << 00, by — oo with N — oo and let

JN f(ﬁi(z, t) B,dF, w) dt=be(fdu(A, t) B, dt)de.

c a c

The equality of the two expressions was just proved, since by << co. Thus it suffices
to verify that

d [ oo
s-lim [y —/(fu(}.,t) B,dF, y)dt.

c a

To see this, let
by

Fx () — f u(A, t) B,dF v

a

and let us verify first that Fy(¢) is integrable (B) on (c, ). Now
Fy(f) = s-lliJmOZ'u(l;, t) B, e — E L= s-ll}m0 gN(t)
7T | —> =1 T« == T | —>

Each g () is integrable (B) on (¢, d), according to the hypothesis (3). Furthermore
just as for (27) we have

gz (@) | < o) (x, 14wl + B Il )

since this inequality is independent of the length of the interval (a, by). Applying the
theorem of Lebesgue for the sequence gV (f) with fixed N and || — 0, it follows that
its limit Fy(¢) is also integrable (B). Furthermore

N by
|En() 1l = 1B, [ u(h, ) dFyp ]| a4 [uid, 1) aF, 9]l +
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1/2

+ﬁt||fu(a,t>dr~;w|[=at[f|u(A,t) Pl BA vyl

1/2

by
B [1ud 0 a 1Faple| <o) G 14yl + B lpl)

and this is integrable (L) by hypothesis (4).

Thus Legesgue’s theorem is again applicable for the sequence Fy(¢) with N — oo
and
d

J'=slim Ty :fs-l%im Fult)di=J.

This proves one half of theorem 3. The proof of the other half is similar and will not be
given here since it will not be needed in the following.

We shall also need a slightly different version of theorem 3 which can be proved
in the same way as above:

Theorem 3’:

Let the hypothesis of theorem 3 be true. Then the existence of one of the two
integrals

d b
K=fdtfu(l,t) iF, B,y ,

b d
K’ =f dFlfu(l, {) B,y di
implies the existence of the other one and K = K'.

5. Applications of the Preceeding Results

As we have outlined at the beginning of the preceeding section the passage from
time-dependent to the time-independent scattering theory is accomplished by the
interchange of a Bochner integral with a spectral integral. The conditions for the
validity of this operation were formulated in the hypotheses of theorem 3. It suffices
now to verify that in scattering theory these conditions are verified and theorem 3
will supply us with a rich harvest of basic formulae in the stationary state formalism of
scattering theory.

We denote by R, = (H — 2)~1, R = (H, — 2)~! the two resolvent operators and
we shall use the well known formulae

Ut = /6“w dEg (28)
k [}

V.= [ aE,, (28)
R
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R,= z'feithtdt Imz >0

0

. > (29)
R, = —ifeizt Vit  Imz<0
where EJ is the spectral family for H, and E, the spectral family for H.
Theorem 4:
If (A) is satisfied then
Q= slimis f Ry sy dE} = slim —i e f dE, RS, .. , (30)
R R
Q,=slim—ie Rf Ryyio dE} = slim ie Rf dE, RS_,. . (31)
If (A), (B) and (C) are satisfied, then
Qr = sl — i ¢ / AE) Ry, = slim i f R .. dE,, (32)
R R
Q% — slimie f dE} Ry, = slim — i f R, dE,. (33)
R

Proof: It suffices to prove a typical one of these formulae, for instance (30). By
theorem 0 we have

Q_ =slimQ_,
€0
with
Q_ yp=c¢ fe—et V*U,pdt = sf( Vt*fe_i(’l_ia)‘ dE 'q))dt .
0

o R

The hypotheses of theorem 3 are verified with A = H,, F, = E}, (a,b) =R, (¢, d) =
(0, 00), u(A, t) = exp[—i (A—1i¢)t], B,=V*, v(f) = exp(—et), ¢, =0, B,=1, and
the theorem 3 gives

Q—e Y= ?’.szl—is dEg’!]) -
R

Passing to the limit ¢ — 4 0 gives (30). The proof of the first part of the other formulae
is similar and can be omitted. The second equalities in (30)—(33) can be obtained in
the same way by using theorem 3'.

Theorem 5:

Suppose that conditions (0) and (A) are satisfied. Then

T_].D = S—Eiiril) —RfR;__is V dE‘} == S‘HI}}JdEA |4 Rg+i8 ’ (34)



426 W. O. Amrein, V. Georgescu and J. M. Jauch H.P.A.

T““’D = s‘lif}) _RfRHie V dE; = S'}Si%deA VR, (35)
R
Suppose that conditions (6), (A), (B) and (C) are verified. Then
T* | = s-lim — / dEQV R, ; — s-lsiﬂ / R .. VdE,, (36)
‘D:sllm—deAVRz w_shmfRHdeEA. 37)

Proof: It suffices to prove a typical one of these formulae, for instance (34). We start
with the first of equation (16), and choose a p € D.

gy z'fwf VEV Uy di = ifdt y* er—'i(*~f8>" dEy .
0 0 R
In theorem 3 we now choose A = H,, F, = E3, (a,b) =R, (¢, d) = (0, 00), u(4, t) =
exp[—i (A —1¢)t], B,=V*V. Condition 1 is then satisfied. For condition 2 we
remark that according to (f) and Lemma 1
IV Vyl=1Vyl <«lHopll+ B lyl.

Thus for condition 2 it suffices to choose «, = «, f, = f. Condition 3 is satisfied
because Z—>exp[—1 (A —1¢)f]V,*V @ is strongly continuous and bounded by
exp(—ef) |V ¢|. For condition (4) we put v(¢) = exp(—e ).

Thus theorem 3 applies and we can exchange the integration to obtain the first
part of (34).

For the second part of (34) we must reason differently. Here we have to take
A=H,F,=E,, B,=V U,. From (0) and Lemma 1 we know also that there exist
«, f = 0 such that

WVl <«l[Hyl+ Byl forallyeD.
Thus
yeD=UyeD=[VUypl<a«lHUpl+Blyl.
Using twice again Lemma 1, we have for p € D

|Hpll <o |[Hypll+ 8 llell (@, 5 =0)
and

IHopl <o |Hol+ 8" lgl (", 8" = 0)
so that
IV Uiyl Soa [[Hopl +af Iyl + B llpl <
Sooa” |[Hyl+ [wa f+of + B [yl
Condition 2 of theorem 3 is then satisfied with
a,=oa a”, =o' B"+af + 8.
For condition 3 we note that ¢ — V' U, y is strongly continuous (cf. the last inequality

in the proof of Lemma 3) and |V U,y | < a” ||Hyw| + B” |ly|. Conditions (1) and
(4) are then also satisfied and the second part of (34) follows from theorem 3'.
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Theorem 6:
If (0) and (A) are satisfied then
— 1 A 0 0 __ > 0 0
T_|p = s-lim R/ Ry .V Q_dE} = slim Rf dEYV Q_RY..., (38)
T, |p= slim —RfR2+,.€ VQ, dES = shlﬁRj dESV Q, RY_,, . (39)

Proof: One starts with formulae (20) and uses the same procedure as for the proof of
theorem 5. This accomplishes the proof of theorem 6.

The formulae of the last three theorems constitute the ‘Lippmann-Schwinger’
equations of the stationary scattering theory. In particular the merely formal
equations ‘(16)" and ‘(20)" correspond to (34) and (38) respectively.

Once this correspondence is established one can proceed step by step to transform
the “derivations’ of the formal theory into correct equations. We shall illustrate this

procedure by deriving some standard results for the S- and R-operator (R = S — I)
in the stationary state theory.

6. The Scattering Operator in the Stationary State Theory

We shall now derive certain expressions for the R-operator, where R = S — I
and S = Q* 0, is the scattering operator.

Since both S and R commute with H,, they are operators on the energy shell
only. They can be expressed in terms of the operators V' 22, and 2% V for instance,
by omitting from them all the matrix elements belonging to different values of the
energy. The resulting two operators on the energy shell are then equal and coincide
with the R-operator up to a factor —2 7 7.

This procedure of reducing a given operator to the energy shell is not easy to
formulate correctly since one must somehow produce a §-function with respect to the
energy variable and such a d-function has only meaning as a distribution operating
on a test function space. In many applications, there is no assurance that the matrix
elements are functions from a test function space (unless one specifically postulates
this) and then the formal manipulations can be made rigorous only under very
specific and unphysical hypotheses.

All this is not needed in the spectral integral representation and it is just precisely
at this point where the elegance and power of this technique are most evident.

The d-function is in this formalism replaced by the ‘pinch’-operator I7, =
R)_;.— Rj. ;. whichis diagonal in the spectral representation of H, with the following
diagonal matrix element

27¢
I = —
It is well-known that for ¢ |, O this tends to —2 77 (4 — A). In the spectral integral
form we need not use a representation for the operators in question and the limit is
valid in the strong operator topology (and not as a point-wise limit).

More precisely this is formulated in the following
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Theorem 7:
If the conditions (f) and (A) are satisfied, then
Rip=siiy [ (R, ~ Rl 01V 4B = sl [B 02V (R~ Ri) - o
R

If the conditions (6), (A), (B) and (C) are satisfied then

Rlp=slim [(R) .~ R,.) V Q, dE} = s-lim f dESV 2, (RS_;. — R,i) - (41)
R R
Proof: From the definition S = Q* Q, it follows that

R=S—-I=0*Q, —0Q0)=0* (T . -T).
Using the first part of (34) and (35) we find for p € D

Ry =0 slim [ (R, ;o — Ry ) V dESy.
R

Since £2* is bounded, we can take it inside the limit and the integral. After using
the intertwining relation in the form 2% R, = R? Q¥ we obtain the desired result, the
first part of formula (40):

R|p=slim Rf (RS ;o — R,;) Q* V dEY.

For the second formula (41) we use
R=(Q* -0Q%)Q, = (T* -T*) Q,

and substitute the second part of the expressions (36) and (37). Taking account of the
intertwining relation E, 2, = Q. E} we arrive at the first part of the formula (41).
The proof for the second half of (40) and (41) is similar and need not be given here.
This proves theorem 7.

The equations (40) and (41) express the R-operator in terms of the potential V'
and of the wave operators £;. They correspond to formula (7.40) in reference [6].
Our final result will be the establishment of a formula for the R-operator in terms of
the resolvent R,4;, and the interaction operator. This is the formula (7.41) in
reference [6]. It may be loosely stated as

‘RA) =—2m:(V—-VR,,;0V) ‘(42)’
where R(1) is the operator S — I on the energy shell (not to be confused with the
resolvent operator R; +;,!)

It may be obtained from the first of equation (41) by replacing £2; by its own
spectral integral representation, for instance from the first of equation (35).

This procedure involves two problems of mathematical nature, the first concerns
the reduction of a double spectral integral to a single integral and the second the exact
meaning and validity of a double limit ¢ | 0.

If we carry out the above-mentioned substitution of (35) into (41) we obtain for
allye D
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Ry = S—lirflo (RS s, — RY,i2) V(I — slim f Ry, 0V AE ) dE3y . (43)
"R
Our aim is to transform this expression into
Ry s sl [ (R, = Bpi) (7 =V R V) dELy 42

which is the mathematically precise analogue of the formal expression ‘(42)’.

We shall begin transforming (43) into (42) by first exchanging the limit &, 0
with the spectral integral. The necessary and sufficient condition for this is established
in
Lemma 4: Under the hypothesis of conditions (f), (A), (B) and (C) the necessary and
sufficient condition for the validity for all y € D of

f(Rg—isl— Rg—[-z‘el) 4 [S_l'irfl() R,u+1'e2 Vv dE?;] dEg Y=
R R

= slim [ (R} i, — R}, V( [Ruie ¥ dEf;) dEY (44)
R R
is that for allpe D
(w0
slim [e™ UV (2, — Q) U,+ UV (2, —,)U* pdt=0 (D)

8,10

where
0

.QE_—_sfe“ VEUdt  (e>0).
—00
Proof of Lemma 4: We observe first that, by virtue of (35), equation (44) is equivalent
to

€g

S'hlil (Rg—iel "— Rg.—}—'ial) V (‘Q+ - ng) dEg Y= 0. (45)
R

To establish (45), we show that the left-hand side can be transformed into an integral

over ¢ with the help of the formula
=00

fRZiw V(Q.—Q)dBy =i [FHUY (2, - Q) Uty . (46)

0

This formula is obtained from theorem 3 by writing its right-hand side as
400

i [eF UV (Q,— Q) Ury d

@
F oo
— i f FRUV (R, — 962)( f ¢ dE? y)) dt . (47)

0 R

The applicability of theorem 3 depends on the following property
IV (@2, =2 ) vl <alHoyl + 8 llpll, ypeD;a,f=0. (48)
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This inequality can be verified by noticing that the condition (f) implies that
(i) yeD=2Q2,yeD,
@ WVl <M(Hyl + llpl)

with M independent of &.

The inequality (48) implies also the existence of the integral in (47).
Inserting (46) into (45) leads to

oo

slim [ e [U*V (Q, —Q,) U+ U,V (2, —Q,) U¥|pdt =0 (D)

Sz\!(o

0
and this proves the lemma 4.

The second step in transforming (43) is the reduction of the double spectral
integral to a single spectral integral. For this we need the formula

fR;iwl (fRHm VdE‘;)dqu)

/.Rﬁize VR,V dEZy . (49)
This formula is obtained with the help of

Lemma 5: Let H be a separable Hilbert space and F, a spectral family of projection
operators. Suppose further that #(1) and v(4) are two bounded operator valued
functions u: (@, b) — B(H), v: R — B(H) where (a, b)) C R may be finite or infinite,
such that

1 7 f ( f dF)dFW (50)

exists for y € .
(2) on any finite interval K C (a, b)

(a) sup [|u(d)[| = M(K) < oo,
AeK

(b) there exist L(K) < oo and «(K) > 1/2 such that for all 4, u € K:
[0(3) — v(w) || < L(K) |2 — p|**.

Then

J = f A)aF,y
exists and

J=17.

Proof of Lemma 5: It suffices to prove the lemma 5 for finite intervals (a, b). For
infinite intervals we take the limit either @ —> — oo or b — -+ o0 or both and since this
limit exists for J it exists also for /' and is equal to it.
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We have from the definition of the spectral integral

J=s- Ihlmozu (f dF )FAHP (51)
R
where

n={a=2A <A < <A, =0},
Since

i

[ dE, (B ~E, )= [v(u) dE,y,
L

R
we obtain for (51)

2,
= s- lim u) dF,
]u[—>02 L
A1
We would like to show that this is equal to
— s—[hlmOZM 1) Fyp

or equivalently that

A,
s-lim [ () [olp) B,y — Zu(k) o) By
= i-1
We shall estimate the norm of the left by

A,
_HZM

f ) dF,p— v(A) Eay

Az—l

< 3 / «Z(z;) olp) — o(2)] dE, pll = 375,

Let w,(4) = u(u) [v( ) v(u)]. It follows that
l2,(A) — w,(A) | = [le(pe) [0(4) — v(Ae) [| <
< lu(@) [Hv(d) — v@dg) | < M L 2y — A |”

l
<

| <

and
o, @A) | < Nlw() | @) — v(@) | < M L |2 — pl]*
where L is defined as L(K) for K = (a, b), and similarly for M and «.

We can now apply a theorem of Birman and Solomjak (cf. reference [4]) which
gives the following estimate for S;:

i 2 G
Si=1 [0 () dFpl < | L (= B+ ML= 220°| 1Buwl.
hi 1
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Consequently

%, <const. }'(A; — A;_y)* | Ey vl
=1

< const. sup {(4; — A;_y)* 12} 3 (4, — A, )2 || Ey; p |
1<i<n =1

" 2 [ 12
< const. | |*12 (2[(11 — A1) 1"212) (Z 14 v ||2)
i-1 i=1
< const. |7 |* 12 (b — a)12 ||y |2
where the third inequality is obtained by applying the inequality of Schwarz.
It follows that «, converges to zero with || — 0, and thus lemma 5 is proved.

Equation (49) is easily obtained from lemma 5 by setting #(d) = R}, ;. V,
v(A) = R; ;. V and by noticing that

[ Riyie,V— R, i, VI <const. [A—pul.

We collect the result in

Theorem 8:
If (6), (A), (B), (C) and in addition condition (D) are satisfied, then for ally e D

Rw=sg%SE%R(@4a—RL%

) (V =V Ry, V) dE;y . (42)

This equation represents the translation of the heuristic formula ‘(42)’ into a
meaningful mathematical expression.

The condition for its validity is the additional property (D). We do not know
whether (D) is an independent condition or whether it can be derived from the others,
in particular from (f) and (A). We have only some minor results in this direction
which we give as

Theorem 9:
(a) If (6) and (A) are satisfied and if in addition s-lim V 2, y with ¢ |, 0 exists for all
w € D, then condition (D) is satisfied.

(b) If (0), (A) and (B) are satisfied and V RY is compact for some non-real z, then
condition (D) is also satisfied.

The condition that ¥V R be compact for non-real z is verified for a large class of
local potentials for the Schrédinger operator Hy = —A/(2 m)[19].
Proof:

(a) The vectors (24 — £2,) U, belong to D for p € D and converge strongly to zero
with ¢ |, 0. From the hypothesis it follows that V' (24 — 2,) U, v tends to a limit with
¢ 0. Since V is symmetric, this limit is zero.

By applying (48), one obtains
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le™* UV (2, — 2,) Upll < e (a [How |l + B lIpl) -
Since this is integrable, Lebesgue’s theorem (cf. section 2) applies and gives

oo

s-lim [ e™™U*V (2, —Q,)Updi=0.

sz‘LO
0

The second integral of (D) is shown to be zero in a similar way. This proves part (a)
of the theorem.

(b) Let e D. Using first condition (0) and then lemma 1, one gets

WV*Uyl <alHUypl+ Byl <o [Howl + B il

Thus V V,* U, p is uniformly bounded. We shall also see that it converges strongly as
! — — oo. It then follows that
0

te=e [V VX Uyadt
converges strongly as ¢ | 0 (see for instance lemma 6 of reference [13]). But since V is
symmetric (i.e. ¥V C V* and V* is closed), one has y, = V 2, y. Hence, according to
part (a), condition (D) is satisfied.

To show the strong convergence of V V;* U, v, we notice that (V,*U,— 2,)yeD.
Hence condition (f) implies

WU -Q)pl <« |HVFU-2)pll+ 81U —-2)vl.
The second term on the right-hand side converges to zero with £ - — oo as a conse-
quence of (A). For the first term we write

IH VAU, —Q2)pll=IH,+ V) Uy — V,HQ, 9l =

=H, Uy — V,Q, Hyp + V Up|| < (V¥ U, — Q,) Hypll +

+ IV R U, (Hy— 2) -
In the last member of this inequality, the first term converges to zero because of (A).
The second term also converges to zero because V' R is compact by hypothesis and
because U, (H, — 2) w converges weakly to zero with { — — co as a consequence of
condition (B).

Thus we have shown that

s-lim VV*Up=V0_ p

f——o00

and this completes the proof of theorem 9.

7. Conclusion and Final Remarks

We conclude with a few remarks on the significance of the stationary state
formalism for possible future generalisations of scattering theory.

It is by now generally known that condition (A), which is the basis for the time-
dependent scattering theory, is too strong a condition, since it excludes some physi-



434 W. O. Amrein, V. Georgescu and J. M. Jauch H.P. A,

cally important cases. For instance the Coulomb potential does not satisfy condition
(A).

The Coulomb case is a mild example of the persistence of interactions at ¢ — -+ co.

Much stronger examples of this kind are known from field theoretic models of
scattering systems.

It is suggestive to remark that we have nof shown the equivalence of the stationary
formalism and the time-dependent one, we have only shown that the former can be
derived from the latter. It seems not impossible that the formulae for stationary
scattering theory, suitable generalized, can be the starting point of a scattering theory
which is adequate on the other side of the Coulomb barrier and may lead to a theory
of scattering with dressing transformations [20, 21]. The results so far obtained along
this line are promising and they will be the object of a future communication.
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