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Zur magnetischen Diffusion in Zylindergeometrie

von Fritz Herlach

Illinois Institute of Technology, Department of Physics, Chicago, 111. 60616

(13. XL 70)

Abstract. The diffusion of magnetic flux in conductors is discussed with a view to cylindrically
imploding megagauss generators. Simple analytical expressions are developed which are adequate
for a precise analysis of most experiments. It is shown that in many cases a suitable plane approximation

can be used instead of the exact cylindrical solution. For the field at the surface of the
conductor, an exponential field rise is assumed. Deviations from this in actual experiments are
treated by a superposition of the basic exponential solutions. The change of the resistivity due to
Joule heating is discussed in terms of Bryant's solution of the nonlinear diffusion equation. The
concept of the flux diffusion speed is developed, and it is shown that the diffusion of magnetic flux
into the conductor depends essentially on the resistivity at the surface. The partition of the energy
flow into magnetic and Joule energy is analyzed, and a differential equation is derived which
governs field distributions with equipartition between these energies. Applications are discussed
and practical examples are given.

1. Einleitung

Magnetfelder von der Grössenordnung Megagauss können zurzeit nur in Form
sehr schnell ansteigender Impulse erzeugt werden [1]. Dabei treten in elektrisch
leitenden Materialien magnetische Diffusionserscheinungen auf, die den Gang der

Experimente wesentlich beeinflussen. In einem Flusskompressionsexperiment [2]
wird dies zur Felderzeugung ausgenützt : magnetischer Fluss kann durch mechanische
Deformation eines geschlossenen Leiterkreises komprimiert werden, wenn die

Kompression schneller erfolgt als der Fluss nach aussen diffundiert. Die höchsten
Felder erhält man in einer zylindersymmetrischen Anordnung durch Kompression
eines metallischen Hohlzylinders mittels Sprengstoff.

Bezeichnen wir mit r{ den Innenradius des Zylinders, mit Hi das komprimierte
Feld und mit (f>t den vom Kreis mit Radius rt eingeschlossenen Fluss, so gilt für die

Feldverstärkung von einem beliebig gewählten Anfangszustand, den wir mit dem
Index 0 bezeichnen:

Hio \ ri I <f>io

Entsprechend zerfällt die theoretische Behandlung der Flusskompression in zwei
Teile: Dynamik und Diffusion.
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Die Dynamik umfasst die anfängliche Beschleunigung des Zylinders, die
Geschwindigkeitszunahme der Innenfläche infolge der Konvergenz, die Abbremsung
durch den magnetischen Druck und die Beschränkung der Energieübertragung durch
die endliche Schallgeschwindigkeit im Zylindermaterial [3, 4]. Das höchste Feld, das
mit einer gegebenen Versuchseinrichtung erzielt werden kann [5], ist durch eine
Gleichgewichtsbedingung zwischen Dynamik und Diffusion bestimmt: die
Feldverstärkung hört auf, wenn die Geschwindigkeit der Innenfläche kleiner wird als
diejenige Geschwindigkeit, mit der der Fluss in das Zylindermaterial hineinströmt.

Die Diffusion bestimmt dahingegen den Radius, bei dem dies eintritt, im
Verhältnis zum anfänglich eingeschlossenen Fluss. In der Praxis ist dies ebenso wichtig
wie die absolute Begrenzung durch die Dynamik, weil für praktische Zwecke das Endfeld

in einem bestimmten Volumen benötigt wird, und weil die Erzeugung des Anfangsflusses

einen beträchtlichen technischen Aufwand erfordert.

2. Diffusion und Flussverlust

Der Flussverlust kann direkt aus dem Induktionsgesetz und dem Ohmschen
Gesetz berechnet werden. Er ist deshalb unabhängig vom Koordinatensystem und
dessen Bewegungszustand, solange die Geschwindigkeiten gegenüber der
Lichtgeschwindigkeit klein sind. Bezeichnen wir mit E das elektrische Feld, mit q den
spezifischen Widerstand und mit i die Stromdichte, so gilt für den magnetischen Fluss
innerhalb jeder zylindrischen Strombahn

1 dé dHr=£=,e. e__ (2)
2 ti r dt e e dr

d.h. der Flussverlust ist von der Feldverteilung im Metall abhängig. Insbesondere
verknüpft Gleichung (2) défit mit der Stromdichte am Innenradius. Die Differentialgleichung

für die Feld- und Stromverteilung folgt aus den Maxwellschen Gleichungen
für quasistationäre Vorgänge (MKS-Einheiten, pt0 4 n ¦ 10-1 Vs/Am) :

dH 1 d dH
— —- — n r —r— ¦ (3)
dt pt0r dr^dr

Die Lösung dieser Gleichung wird dadurch erschwert, dass der spezifische Widerstand

infolge der Jouleschen Erwärmung des Metalls ansteigt und deshalb zeit- und
ortsabhängig wird. Eine vollständige numerische Lösung von Gleichung (3), kombiniert
mit den hydrodynamischen Differentialgleichungen, ist von Kidder [7] und Steinberg
[8] ausgearbeitet worden. Somon [6] gibt eine vereinfachte numerische Lösung für
konstante Geschwindigkeit der Innenfläche eines unendlich dicken Zylinders. Der
Hauptnachteil der numerischen Methoden besteht darin, dass jede einzelne Lösung für
einen gegebenen Parametersatz ganz durchgerechnet werden muss, und dass dies
einen grossen Rechenaufwand erfordert. Eine analytische Näherungslösung ist nicht
nur numerisch einfacher zu handhaben, sie hat auch den zusätzlichen Vorteil, dass sie
einen Einblick in das Zusammenwirken der verschiedenen Prozesse geben kann, die
den Ablauf des Experiments bestimmen. Die meisten bisherigen Arbeiten in dieser
Richtung nehmen eine konstante Stromverteilung an, in einer Schicht, die an der
Innenfläche des Zylinders anliegt und deren Dicke a in Anlehnung an den Skineffekt
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abgeschätzt wird [9-11]. Eine Ausnahme bildet die Arbeit von Paton und Miliar [12],
in der das Diffusionsproblem für ebene Geometrie und konstante
Kompressionsgeschwindigkeit mit Hilfe von Laplace-Transformationen gelöst wird.

Ausser der bekannten Lösung von Gleichung (3) für die Sinusschwingung gibt es

noch eine einfache Lösung für den leitenden Halbraum und einen exponentiellen
Feldanstieg bei ortsunabhängiger Leitfähigkeit:

QH(t, x) H0 evt e- «'« a 1/ - £_ (4)
r ßov

x ist die von der Grenzfläche aus gemessene Lagekoordinate, die zugehörige
Differentialgleichung lautet

dH q d2H
_ _£_ _ (3')

dt pt0 dx2

Die vereinfachende Annahme der konstanten Stromdichte ist gar nicht nötig; die

Lösung (4) lässt sich vollständig durchrechnen [13] und ergibt für den Flussverlust

dé, 2 n r, g / a \
dt al \ 2rJ w

Hierbei wurde der Zylinder als ebene Platte der Breite 2 n (rt + a/2) angenähert.
I ist die axiale Länge des Zylinders, I der Gesamtstrom und Ra der Widerstand einer
Schicht der Dicke a. Der teilweise Erfolg der vereinfachten Rechnung mit homogener
Stromverteilung ist dem Zufall zuzuschreiben, dass diese in der Tat den gleichen
Flussverlust ergibt wie die korrekte Lösung (4). Für die Joulesche Erwärmung und die

magnetische Energie führt die Annahme konstanter Stromdichte jedoch zu einem
falschen Ergebnis.

Eine zu (4) analoge Lösung für eine endlich dicke Platte lässt sich ebenfalls
vollständig entwickeln und ist mit Erfolg zur Auswertung von Kompressionsexperimenten
verwendet worden [13]. Erfreulicherweise ist in den meisten Experimenten der
Feldanstieg annähernd exponentiell; den Abweichungen von der exponentiellen Form
kann man bei der punktweisen Auswertung dadurch Rechnung tragen, dass für jeden
Messpunkt

1 dH
v 6

H dt
K '

neu bestimmt wird. Der Erfolg dieser Näherung hängt davon ab, wie schnell und wie

gut sich die Feldverteilung im Metall nach einer Änderung von v an die gerechnete
Lösung anpassen wird. Hierzu betrachten wir die natürliche Ausbreitungsgeschwindigkeit

einer exponentiellen Verteilung,

f i"0
Vf= av -^=y^ • (7)

fin a y fi0

Für das Zeitintervall, in dem die neue Lösung die vorangehende etwa überdecken
wird, folgt At a/vf lfv.

Die Geschwindigkeit y ist zugleich das exakte Mass für das Einströmen des

magnetischen Flusses in das Leitermaterial, vergleiche (7) und (4) :
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1 d<f>i

dt
(8)

Für die Flussdiffusionsgeschwindigkeit in Zylindergeometrie folgt daraus, in der zu
(5) analogen Näherung,

M
pin a \

1 + — (7')

Diese einfachen Formeln werden dann ungültig, wenn die Ausdehnungsgeschwindigkeit
der nach (4) berechneten Eindringtiefe a mit der Diffusionsgeschwindigkeit

unvergleichbar wird. Dieser Fall tritt gegen Ende des Experimentes ein, wenn die
Innenfläche des Zylinders durch den magnetischen Druck abgebremst wird und
dHjdt gegen Null strebt. Der Lösung (4) wird dadurch die stützende Randbedingung
entzogen; die Feldverteilung wird dann frei weiterlaufen und sich allmählich an die
aus der Theorie der Wärmeleitung bekannte Form

tf

Po **
' iQ t

anpassen.

rsef

jisec

Figur 1

Feldanstieg und Flussdiffusionsgeschwindigkeit für ein Flusskompressions-Experiment mit
langsamer Implosion [22]. Die Zeitskala ist vom Beginn der Implosion gemessen. Die linke Skala gilt
für v 1/7/ dHjdt; die Kreise sind Messpunkte vom Experiment, die durchgezogene Kurve ist die
Anpassung gemäss Gleichung (9). Die hieraus berechnete Flussdiffusionsgeschwindigkeit ist in
Einheiten von iy0 |/g0 v0lfin aufgetragen, mit v0 — 2 • IO5 sec-1 (rechte Skala). Die gestrichelte
Kurve gibt die Flussdiffusionsgeschwindigkeit bei Vernachlässigung der Korrektur für die
Zeitabhängigkeit von v, d.h. vf ]/g0W/V

Dieser Übergangsprozess ist in mathematischer Strenge schwierig zu erfassen.
In vielen Fällen kann jedoch der zeitliche Verlauf des Magnetfeldes durch eine Summe

von Exponentialfunktionen, z.B.

H H0 (e** + ôx S* - ô2 ev4) - (9)

in guter Annäherung beschrieben werden. Die Parameter vk und ök bestimmt man mit
Vorteil in einem v(tf)-Diagramm, z. B. mit einer elektronischen Tischrechenmaschine
(Hewlett Packard 9100 A usw.) mit Kurvenschreiber. Die zu (9) gehörige Lösung lässt
sich als Superposition von Lösungen (4) ohne Schwierigkeiten berechnen. In Figur 1
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und 2 zeigen wir Beispiele der Anpassung an experimentelle Daten. Im Hinblick auf
die Variation von v stellen die beiden Experimente Grenzfälle dar. Der ohnehin nicht
grosse Unterschied zwischen der vereinfachten Lösung (4) und der genaueren Lösung
(9) wird bei den meisten Experimenten noch geringer sein als in diesen Beispielen.
Im Einklang mit der Vorstellung der in das Metall hineinlaufenden Feldverteilung
bleibt die Diffusionsgeschwindigkeit der genaueren Lösung zeitlich hinter der
einfachen Näherungslösung (7) um einen kleinen Betrag zurück. Diese kleine
Zeitverschiebung hat erst kurz vor der Feldumkehr eine grössere Abweichung in der
Diffusionsgeschwindigkeit zur Folge, nämlich wenn dvjdt sehr gross wird.

1

1

sF~\

¦

„y>^ / IM

^-=^" /o y "

^r o
1

3^ i

- G^"-106Sec-'
-

1 1

7 9 10 11 psec

Figur 2

Feldanstieg und Flussdiffusionsgeschwindigkeit in einem Experiment mit schneller Implosion
(Nr. 4 in Ref. [13]). Die Bezeichnungen sind die Gleichen wie in Figur 1.

3. Exakte Lösung mit Besselfunktionen

Für einen exponentiellen Feldanstieg und konstante Leitfähigkeit wird Gleichung
(3) durch die modifizierten (hyperbolischen) Besselfunktionen A0(r/a) und Ifrfa) [14]
gelöst: für den unendlich ausgedehnten Hohlzylinder mit Innenradius r{,

„rt K0{r/a)
H(r, tf) H0e* r ^ r,

Kn(rfa)
:

und für den Hohlzylinder endlicher Wandstärke mit Aussenradius ra

K0(rla) In(r/a)
H(r, tf) H0ert

mit

A

K0(rja)

Ko(rJa) I0(r,la)

h(rja)
A r„ > r > r-

K0(rja) I0(rja)
Für den Flussverlust folgt hieraus, gemäss Gleichung (2) und (8),

v
Q Kx(rja)

f /*oa Ko(rtla)

und, für einen Zylinder endlicher Wandstärke,

(10)

(H)

(12)
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_JL_ {*»('/«> _ Ii(rla))A
Vo <*¦ {K0(rja) I0(rja) j

Die Abweichung der Näherungslösung (7') von der exakten Lösung (12) ist in Tabelle I
dargestellt. Die Näherungslösung ergibt einen grösseren Flussverlust als die exakte
Lösung; der Unterschied ist jedoch so klein, dass in den meisten praktischen Fällen
die Anwendung der Näherungslösung voll gerechtfertigt ist. Für Zylinder endlicher
Wandstärke sind die Abweichungen naturgemäss noch kleiner.

Tabelle 1

Korrekturfaktoren für die exponentielle Lösung in Zylindergeometrie

rja (1+ aßr) KfKn (KfKnY 0CK FFo (FlhY 0C7

0,1 6,0 4,0600 16,484 4,066 0,0499 0,0025 0,0010
0,2 3,50 2,7249 7,4252 3,188 0,0995 0,0099 0,0045
0,5 2,00 1,7919 3,2108 2,235 0,2425 0,0588 0,0294
1 1,50 1,4296 2,0438 1,738 0,4464 0,1993 0,113
2 1,25 1,2280 1,5081 1,417 0,6978 0,4869 0,358
5 1,10 1,0958 1,2007 1,184 0,8934 0,7981 0,770

10 1,05 1,0489 1,1001 1,096 0,9486 0,8998 0,894
20 1,025 1,0247 1,0500 1,049 0,9747 0,9500 0,949
50 1,01 1,0100 1,0200 1,020 0,9900 0,9800 0,980
-CO 1 1 1 1 1 1 1

4. Joulesche Erwärmung und Energieströmung

Aus einem Koeffizientenvergleich der Diffusionsgleichung (3) mit der
Wärmeleitungsgleichung folgt, dass die Wärmeleitung im Verhältnis zur Geschwindigkeit der

magnetischen Diffusion vernachlässigt werden kann. Für die Erwärmung des leitenden

Materials können wir daher schreiben

wj= [ gi2dt= f Sd&~S& (14)

ê ist die Temperaturerhöhung und S die spezifische Wärme pro Volumeneinheit,

wj ist die Joulesche Energiedichte. Solange das Feld ansteigt, strömt elektromagnetische

Energie in das leitende Material hinein. Aus der Energieströmung
(Poynting-Vektor)

ÙH
\E.xï\\=QH- — =vfpinH2 (15)

berechnet sich die Zunahme der Energiedichte w in ebener Geometrie wie folgt:
dw d TTdH /dH\2 T

d dH dwj dwH

dt =^xqH dx=Q\-dx) +H^S dx ^r+~df (16)

An Hand dieser Gleichung kann man die Aufteilung der Energie in Joulesche Wärme
(1. Term) und magnetische Energie (2. Term) verfolgen. Insbesondere erhellt aus dem
2. Term, dass bei konstanter Leitfähigkeit die Zunahme der magnetischen Energiedichte

zur zweiten Ableitung der Feldverteilung proportional ist. Hieraus geht
eindeutig hervor, dass eine homogene Stromverteilung nur im Zusammenhang mit
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statischen Feldern existieren kann, mit einer Feldänderung ist sie prinzipiell
unvereinbar. Für die exponentielle Feldverteilung (4) folgt aus (16) Gleichverteilung
zwischen Joulescher Wärme und magnetischer Energie:

Exakte Gleichverteilung, wie sie bei der exponentiellen Feldverteilung im leitenden
Halbraum vorliegt, ist ein Ausnahmefall. Meistens liegt Gleichverteilung jedoch
annähernd vor [12], so lange die Leiterdimension in Richtung der Felddiffusion im
Verhältnis zur Eindringtiefe gross ist. Wenn die Leiterdicke mit der Eindringtiefe
vergleichbar wird, verschiebt sich die Verteilung zu Gunsten der thermischen Energie
beim einseitig ans Feld grenzenden Leiter [13] und zu Gunsten der magnetischen
Energie beim ins Feld eingebetteten Leiter. Abweichungen vom exponentiellen
Feldanstieg haben auch eine Störung der Gleichverteilung zur Folge; diese kann ebenfalls
mit Hilfe von (9) näherungsweise berechnet werden.

Beim Übergang zu Zylindergeometrie ändert sich in (16) nur der Term für die

magnetische Energie:

^fr__H d_ rdH_Q *fr/«) ff2y (m~

dt~~~r ~dr er dr~ a2 A2(r» ° ' l '

dwj_ KKrfa)
_ q_ K\(r\a)

dt ~FoV KKrfa) - a2 KfrM * ' '

Gleichverteilung wird für grosse rja annähernd erreicht, da für rja -> oo die
Funktionen Aj und A0 gegen den gleichen Grenzwert streben. Die Abweichung von der
Gleichverteilung beschreiben wir in Anlehnung an Lewin und Smith [9] durch einen

(zeitunabhängigen) Faktor a:

« — - Sftr • ^wH K-(rja)
Dieser Faktor gilt für die Energiedichte; einen Verteilungsfaktor für die Gesamtenergie

erhält man durch Integration:

f K" -)d(~)a / \ et ]

Kl | \d

wjdV

WßdV

Ufa

Numerische Beispiele sind der Tabelle I beigefügt. Im Hinblick auf experimentelle
Fehlergrenzen und anderweitige Unsicherheiten lässt sich in der Tat in den meisten
praktischen Fällen die Anwendung der ebenen Näherung rechtfertigen.

Zur Berechnung der Dynamik aus der Energiebilanz braucht man nur die

Gesamtenergie zu kennen, die in den Leiter einströmt. Diese ist durch Gleichung (15)

gegeben und kann vorteilhaft durch die Diffusionsgeschwindigkeit y ausgedrückt
werden. Für die Summe Wl der magnetischen und Jouleschen Energie im
Leitermaterial folgt aus (15) :



Vol. 44, 1971 Zur magnetischen Diffusion in Zylindergeometrie 315

dWr Vf „ 1

^ 4 ,f^' Wi=^^-fnH]. (21)

Durch Differenzieren von Wi und (1) nach der Zeit folgt
dW, W, l 1 \

Die Gesamtenergie W, die vom implodierenden Zylinder an das Magnetfeld und die
damit verbundene Joulesche Erwärmung abgegeben wird, folgt dann aus der
einfachen und nützlichen Beziehung

dW W,

dt-2v'r:- ™
Es ist bemerkenswert, dass die Zunahme der gesamten Energie von der
Diffusionsgeschwindigkeit und somit von der Leitfähigkeit des Zylindermaterials nicht explizit
abhängig ist.

5. Einfluss der temperaturabhängigen Leitfähigkeit
Bei Gleichverteilung zwischen thermischer und magnetischer Energiedichte gilt

eine einfache Faustregel für die Erwärmung des Leitermaterials:

- ~ 1000°C/MG2.
H2

Im Megagaussgebiet wird demnach die Temperatur so stark ansteigen, dass die
Temperaturabhängigkeit der Leitfähigkeit in keinem Fall ganz vernachlässigt werden
kann. Für die meisten Metalle lässt sich der spezifische Widerstand zwischen
Zimmertemperatur und Schmelzpunkt durch die folgende Näherung beschreiben:

Q Qo (1 + kff) (24)

Beim Übergang in den flüssigen Zustand springt der Widerstand auf den etwa
doppelten Wert. Da die Schmelzwärme einem Sprung in der thermischen Energie
entspricht, erhält man eine weit über den Schmelzpunkt hinaus gültige Näherungsformel,
indem man den spezifischen Widerstand als Funktion der thermischen Energiedichte
ansetzt :

Qn S \HJ C \ ftnk
Bei Gleichverteilung ist a 1, siehe (20). Alle Konstanten sind im «charakteristischen
Feld» Hc zusammengefasst [9].

Bryant [15] hat für die spezielle Form (25) des spezifischen Widerstandes mit
a 1 eine analytische Lösung von Gleichung (3) in ebener Geometrie abgeleitet:

H e™") H0 ev°' tr*- a0 l/ £» - • (26)

Sie folgt durch direkte Integration aus der Bedingung, dass die Diffusionsgeschwindigkeit

vf= a0v0 konstant bleiben soll. Dies setzt eine sehr spezielle Form des
Feldanstieges voraus, gemäss
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1 dH, go^o

Q

(27)
H, dt l + (HfHc)2

Von Experimenten wird diese Bedingung im Allgemeinen nicht erfüllt, vgl. Figur 1

und 2 mit Figur 3. Eine Anpassung an Experimente durch Superposition von
Lösungen (26) ist wegen der durch q eingeführten Nichtlinearität leider nicht möglich.

0 1 2 3 5-2 -1

Figur 3

Die Zeitabhängigkeit verschiedener Parameter der Bryantschen Lösung, Gleichungen (26) und
(27), aufgetragen über der Ordinate v0 t. Die gestrichelte Kurve ist die entsprechende Exponentialfunktion

zum Vergleich.

Die Bryantsche Lösung hat jedoch interessante Eigenschaften, die eine nähere
Untersuchung der Mühe Wert machen. Sie lässt sich ohne weiteres differenzieren und
erfüllt die Bedingung (16), d.h. es besteht exakte Gleichverteilung und der Ansatz (25)
mit a 1 ist damit nachträglich voll gerechtfertigt. Die Feldverteilung H(x) ist,
abgesehen vom Masstab, ein Spiegelbild der Funktion H(t) und behält beim Fortschreiten

ins Metall ihre Form bei. (Da H als Funktion von tf durch Gleichung (26) nicht
explizit gegeben ist, muss man zur numerischen Behandlung tf als Funktion von H
ausrechnen.) Wir wollen nun die Flussdiffusionsgeschwindigkeit näher betrachten.
Vorausschickend sei bemerkt, dass die einfache Lösung (4) auch für zeitabhängiges g
gültig ist (a wird dann zeitabhängig), so lange q ortsunabhängig bleibt. Wir können
z.B. (26) und (4) vergleichen, indem wir den speziellen Widerstand in (4) im ganzen
Leiter demjenigen an der Innenfläche in (26) gleichsetzen. In der direkten Näherung
ergeben beide Lösungen dann die gleiche Flussdiffusionsgeschwindigkeit; da (26)
jedoch den speziellen Feldanstieg (27) voraussetzt, müssen wir zum genaueren
Vergleich in (4) die Korrektur für die Variation von v anbringen. Mit Hilfe von (9) lässt
sich diese im Bereich H < Hc annähernd berechnen. Wie zu erwarten, ergibt die
Annahme q(x) gt einen grösseren Flussverlust, die Abweichung geht bei H ~ 0,9 Hc
durch ein Maximum und bleibt immer kleiner als 5%. Die Flussdiffusionsgeschwindigkeit

ist somit im Wesentlichen durch den spezifischen Widerstand an der Innenfläche

des Leiters bestimmt.

In einer früheren Arbeit des Autors [13] war zur Bestimmung des Flussverlustes
ein gewogener Mittelwert des Widerstandes verwendet worden. Im Lichte der
vorangegangenen Diskussion ist dies keine gute Näherung. Die numerischen Resultate in
dieser speziellen Arbeit werden hiervon jedoch nur wenig berührt: Einerseits ist der
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spezifische Widerstand von rostfreiem Stahl nach oben beschränkt und H bleibt
deshalb immer kleiner als Hc, und ausserdem ergibt die Annahme des gemittelten
Widerstandes unter diesen Umständen eine Korrektur, die grössenordnungsmässig mit
derjenigen für die Variation von v übereinstimmt.

6. Anwendungen und Schlussbetrachtung

Zur Auswertung eines Flusskompressionsexperimentes wird man von der Lösung
(4) als Basis ausgehen und dann nach Bedarf die verschiedenen Korrekturfaktoren
anbringen: für endliche Wandstärke des Leiters, für die Abweichung vom exponentiellen

Feldanstieg, für die Ortsabhängigkeit des spezifischen Widerstandes und für
die Zylindergeometrie. Die Überlagerung der verschiedenen Korrekturen ist dadurch

gerechtfertigt, dass jede einzelne Korrektur relativ klein ist. Mit dieser einfachen

Methode ist es möglich, den Flussverlust und die Erwärmung des Leitermaterials mit
einer Genauigkeit auszurechnen, die der erreichbaren Messgenauigkeit von einigen
Prozent durchaus angemessen ist.

Der Flussverlust kann aus dem gemessenen Magnetfeld und dessen Ableitung
(die mit induktiven Sonden direkt messbar ist) berechnet werden; der innere Radius

folgt dann aus dem Feld und dem berechneten Fluss. Da der Flussverlust auch vom
Radius abhängt, kann diese Rechnung nicht direkt ausgeführt werden. Man muss den

Radius zunächst extrapolieren; die korrekten Werte erhält man dann durch wechselweise

Berechnung von Radius und Fluss in rascher Konvergenz [13].

Bei der Diskussion der Bryantschen Lösung haben wir gezeigt, dass der spezifische
Widerstand an der Innenfläche des Leiters für den Flussverlust in erster Linie
massgebend ist. Wir müssen somit nur die Temperatur an der Innenfläche berechnen;
diese ist gemäss (2) direkt mit dem Flussverlust verknüpft. Die magnetische
Widerstandsänderung wird - bei Gültigkeit der Kohlerschen Regel - bei den hohen

Temperaturen vernachlässigbar sein; jedoch kann der magnetische Druck den Widerstand

um einen beträchtlichen Faktor (~2-^5) vermindern. Die Druckabhängigkeit des

spezifischen Widerstandes ist eine Funktion der Temperatur [16], die für hohe

Temperaturen noch nicht gemessen worden ist. Ausserdem ist zu bedenken, dass die

Erwärmung in einer sehr kurzen Zeitspanne stattfindet. Im Hinblick auf die Natur
des Schmelz- und Verdampfungsvorganges ist anzunehmen, dass das Leitermaterial
eine Zeitlang im überhitzten Zustand verbleiben wird; entsprechend wird der spezifische

Widerstand hinter dem «normalen» Wert zurückbleiben.

Bei gleichzeitiger Kenntnis von Radius und Feld könnte der spezifische Widerstand

als einzige zurückbleibende Unbekannte aus dem Flusskompressionsexperiment
selbst bestimmt werden. Die erreichbare Genauigkeit und Sicherheit der Interpretation

von optischen Messungen [17, 18] ist jedoch bei weitem nicht ausreichend zu
einer experimentellen Bestimmung des Flussverlustes. Es bleibt die Möglichkeit, den

Radius aus der Dynamik des implodierenden Zylinders zu berechnen. Mit Integration
von (23) kann man die Energiebilanz zwischen der kinetischen Energie des implodierenden

Zylinders und der gesamten abgegebenen Energie aufstellen; r,- folgt dann
durch Integration aus der Geschwindigkeit. Dies setzt voraus, dass der Zylinder als
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Ganzes abgebremst wird, d.h. dass das Zylindermaterial inkompressibel ist. Diese

Bedingung ist in der Tat über einen grossen Teil der Kompression (etwa die ersten drei
Viertel) erfüllt. Dieser erste Teil der Implosion ist aber gewissermassen trivial, da

praktisch keine Energieübertragung stattfindet. Erst ganz am Ende des Experimentes
nimmt die Energieübertragung sehr rasch zu und wird dann ganz von der Kompressibilität

dominiert: nur die Innenfläche des Zylinders wird abgebremst, ein beträchtlicher

Energieanteil geht in Kompressionsenergie über, und es wird sich im Zylindermaterial

eine Schockwelle bilden. Dieser komplizierte Prozess unterliegt partiellen
Differentialgleichungen vom hyperbolischen Typ, deren Lösung einen grossen
Rechenaufwand erfordert [4]. In einer früheren Arbeit des Autors [13] wurde der Effekt der
endlichen Schallgeschwindigkeit mit Hilfe einer graphischen Annäherung der
Charakteristiken berücksichtigt. Eine einfache analytische Näherung ist von Speight
[19] und unabhängig von Shearer et al. [20] vorgeschlagen worden. Diese Autoren
identifizieren die Geschwindigkeitszunahme der Oberfläche eines festen Körpers, auf
den ein Druckimpuls ausgeübt wird, mit der Teilchengeschwindigkeit in der zu diesem
Druck gehörigen Schockwelle. Über den Zusammenhang zwischen Druck,
Schockgeschwindigkeit und Teilchengeschwindigkeit sind genaue Daten erhältlich [21] (vgl.
Tabelle II). Auch hier ist zu bemerken, dass diese bei Zimmertemperatur (als
Anfangstemperatur) gemessen wurden, und dass die zusätzliche Joule-Aufheizung im Fluss-
kompressionsexperiment Abweichungen zur Folge haben kann.

Tabelle II
Teilchengeschwindigkeit in einer durch ein Magnetfeld verursachten Schockwelle, in km/sec,
in verschiedenen Metallen.

B(MG) AI Cu AI SI 304a) W

0.5 0,07 0,03 0,03 0,01
1 0,25 0,11 0,11 0,05
2 0,88 0,39 0,39 0,20
5 3,54 1,71 1,75 0,99

10 8,51 4,30 4,48 2,76
20 18,73 9,69 10,20 6,66

18-8 rostfreier Stahl.

Nach dieser Aufzählung von Unsicherheitsfaktoren kann kein Zweifel darüber
bestehen, dass an eine genaue Bestimmung des spezifischen Widerstandes nicht zu
denken ist, umsomehr als der Widerstand nur einen geringen Einfluss auf die
experimentell messbaren Werte hat. Wir können dies illustrieren durch Auflösung von
Gleichungen (1) und (7) nach dem spezifischen Widerstand. Aus Differenziation von
(1) folgt

dr2
v —

r, dt

und Kombination mit (7) ergibt

¦r,v/2)*
¦¦Po-

v x'
(29)
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Die verschiedenen Korrekturfaktoren sind in x zusammengefasst :

vf=x]/^. (30)
y Po

Der Faktor x ist von der Grössenordnung 1, mit Ausnahme vom Ende der Kompression,

wenn v gegen 0 und x gegen oo strebt. Im Prinzip würde Gleichung (29) die
Bestimmung von q zu jedem Zeitpunkt der Kompression ermöglichen, doch ist es

offensichtlich, dass diese Gleichung sowohl auf Messfehler als auch auf die theoretischen
Korrekturfaktoren extrem empfindlich ist. Unabhängig von (29) kann man eine obere
Grenze für den Mittelwert von q aus der Kenntnis des inneren Radius im Moment der

Sondenzerstörung ableiten [13]. Aus einem Vergleich vieler Experimente hat sich
ergeben, dass der spezifische Widerstand von rostfreiem Stahl (AISI 304) den Wert
Qiim 100 ftücm nicht wesentlich überschreitet. Mit Röntgenblitzaufnahmen, die
eine genauere Radiusbestimmung zu einem beliebigen Zeitpunkt der Implosion
ermöglichen [5], kann der Wert für qlim noch etwas enger eingeschachtelt werden.

Während somit eine genaue Bestimmung von q nicht möglich erscheint, so ist
umgekehrt zur Diskussion und zur Planung von Flusskompressionsexperimenten auch
keine genauere Kenntnis von q notwendig. Zur Illustration der Auswertung von
Experimenten sollen die numerischen Beispiele in Tabelle III dienen. Der Innenradius

und die Geschwindigkeit des implodierenden Zylinders wurden aus,dem als

Funktion der Zeit gemessenen Magnetfeld bestimmt wie zu Anfang dieses Abschnittes
beschrieben. Für g[im wurde der Wert 120 /j,ücm angenommen, der in einer früheren
Arbeit [13] gute Übereinstimmung mit verschiedenen Experimenten ergeben hatte.
Die Berechnung der Flussdiffusionsgeschwindigkeit ermöglicht nun einen weiteren
unabhängigen Test: Am Feldmaximum muss die Flussdiffusionsgeschwindigkeit mit
der Geschwindigkeit der Zylinderinnenfläche übereinstimmen. Im Rahmen der Mess-

und Recbengenauigkeit ist dies in der Tat bei allen drei Experimenten in Tabelle III
der Fall.

Tabelle III
Auswertung von Flusskompressionsexperimenten.

Experiment BMV [22] FR-1 [13] FR-4 [13]

Figur 1 - 2

Anfangswerte
Feld kG 117 82 66
Innenradius mm 42,0 36,5 38,5

Ende der Beschleunigungsphase
Innenradius mm 30 26 18

Geschwindigkeit km/sec 1,7 1,7 3,9
relativer Feldanstieg /<sec-1 0,2 0,14 0,4

Feldmaximum
Feld MG 1,18 2,0 5,5
Innenradius mm 9,9 3,4 2,2
Geschwindigkeit km/sec 0,30 ± 0,05 0,5 + 0,1 1 ± 0,3

Flussdiffusionsgeschwindigkeit km/sec 0,30 0,61 1,1
Bessel-Faktor KJKn 1,17 1,27 1,23
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Abschliessend sei bemerkt, dass die im vierten Abschnitt hergeleiteten Gleichungen

auch zur Diskussion der Erwärmung leitender Proben in rasch ansteigenden
Magnetfeldern nützlich sind. Für eine zylindrische Probe im axialen Magnetfeld
haben wir

numerische Werte für die entsprechenden Faktoren sind der Tabelle I beigefügt.

Diese Arbeit wurde am Stanford Linear Accelerator Center fertiggestellt und von
der National Science Foundation und dem U.S. Army Research Office, Durham,
teilweise unterstützt.
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