Zeitschrift: Helvetica Physica Acta

Band: 44 (1971)

Heft: 3

Artikel: Zur magnetischen Diffusion in Zylindergeometrie
Autor: Herlach, Fritz

DOl: https://doi.org/10.5169/seals-114284

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-114284
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

308

Zur magnetischen Diffusion in Zylindergeometrie

von Fritz Herlach

Illinois Institute of Technology, Department of Physics, Chicago, I1l. 60616
(13. XI.70)

Abstract. The diffusion of magnetic flux in conductors is discussed with a view to cylindrically
imploding megagauss generators. Simple analytical expressions are developed which are adequate
for a precise analysis of most experiments. It is shown that in many cases a suitable plane approxi-
mation can be used instead of the exact cylindrical solution. For the field at the surface of the
conductor, an exponential field rise is assumed. Deviations from this in actual experiments are
treated by a superposition of the basic exponential solutions. The change of the resistivity due to
Joule heating is discussed in terms of Bryant’s solution of the nonlinear diffusion equation. The
concept of the flux diffusion speed is developed, and it is shown that the diffusion of magnetic flux
into the conductor depends essentially on the resistivity at the surface. The partition of the energy
flow into magnetic and Joule energy is analyzed, and a differential equation is derived which
governs field distributions with equipartition between these energies. Applications are discussed
and practical examples are given.

1. Einleitung

Magnetfelder von der Gréssenordnung Megagauss kénnen zurzeit nur in Form
sehr schnell ansteigender Impulse erzeugt werden [1]. Dabei treten in elektrisch
leitenden Materialien magnetische Diffusionserscheinungen auf, die den Gang der
Experimente wesentlich beeinflussen. In einem Flusskompressionsexperiment [Z]
wird dies zur Felderzeugung ausgeniitzt: magnetischer Fluss kann durch mechanische
Deformation eines geschlossenen Leiterkreises komprimiert werden, wenn die
Kompression schneller erfolgt als der Fluss nach aussen diffundiert. Die hochsten
Felder erhdlt man in einer zylindersymmetrischen Anordnung durch Kompression
eines metallischen Hohlzylinders mittels Sprengstoff.

Bezeichnen wir mit »; den Innenradius des Zylinders, mit H, das komprimierte
Feld und mit ¢, den vom Kreis mit Radius 7; eingeschlossenen Fluss, so gilt fiir die
Feldverstirkung von einem beliebig gewidhlten Anfangszustand, den wir mit dem
Index O bezeichnen:

H, 7io\* b
(o) &
H;, i ] bio

Entsprechend zerfillt die theoretische Behandlung der Flusskompression in zwei
Teile: Dynamik und Diffusion.
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Die Dynamik umfasst die anfingliche Beschleunigung des Zylinders, die Ge-
schwindigkeitszunahme der Innenfliche infolge der Konvergenz, die Abbremsung
durch den magnetischen Druck und die Beschrinkung der Energietibertragung durch
die endliche Schallgeschwindigkeit im Zylindermaterial [3, 4]. Das hochste Feld, das
mit einer gegebenen Versuchseinrichtung erzielt werden kann [5], ist durch eine
Gleichgewichtsbedingung zwischen Dynamik und Diffusion bestimmt: die Feldver-
stirkung hort auf, wenn die Geschwindigkeit der Innenfliche kleiner wird als die-
jenige Geschwindigkeit, mit der der Fluss in das Zylindermaterial hineinstrémt.

Die Diffusion bestimmt dahingegen den Radius, bei dem dies eintritt, im Ver-
hiltnis zum anfinglich eingeschlossenen Fluss. In der Praxis ist dies ebenso wichtig
wie die absolute Begrenzung durch die Dynamik, weil fiir praktische Zwecke das End-
feld in einem bestimmten Volumen benétigt wird, und weil die Erzeugung des Anfangs-
flusses einen betrichtlichen technischen Aufwand erfordert.

2. Diffusion und Flussverlust

Der Flussverlust kann direkt aus dem Induktionsgesetz und dem Ohmschen
Gesetz berechnet werden. Er ist deshalb unabhingig vom Koordinatensystem und
dessen Bewegungszustand, solange die Geschwindigkeiten gegeniiber der Licht-
geschwindigkeit klein sind. Bezeichnen wir mit E das elektrische Feld, mit ¢ den
spezifischen Widerstand und mit ¢ die Stromdichte, so gilt fiir den magnetischen Fluss
innerhalb jeder zylindrischen Strombahn
1 dé : 0H

=FE=pi=09p o (2)

2ar dt

d.h. der Flussverlust ist von der Feldverteilung im Metall abhingig. Insbesondere
verkniipft Gleichung (2) d¢,/dt mit der Stromdichte am Innenradius. Die Differential-
gleichung fiir die Feld- und Stromverteilung folgt aus den Maxwellschen Gleichungen
fiir quasistationdre Vorgidnge (MKS-Einheiten, y, = 4 7z - 107 Vs/Am):

0H 1 0 0H

L. :
0t uer Or er ' )

Die Losung dieser Gleichung wird dadurch erschwert, dass der spezifische Wider-
stand infolge der Jouleschen Erwirmung des Metalls ansteigt und deshalb zeit- und
ortsabhingig wird. Eine vollstindige numerische Losung von Gleichung (3), kombiniert
mit den hydrodynamischen Differentialgleichungen, ist von Kidder [7] und Steinberg
[8] ausgearbeitet worden. Somon [6] gibt eine vereinfachte numerische Losung fiir
konstante Geschwindigkeit der Innenfliche eines unendlich dicken Zylinders. Der
Hauptnachteil der numerischen Methoden besteht darin, dass jede einzelne Losung fiir
einen gegebenen Parametersatz ganz durchgerechnet werden muss, und dass dies
einen grossen Rechenaufwand erfordert. Eine analytische Niherungslosung ist nicht
nur numerisch einfacher zu handhaben, sie hat auch den zusitzlichen Vorteil, dass sie
einen Einblick in das Zusammenwirken der verschiedenen Prozesse geben kann, die
den Ablauf des Experiments bestimmen. Die meisten bisherigen Arbeiten in dieser
Richtung nehmen eine konstante Stromverteilung an, in einer Schicht, die an der
Innenfliche des Zylinders anliegt und deren Dicke a in Anlehnung an den Skineffekt
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abgeschitzt wird [9-11]. Eine Ausnahme bildet die Arbeit von Paton und Millar [12],
in der das Diffusionsproblem fiir ebene Geometrie und konstante Kompressions-
geschwindigkeit mit Hilfe von Laplace-Transformationen gelost wird.

Ausser der bekannten Losung von Gleichung (3) fiir die Sinusschwingung gibt es
noch eine einfache Losung fiir den leitenden Halbraum und einen exponentiellen Feld-
anstieg bei ortsunabhingiger Leitfihigkeit:

H(t,x) = Hye o5t a— VQ ' )
Ho ¥

x ist die von der Grenzfliche aus gemessene Lagekoordinate, die zugehorige Differen-

tialgleichung lautet

0H o 0°H )
N e (3"
0t Uy Ox
Die vereinfachende Annahme der konstanten Stromdichte ist gar nicht nétig; die
Losung (4) lasst sich vollstdndig durchrechnen [13] und ergibt fiir den Flussverlust

do; 2mr;0 a
P w2 T4 VTR T 5
dt al ( T2 ) ’ R

¥i

Hierbei wurde der Zylinder als ebene Platte der Breite 2z (r; + a/2) angendhert.
/ ist die axiale Lange des Zylinders, I der Gesamtstrom und R, der Widerstand einer
Schicht der Dicke a. Der teilweise Erfolg der vereinfachten Rechnung mit homogener
Stromverteilung ist dem Zufall zuzuschreiben, dass diese in der Tat den gleichen
Flussverlust ergibt wie die korrekte Losung (4). Fiir die Joulesche Erwdrmung und die
magnetische Energie fiihrt die Annahme konstanter Stromdichte jedoch zu einem
falschen Ergebnis.

Eine zu (4) analoge Losung fiir eine endlich dicke Platte ldsst sich ebenfalls voll-
stindig entwickeln und ist mit Erfolg zur Auswertung von Kompressionsexperimenten
verwendet worden [13]. Erfreulicherweise ist in den meisten Experimenten der Feld-
anstieg anndhernd exponentiell; den Abweichungen von der exponentiellen Form
kann man bei der punktweisen Auswertung dadurch Rechnung tragen, dass fiir jeden
Messpunkt

1 dH .

"TH @t ©

neu bestimmt wird. Der Erfolg dieser Naherung hiangt davon ab, wie schnell und wie

gut sich die Feldverteilung im Metall nach einer Anderung von » an die gerechnete

Lésung anpassen wird. Hierzu betrachten wir die natiirliche Ausbreitungsgeschwindig-
keit einer exponentiellen Verteilung,

v = a v=——-—9—=l/~9—1{ » (7)
Ho @ Mo

Fiir das Zeitintervall, in dem die neue Lésung die vorangehende etwa iiberdecken
wird, folgt Af = afv, = 1/».

Die Geschwindigkeit v, ist zugleich das exakte Mass fiir das Einstrémen des
magnetischen Flusses in das Leitermaterial, vergleiche (7) und (4):
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E v, 1 dg;

it s = R 8

7 B 2 ¢, dt ®)
Fiir die Flussdiffusionsgeschwindigkeit in Zylindergeometrie folgt daraus, in der zu
(5) analogen Niherung,

Y @ /
) =2 (14 5°-) (7)
Diese einfachen Formeln werden dann ungiiltig, wenn die Ausdehnungsgeschwindig-
keit der nach (4) berechneten Eindringtiefe 4 mit der Diffusionsgeschwindigkeit v,
vergleichbar wird. Dieser Fall tritt gegen Ende des Experimentes ein, wenn die
Innenfliche des Zylinders durch den magnetischen Druck abgebremst wird und
dH|dt gegen Null strebt. Der Losung (4) wird dadurch die stiitzende Randbedingung
entzogen; die Feldverteilung wird dann frei weiterlaufen und sich allmédhlich an die
aus der Theorie der Wirmeleitung bekannte Form

1 Ho #*

;P2 6’“ do ¢

anpassen,

0 L 1

ysec

Figur 1
Feldanstieg und Flussdiffusionsgeschwindigkeit fiir ein Flusskompressions-Experiment mit lang-
samer Implosion [22]. Die Zeitskala ist vom Beginn der Implosion gemessen. Die linke Skala gilt
fury = 1/H dH|dt; die Kreise sind Messpunkte vom Experiment, die durchgezogene Kurve ist die
Anpassung gemaiss Gleichung (9). Die hieraus berechnete Flussdiffusionsgeschwindigkeit ist in

Einheiten von vgy = Vg, vo/p, aufgetragen, mit yy = 2 - 10% sec! (rechte Skala). Die gestrichelte
Kurve gibt die Flussdiffusionsgeschwindigkeit bei Vernachlidssigung der Korrektur fur die Zeit-
abhangigkeit von v, d.h. vp" = Vg, v/pg-

Dieser Ubergangsprozess ist in mathematischer Strenge schwierig zu erfassen.
In vielen Féllen kann jedoch der zeitliche Verlauf des Magnetfeldes durch eine Summe
von Exponentialfunktionen, z. B.

H = H, (" + 6, e"* — §, ") . (9)

in guter Anndherung beschrieben werden. Die Parameter », und §, bestimmt man mit
Vorteil in einem ¢(f)-Diagramm, z.B. mit einer elektronischen Tischrechenmaschine
(Hewlett Packard 9100 A usw.) mit Kurvenschreiber. Die zu (9) gehorige Losung lasst
sich als Superposition von Losungen (4) ohne Schwierigkeiten berechnen. In Figur 1
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und 2 zeigen wir Beispiele der Anpassung an experimentelle Daten. Im Hinblick auf
die Variation von v stellen die beiden Experimente Grenzfille dar. Der ohnehin nicht
grosse Unterschied zwischen der vereinfachten Losung (4) und der genaueren Losung
(9) wird bei den meisten Experimenten noch geringer sein als in diesen Beispielen.
Im Einklang mit der Vorstellung der in das Metall hineinlaufenden Feldverteilung
bleibt die Diffusionsgeschwindigkeit der genaueren Losung zeitlich hinter der ein-
fachen Ndherungslésung (7) um einen kleinen Betrag zuriick. Diese kleine Zeitver-
schiebung hat erst kurz vor der Feldumkehr eine grossere Abweichung in der Dif-
fusionsgeschwindigkeit zur Folge, nimlich wenn dv/dt sehr gross wird.

I ™ T 13 T ¥ T i T

2_

ﬁ 1 1 " 1 L I n 1 s
7 8 9 10 1 psec

Figur 2
Feldanstieg und Flussdiffusionsgeschwindigkeit in einem Experiment mit schneller Implosion
(N1. 4 in Ref. [13]). Die Bezeichnungen sind die Gleichen wie in Figur 1.

3. Exakte Losung mit Besselfunktionen

Fiir einen exponentiellen Feldanstieg und konstante Leitfahigkeit wird Gleichung
(3) durch die modifizierten (hyperbolischen) Besselfunktionen K(r/a) und Iy(r/a) [14]
gelost: fiir den unendlich ausgedehnten Hohlzylinder mit Innenradius 7,

Ko(r/a)
Hr, 1) = Hy ot 0014
i °¢ Ky(r;/a)
und fiir den Hohlzylinder endlicher Wandstdrke mit Aussenradius 7,,

Hir ) = Hye™ { Bolrfa) __Lo(rje) } A, r,z2r>=r;, (11)

Korafa)  Io(rola)

¥ =7 (10)

i

mit

Kyroa)  Iy(r,/a)
Fiir den Flussverlust folgt hieraus, gemiss Gleichung (2) und (8),
K, (r/a)
W Kl / (12)
Mo 2 0(71/ a)
und, fiir einen Zylinder endlicher Wandstirke,

A = {Ko(r,-/a) I,(r;/) } =
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: {Kl(r/a) I(rja) } N

= —

T ma \Krfe)  Lrfa)
Die Abweichung der Ndherungslgsung (7') von der exakten Losung (12) ist in Tabelle I
dargestellt. Die Niherungslgsung ergibt einen grésseren Flussverlust als die exakte
Loésung; der Unterschied ist jedoch so klein, dass in den meisten praktischen Fillen
die Anwendung der N#herungslosung voll gerechtfertigt ist. Fiir Zylinder endlicher
Wandstérke sind die Abweichungen naturgemiss noch kleiner.

(13)

Tabelle 1
Korrekturfaktoren fiir die exponentielle Losung in Zylindergeometrie

vla (1+ a/2v) K,|/K, (K /Ky)?  ax e (13/14)? ar

0,1 6,0 4,0600 16,484 4,066 0,0499 0,0025 0,0010
0,2 3,50 2,7249 7,4252 3,188 0,0995 0,0099 0,0045
0,5 2,00 1,7919 3,2108 2,235 0,2425 0,0588 0,0294
1 1,50 1,4296 2,0438 1,738 0,4464 0,1993 0,113
2 1,25 1,2280 1,5081 1,417 0,6978 0,4869 0,358
5 1,10 1,0958 1,2007 1,184 0,8934 0,7981 0,770
10 1,05 1,0489 1,1001 1,096 0,9486 0,8998 0,894
20 1,025 1,0247 1,0500 1,049 0,9747 0,9500 0,949
50 1,01 1,0100 1,0200 1,020 0,9900 0,9800 0,980
0o 1 1 1 1 1 1 1

4. Joulesche Erwirmung und Energiestromung

Aus einem Koeffizientenvergleich der Diffusionsgleichung (3) mit der Warme-
leitungsgleichung folgt, dass die Warmeleitung im Verhiltnis zur Geschwindigkeit der
magnetischen Diffusion vernachlissigt werden kann. Fiir die Erwdrmung des leiten-
den Materials konnen wir daher schreiben

wy = [oitdi= [ Sd9 ~S4H. (14)

¥ ist die Temperaturerhdhung und S die spezifische Wiarme pro Volumeneinheit,
wy ist die Joulesche Energiedichte. Solange das Feld ansteigt, stromt elektroma-
gnetische Energie in das leitende Material hinein. Aus der Energiestrémung
(Poynting-Vektor)

0H

lEXHiZQH"b?:UfMOHz (15)

berechnet sich die Zunahme der Energiedichte w in ebener Geometrie wie folgt:
Ow 0 () H 0 H 2 0 0 H OZE’J OwH

TR = @Al e =@ ) e H——p—s—=—+——-
ot 0x 0% Ox 0x - 0x ot )7

An Hand dieser Gleichung kann man die Aufteilung der Energie in Joulesche Warme
(1. Term) und magnetische Energie (2. Term) verfolgen. Insbesondere erhellt aus dem
2. Term, dass bei konstanter Leitfihigkeit die Zunahme der magnetischen Energie-
dichte zur zweiten Ableitung der Feldverteilung proportional ist. Hieraus geht ein-
deutig hervor, dass eine homogene Stromverteilung nur im Zusammenhang mit

(16)
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statischen Feldern existieren kann, mit einer Felddnderung ist sie prinzipiell unver-
einbar. Fiir die exponentielle Feldverteilung (4) folgt aus (16) Gleichverteilung
zwischen Joulescher Wérme und magnetischer Energie:

- 0£)2_ 0*H 0 ( 1 2)

oit=o(G) ~eH Ga =g (G m) - =
Exakte Gleichverteilung, wie sie bei der exponentiellen Feldverteilung im leitenden
Halbraum vorliegt, ist ein Ausnahmefall. Meistens liegt Gleichverteilung jedoch an-
ndhernd vor [12], so lange die Leiterdimension in Richtung der Felddiffusion im Ver-
hdltnis zur Eindringtiefe gross ist. Wenn die Leiterdicke mit der Eindringtiefe ver-
gleichbar wird, verschiebt sich die Verteilung zu Gunsten der thermischen Energie
beim einseitig ans Feld grenzenden Leiter [13] und zu Gunsten der magnetischen
Energie beim ins Feld eingebetteten Leiter. Abweichungen vom exponentiellen Feld-

anstieg haben auch eine Storung der Gleichverteilung zur Folge; diese kann ebenfalls
mit Hilfe von (9) ndherungsweise berechnet werden.

Beim Ubergang zu Zylindergeometrie dndert sich in (16) nur der Term fiir die
magnetische Energie:

Owg H 0 0H o Kjr/a)

R i o5 " 2 2t 18
0t r or 8T T a2 Ki(r;[a) Hoe™, e
0w, - *Kf(r/“) 0 K?(’/‘f) 2 o2 (19)

o K e K
Gleichverteilung wird fiir grosse 7/a anndhernd erreicht, da fiir /a — oo die Funk-
tionen K; und K, gegen den gleichen Grenzwert streben. Die Abweichung von der

Gleichverteilung beschreiben wir in Anlehnung an Lewin und Smith [9] durch einen
(zeitunabhdngigen) Faktor «:

K2
o = @0 _ Hilla) (20)
wy  K(r/a)
Dieser Faktor gilt fiir die Energiedichte; einen Verteilungsfaktor fiir die Gesamt-

energie erhdlt man durch Integration:

Ty LI 7
s (*) 2 (“) v
WJ 1;1‘/“ wr

& — = SHRCER SR e R -— —— -
W T [ 7 f wy dV
— K2 —)d(—
a a
%ila
Numerische Beispiele sind der Tabelle I beigefiigt. Im Hinblick auf experimentelle

Fehlergrenzen und anderweitige Unsicherheiten ldsst sich in der Tat in den meisten
praktischen Fillen die Anwendung der ebenen Ndherung rechtfertigen.

Zur Berechnung der Dynamik aus der Energiebilanz braucht man nur die
Gesamtenergie zu kennen, die in den Leiter einstrémt. Diese ist durch Gleichung (15)
gegeben und kann vorteilhaft durch die Diffusionsgeschwindigkeit v, ausgedriickt
werden. Fiir die Summe Wp der magnetischen und Jouleschen Energie im Leiter-
material folgt aus (15):
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i, T, W, =ar:— ¥ 21
dt 4 ! i i 7T 7’@ 2 Mo H 1 ( )
Durch Differenzieren von W, und (1) nach der Zeit folgt
aw, W, (1
A N A ; 22
R e | (22

Die Gesamtenergie W, die vom implodierenden Zylinder an das Magnetfeld und die
damit verbundene Joulesche Erwirmung abgegeben wird, folgt dann aus der ein-
fachen und niitzlichen Beziehung
aw w,
2y, L
dt 7

4

(23)

Es ist bemerkenswert, dass die Zunahme der gesamten Energie von der Diffusions-
geschwindigkeit und somit von der Leitfdhigkeit des Zylindermaterials nicht explizit
abhingig ist.

5. Einfluss der temperaturabhingigen Leitfihigkeit

Bei Gleichverteilung zwischen thermischer und magnetischer Energiedichte gilt
eine einfache Faustregel fiir die Erwdrmung des Leitermaterials:

9
1~ 1000°C/MG2.

Im Megagaussgebiet wird demnach die Temperatur so stark ansteigen, dass die
Temperaturabhingigkeit der Leitfihigkeit in keinem Fall ganz vernachlassigt werden
kann. Fir die meisten Metalle ldsst sich der spezifische Widerstand zwischen Zimmer-
temperatur und Schmelzpunkt durch die folgende Ndherung beschreiben:

0=00(1+ k). (24)
Beim Ubergang in den fliissigen Zustand springt der Widerstand auf den etwa
doppelten Wert. Da die Schmelzwidrme einem Sprung in der thermischen Energie ent-
spricht, erhdlt man eine weit iiber den Schmelzpunkt hinaus giiltige Ndherungsformel,

indem man den spezifischen Widerstand als Funktion der thermischen Energiedichte
ansetzt:

0 k H \? 25
~:1+wJ:1+a(w), B, 22 . (25)
Qo S H, tho K

Bei Gleichverteilung ist « = 1, siehe (20). Alle Konstanten sind im «charakteristischen
Feld» H, zusammengefasst [9].

Bryant [15] hat fiir die spezielle Form (25) des spezifischen Widerstandes mit
o = 1 eine analytische Lésung von Gleichung (3) in ebener Geometrie abgeleitet:

1 S o

He? Hel = H eghte=oo g = ]/ . P (26)
Ho Vo

Sie folgt durch direkte Integration aus der Bedingung, dass die Diffusionsgeschwindig-

keit v, = a, v, konstant bleiben soll. Dies setzt eine sehr spezielle Form des Feld-

anstieges voraus, gemass
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1 dH; Yo Q0%
H; di Co1+ (Hi/H,)* B g
Von Experimenten wird diese Bedingung im Allgemeinen nicht erfiillt, vgl. Figur 1

und 2 mit Figur 3. Eine Anpassung an Experimente durch Superposition von L&-
sungen (26) ist wegen der durch p eingefithrten Nichtlinearitéit leider nicht mdoglich.

Yy =

(27)

i T T T T T 'l T T T

U 1 1 1 | 1 1 1

Figur 3
Die Zeitabhidngigkeit verschiedener Parameter der Bryantschen Ldsung, Gleichungen (26) und
(27), aufgetragen iiber der Ordinate v, ¢. Die gestrichelte Kurve ist die entsprechende Exponential-
funktion zum Vergleich.

Die Bryantsche Losung hat jedoch interessante Eigenschaften, die eine ndhere
Untersuchung der Mithe Wert machen. Sie lisst sich ohne weiteres differenzieren und
erfiillt die Bedingung (16), d.h. es besteht exakte Gleichverteilung und der Ansatz (25)
mit o = 1 ist damit nachtréglich voll gerechtfertigt. Die Feldverteilung H(x) ist, ab-
gesehen vom Masstab, ein Spiegelbild der Funktion H(#) und behilt beim Fortschrei-
ten ins Metall ihre Form bei. {Da H als Funktion von ¢ durch Gleichung (26) nicht
explizit gegeben ist, muss man zur numerischen Behandlung ¢ als Funktion von H
ausrechnen.) Wir wollen nun die Flussdiffusionsgeschwindigkeit ndher betrachten.
Vorausschickend sei bemerkt, dass die einfache Losung (4) auch fiir zeitabhingiges p
giiltig ist (¢ wird dann zeitabhingig), so lange p ortsunabhingig bleibt. Wir kénnen
z.B. (26) und (4) vergleichen, indem wir den speziellen Widerstand in (4) im ganzen
Leiter demjenigen an der Innenfliche in (26) gleichsetzen. In der direkten Ndherung
ergeben beide Losungen dann die gleiche Flussdiffusionsgeschwindigkeit; da (26)
jedoch den speziellen Feldanstieg (27) voraussetzt, miissen wir zum genaueren Ver-
gleich in (4) die Korrektur fiir die Variation von » anbringen. Mit Hilfe von (9) lasst
sich diese im Bereich H 2 H, annihernd berechnen. Wie zu erwarten, ergibt die
Annahme p(x) = g, einen grosseren Flussverlust, die Abweichung geht bei H ~0,9 H,
durch ein Maximum und bleibt immer kleiner als 59%,. Die Flussdiffusionsgeschwin-
digkeit ist somit im Wesentlichen durch den spezifischen Widerstand an der Innen-
fliche des Leiters bestimmt.

In einer fritheren Arbeit des Autors [13] war zur Bestimmung des Flussverlustes
ein gewogener Mittelwert des Widerstandes verwendet worden. Im Lichte der voran-
gegangenen Diskussion ist dies keine gute Ndherung. Die numerischen Resultate in
dieser speziellen Arbeit werden hiervon jedoch nur wenig beriihrt: Einerseits ist der
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spezifische Widerstand von rostfreiem Stahl nach oben beschriankt und H bleibt des-
halb immer kleiner als H_, und ausserdem ergibt die Annahme des gemittelten Wider-
standes unter diesen Umstinden eine Korrektur, die grossenordnungsmassig mit der-
jenigen fiir die Variation von » iibereinstimmt.

6. Anwendungen und Schlussbetrachtung

Zur Auswertung eines Flusskompressionsexperimentes wird man von der Losung
(4) als Basis ausgehen und dann nach Bedarf die verschiedenen Korrekturfaktoren
anbringen: fiir endliche Wandstiirke des Leiters, fiir die Abweichung vom exponen-
tiellen Feldanstieg, fiir die Ortsabhingigkeit des spezifischen Widerstandes und fiir
die Zylindergeometrie. Die Uberlagerung der verschiedenen Korrekturen ist dadurch
gerechtfertigt, dass jede einzelne Korrektur relativ klein ist. Mit dieser einfachen
Methode ist es méglich, den Flussverlust und die Erwdrmung des Leitermaterials mit
einer Genauigkeit auszurechnen, die der erreichbaren Messgenauigkeit von einigen
Prozent durchaus angemessen ist.

Der Flussverlust kann aus dem gemessenen Magnetfeld und dessen Ableitung
(die mit induktiven Sonden direkt messbar ist) berechnet werden; der innere Radius
folgt dann aus dem Feld und dem berechneten Fluss. Da der Flussverlust auch vom
Radius abhingt, kann diese Rechnung nicht direkt ausgefiihrt werden. Man muss den
Radius zunichst extrapolieren; die korrekten Werte erhilt man dann durch wechsel-
weise Berechnung von Radius und Fluss in rascher Konvergenz [13].

Bei der Diskussion der Bryantschen Lésung haben wir gezeigt, dass der spezifische
Widerstand an der Innenfliche des Leiters fiir den Flussverlust in erster Linie mass-
gebend ist. Wir miissen somit nur die Temperatur an der Innenfliche berechnen;
diese ist gemiss (2) direkt mit dem Flussverlust verkniipft. Die magnetische Wider-
standsinderung wird — bei Giiltigkeit der Kohlerschen Regel — bei den hohen Tem-
peraturen vernachlissigbar sein; jedoch kann der magnetische Druck den Widerstand
um einen betrichtlichen Faktor (~ 2-- 5) vermindern. Die Druckabhéingigkeit des
spezifischen Widerstandes ist eine Funktion der Temperatur [16], die fiir hohe
Temperaturen noch nicht gemessen worden ist. Ausserdem ist zu bedenken, dass die
Erwirmung in einer sehr kurzen Zeitspanne stattfindet. Im Hinblick auf die Natur
des Schmelz- und Verdampfungsvorganges ist anzunehmen, dass das Leitermaterial
eine Zeitlang im iiberhitzten Zustand verbleiben wird; entsprechend wird der spezifi-
sche Widerstand hinter dem «normalen» Wert zuriickbleiben.

Bei gleichzeitiger Kenntnis von Radius und Feld kénnte der spezifische Wider-
stand als einzige zuriickbleibende Unbekannte aus dem Flusskompressionsexperiment
selbst bestimmt werden. Die erreichbare Genauigkeit und Sicherheit der Interpreta-
tion von optischen Messungen [17, 18] ist jedoch bei weitem nicht ausreichend zu
einer experimentellen Bestimmung des Flussverlustes. Es bleibt die Moglichkeit, den
Radius aus der Dynamik des implodierenden Zylinders zu berechnen. Mit Integration
von (23) kann man die Energiebilanz zwischen der kinetischen Energie des implodie-
renden Zylinders und der gesamten abgegebenen Energie aufstellen; 7; folgt dann
durch Integration aus der Geschwindigkeit. Dies setzt voraus, dass der Zylinder als
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Ganzes abgebremst wird, d.h. dass das Zylindermaterial inkompressibel ist. Diese
Bedingung ist in der Tat iiber einen grossen Teil der Kompression (etwa die ersten drei
Viertel) erfiillt. Dieser erste Teil der Implosion ist aber gewissermassen trivial, da
praktisch keine Energieiibertragung stattfindet. Erst ganz am Ende des Experimentes
nimmt die Energieiibertragung sehr rasch zu und wird dann ganz von der Kompres-
sibilitdt dominiert: nur die Innenflache des Zylinders wird abgebremst, ein betracht-
licher Energieanteil geht in Kompressionsenergie iiber, und es wird sich im Zylinder-
material eine Schockwelle bilden. Dieser komplizierte Prozess unterliegt partiellen
Differentialgleichungen vom hyperbolischen Typ, deren Lésung einen grossen Rechen-
aufwand erfordert [4]. In einer fritheren Arbeit des Autors [13] wurde der Effekt der
endlichen Schallgeschwindigkeit mit Hilfe einer graphischen Anndherung der
Charakteristiken berticksichtigt. Eine einfache analytische Naherung ist von Speight
[19] und unabhingig von Shearer et al. [20] vorgeschlagen worden. Diese Autoren
identifizieren die Geschwindigkeitszunahme der Oberfliche eines festen Kérpers, auf
den ein Druckimpuls ausgeiibt wird, mit der Teilchengeschwindigkeit in der zu diesem
Druck gehorigen Schockwelle. Uber den Zusammenhang zwischen Druck, Schock-
geschwindigkeit und Teilchengeschwindigkeit sind genaue Daten erhiltlich [21] (vgl.
Tabelle IT). Auch hier ist zu bemerken, dass diese bei Zimmertemperatur (als Anfangs-
temperatur) gemessen wurden, und dass die zusitzliche Joule-Aufheizung im Fluss-
kompressionsexperiment Abweichungen zur Folge haben kann.

Tabelle 11

Teilchengeschwindigkeit in einer durch ein Magnetfeld verursachten Schockwelle, in km/sec,
in verschiedenen Metallen.

B(MG) Al Cu ATSI 3042) w
0,5 0,07 0,03 0,03 0,01
1 0,25 0,11 0,11 0,05
2 0,88 0,39 0,39 0,20
5 3,54 1,71 1,75 0,99

10 8,51 4,30 4,48 2,76

20 18,73 9,69 10,20 6,66

1) 18-8 rostfreier Stahl.

Nach dieser Aufzdhlung von Unsicherheitsfaktoren kann kein Zweifel dariiber
bestehen, dass an eine genaue Bestimmung des spezifischen Widerstandes nicht zu
denken ist, umsomehr als der Widerstand nur einen geringen Einfluss auf die ex-
perimentell messbaren Werte hat. Wir kénnen dies illustrieren durch Auflésung von
Gleichungen (1) und (7) nach dem spezifischen Widerstand. Aus Differenziation von
(1) folgt

2 ar;
s o gy, — o AL 28
v "y (vi—vg), v 7 (28)

und Kombination mit (7) ergibt
(v, — 7,9/2)?

0= Hp i

(29)
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Die verschiedenen Korrekturfaktoren sind in » zusammengefasst:

o=/ 30)
Ho

Der Faktor » ist von der Grossenordnung 1, mit Ausnahme vom Ende der Kompres-
sion, wenn » gegen 0 und » gegen oo strebt. Im Prinzip wiirde Gleichung (29) die Be-
stimmung von g zu jedem Zeitpunkt der Kompression erméglichen, doch ist es offen-
sichtlich, dass diese Gleichung sowohl auf Messfehler als auch auf die theoretischen
Korrekturfaktoren extrem empfindlich ist. Unabhéngig von (29) kann man eine obere
Grenze fiir den Mittelwert von p aus der Kenntnis des inneren Radius im Moment der
Sondenzerstérung ableiten [13]. Aus einem Vergleich vieler Experimente hat sich er-
geben, dass der spezifische Widerstand von rostfreiem Stahl (AISI 304) den Wert
01im =2 100 ufcm nicht wesentlich iiberschreitet. Mit Réntgenblitzaufnahmen, die
eine genauere Radiusbestimmung zu einem beliebigen Zeitpunkt der Implosion er-
moglichen [5], kann der Wert fiir g,;,, noch etwas enger eingeschachtelt werden.

Wihrend somit eine genaue Bestimmung von g nicht mdglich erscheint, so ist
umgekehrt zur Diskussion und zur Planung von Flusskompressionsexperimenten auch
keine genauere Kenntnis von p notwendig. Zur Illustration der Auswertung von
Experimenten sollen die numerischen Beispiele in Tabelle IIT dienen. Der Innen-
radius und die Geschwindigkeit des implodierenden Zylinders wurden aus dem als
Funktion der Zeit gemessenen Magnetfeld bestimmt wie zu Anfang dieses Abschnittes
beschrieben. Fiir g, wurde der Wert 120 u{2cm angenommen, der in einer fritheren
Arbeit [13] gute Ubereinstimmung mit verschiedenen Experimenten ergeben hatte.
Die Berechnung der Flussdiffusionsgeschwindigkeit ermdglicht nun einen weiteren
unabhédngigen Test: Am Feldmaximum muss die Flussdiffusionsgeschwindigkeit mit
der Geschwindigkeit der Zylinderinnenfliche iibereinstimmen. Im Rahmen der Mess-

und Rechengenauigkeit ist dies in der Tat bei allen drei Experimenten in Tabelle 111
der Fall.

Tabelle 111
Auswertung von Flusskompressionsexperimenten.

Experiment BMV [22] FR-1 [13] FR-4 [13]
Figur 1 - 2
Anfangswerte
Feld kG 117 82 66
Innenradius mm 42,0 36,5 38,5
Ende der Beschleunigungsphase
Innenradius mm 30 26 18
Geschwindigkeit km/sec 1,7 1,7 3,9
relativer Feldanstieg psec—1 0,2 014 0,4
Feldmaximum
Feld MG 1,18 2,0 5,5
Innenradius mm 9,9 3,4 22
Geschwindigkeit km/sec 0,30 4 0,05 0,5 4+ 0,1 1403
Flussdiffusions- _
geschwindigkeit km/sec 0,30 0,61 1,1

Bessel-Faktor KK, 1,17 1,27 1.23
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Abschliessend sei bemerkt, dass die im vierten Abschnitt hergeleiteten Gleichun-
gen auch zur Diskussion der Erwarmung leitender Proben in rasch ansteigenden
Magnetfeldern niitzlich sind. Fiir eine zylindrische Probe im axialen Magnetfeld
haben wir

Ly(r[a)
Hr =217 _H ¢ . 31
() Tyrja) o° (31)

numerische Werte fiir die entsprechenden Faktoren sind der Tabelle I beigefiigt.

Diese Arbeit wurde am Stanford Linear Accelerator Center fertiggestellt und von
der National Science Foundation und dem U.S. Army Research Office, Durham,
teilweise unterstiitzt.
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