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Some Criticisms of Quantum Logic

by M. Ingleby
School of Mathematical and Physical Sciences, University of Sussex,

Brighton BN1 9QH, England

(11. VII. 70)

Abstract. We argue that the division ring (sfield) obtained by C. Piron after embedding a
coherent lattice of propositions (questions) in a projective geometry is a lower bound on the
division ring of coefficients over which a quantum-mechanical Hilbert Space must be constructed.
Using the first four of G. W. Mackey's six axioms preceding his adoption of von Neumann's
quantum mechanics in his seventh axiom, a Hilbert Space over any valuated sfield is constructed.
Then observables are represented as projection-valued measures and certain states are represented
as rays.

1. Introduction

Kolmogorov [1] laid the foundations of an axiomatic theory of probability
operating with a triple (Ü, J, P) in which û is a set of trials, J a collection of subsets

(called events) of Q, forming a rr-algebra, and P a map or probability measure assigning
a probability 0 < P(F) < 1 to each event F in -j. Birkoff and von Neumann [2]
observed, however, that the state of a quantum mechanical system is a density
matrix assigning a probability to each closed subspace of some complex Hilbert space
H: the set Q(H) of closed subspaces is a complete, orthocomplemented but non-
distributive lattice, the last property signifying that, unlike Kolmogorov's J, Q(H)
is not a o--algebra. The temptation to conclude that Kolmogorov's framework must
be broadened if it is to include the intuitive content of quantum mechanics proved
too strong to be resisted.

Mackey [3], borrowing heavily from Khinchin's [4] application of the Kolmogorov
approach to Gibbsian classical statistical mechanics, synthesised several attempts to
obtain a replacement for Kolmogorov's 'logic of events' J. Mackey constructed a set

Q0 of questions of the form 'Does observable A have a value in the Borel set B of the
real lineE' from sets S and 0 of states and observables respectively. Such a Q0 carries
a partial ordering but, as Gunson [5] has observed, it is not in general a lattice.
Set Q0 can, however, be embedded in a smallest lattice Qx or in a smallest cr-lattice Q2

or even in a smallest complete lattice Q3 as we shall show. In recent work Varadarajan
[6] works in Qx and Jauch and Piron [7] in Q3.

The fact that embedding is necessary is not usually stressed, though it seems to
be quite important: clearly Q0 may be embedded in any lattice (resp. o*-lattice, resp.
complete lattice) which contains Qx (resp. Q2, resp. Q3) and some caution is called
for in attempting to draw profound conclusions from embedding in a smallest hull.
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Work such as Varadarajan's [8] on simultaneous observability requires a hull at least
as big as Q2 since it is concerned with Boolean sub-a-lattices of a hull. The crux of
this work is the invocation of a theorem on these sub-lattices which Varadarajan
attributes exclusively to Loomis [9]. (The attribution is unjust to Sikorski [10] whose
book contains a history of the theorem and a particularly transparent proof by
construction.)

In Q3, the addition of an extra property, supposed to be equivalent to the
unrestricted superposition principle of quantum physics, allowed Piron [11] to
embedd Q3 in a smallest projective geometry. The circle of ideas surrounding the
extra property is discussed in the book of Jauch 112] (and also in Gunson's paper [5]),
under the names 'coherence' and 'simplicity'. Piron invoked a fundamental theorem
of projective geometry to show that Q3 is isomorphic to a lattice of closed subspaces
of some Hilbert Space over a sfield D0 determined by the projective geometry in
which Q3 sits. A slightly improved version of Piron's proof is presented in Varadarajan's
book [6], and a considerable addition has been made by Eckmann and Zabey [13]
who show that D0 cannot be finite.

The significance of these results becomes clearer if one considers what they
do not say about quantum theory. Because one is dealing with some smallest projective
geometry containing Q0, one is free to choose a bigger hull and hence extend D0 to
some D Z) D0. The Eckmann-Zabey result is thus seen to push up the lower bound D0

beyond 'quaint' finite sfields, but there is no a priori reason for working over the
minimal sfield Z)0.

The developments reported here take place over any valuated sfield C. The space
H(S, C) calls for no embedding but nevertheless carries Q0 as a set of projection
operators. Only the first four of Mackey's [3] axioms are employed, and the principal
object of interest is the lattice 0C(S) of convex subsets of the set of states. The study
of convexity follows a manuscript circulated by the author at Sussex and Geneva.

2. The Axioms

The symbol B denotes the rr-algebra of Borel sets of the real line A general
information system is a map p: $ x 0 X B -> [0, 1], where S is a set of states, 0 is a

set of observables and, for each state a and observable A, p(a, A, .): B -*¦ [0, 1]
is a probability measure, p(*x, A, B) being the probability in state a that observable
A has a value in the Borel set B e B- This covers the ground of Mackey's first axiom.
Additional axioms are:

2.1. (Separation) (a) p(a, A, B) p(F, A, B) \f A, B
=*• a a'

(b) p(a, A, B) p(ot, A', B) \f A, B
=> A A';

2.2. (Convexity) V (a,),"-*00 (0 < tt < f^f Hi tt 1

3 a denoted a Zt ti a,- such that

p(a.,A,B) Zttîp(ci,A,B) \/A,B;
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2.3. (Functional closure) V measureable functions / : R -> R, \/ A e 0
lf(A)<=0 such that
P(ol, f(A), B) p(x, A, f~l(B)), A a, B

Property 2.2 merely says that S has to be large enough to accommodate mixtures
of states with any weights (t^ff. Property 2.3 says that 0 has to be large enough
to accommodate measureable functions of a single observable; this property is
crucial for constructing Q0.

The measureable function &E: R -> R, the Heaviside step function on E e B,
has an inverse defined by &A(B) R if {0, 1} C B, 07Î1(-B) E if 1 e B and 0 $ B,
<PA(B) — E if 1 (£ B and Oe B and 0A(B) <f> otherwise. For any A and any
EeB, <PE(A) is a question and p(<x,&E(A), B) p(ot, A,0A(B)) 1 if {0, 1} C B,

p(<x, A, E) if 1 e B and 0 $ B, 1 - p(ot, A, E) if 1 £ B and 0 e B, and 0 if
1$ B and 0 ^ 73. Set Q0 is the set of all questions of this form, each one being characterised

by the numbers Ma(0E(A)) p(<x, A, E). The complement of 0E(A) is &E

(A), the partial ordering of Q0 is defined by ft < Q2 if Ma(Qf < Ma(Q2) for all a.
A question ft is said to be the meet of Qx and ft if Ma(Q3) ini{Ma(Qf, Ma(Q2)};
clearly not all pairs have meets but we may use the set {MfyQf)} as a runs over as a

definition of Q3 Qx A Q2. Joins are defined by taking complements Qx A Q2

Qi c\ Q2 and this gives us the lattice Qx alluded to in the introduction. The definition of
countable (or even continuous) meets in a similar way Ma(AieT QA iniieI {Afa(Ç,)}
where the set of indices / is countable (or continuous) defines the hulls Q2 (and Q3)

alluded to in the introduction.
A subset A C S is called convex if any countable family (a,)"^00 in K has all its

mixtures with any weights (t^ff, a. Z* ^> *¦ ^n ^- ^e se* °^ a^ convex subsets

of S will be denoted JC(S), which is not empty since S and <f> belong. For future
reference, the state a affirms Qx if Ma(Qf 1; a negates Q2 if Ma(Q2) 0 or if
Ma(Q'2) 1. A set of states which affirms (or a set which negates) a question is

convex. More generally St(Q) {a e S | Ma(Q) t] is convex for all t in [0, 1].

3. Convex Sets of States

The aim of the following list of definitions is to set up a dimension theoty of convex
sets of states which resembles as closely as possible the dimension theory of finite
linear subspaces of a vector space or module.

3.1. Definition
The convex hull R of a subset R C S is the set {oc ^-^5*<oc t{ af, where

V * 1, - -. n, 0 < tt < 1, a; 6 R and Z*-i h !}¦ Clearly if R g X(S) R=R,
and in general R Q R.

3.2. Definition

A set R C S is convexly independent if \f ol<= R a$ R — {a.}, i.e. a is not a

mixture of other states in R.
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3.3. Definition
A convexly independent set R C S is maximally convexly independent (is a

convexity basis) it R S-

3.4. Definition
The dimension of a convex set K e %(S) is the cardinal number fj,(K) \KO R\

for some convexity basis R.

The next developments are necessary to show that 3.1-3.3 are precisely analogous
to corresponding notions in linear algebra and to show that /u defined in 3.4 does not
depend on choice of basis.

Given two general information systems px: Sx x Ox X B -> [0, 1] and p2:
S2X 02X B -*¦ [0, 1] satisfying 2.1-2.3, a pair of maps rj: $x -> S2 and rj+: Ox -> 02
is a morphism if

3.5. Definition

pfa, A, B) p2(r,(F), rj+(A), B) \fa, A, B.

3.6. Proposition
The maps rj and rj+ which define a morphism between px: Sx X Or X B -> [0> 1]

and ^>2: S2 X O2 X B -* [0, 1] are set monomorphisms.

Proo/: (a) ij+(.4) jj+(4') -*A=A',
iorpx(oi,A, =p2(rj(«.),rj+(A), \/*eSx

p2(rj(a),rj+(A'), \f*e$x
px(ot,A', Vo.eSx

=> A A' by separation 2.1 (b) applied to px;
(b) 77(a) r)(F) =*¦ a a',
for k(«, ^, ^(,(a), ,+(A), V ^ e Ox

frfo(a'),fl+(4). •) V^eOL
px(F,A, V AeOr

-> a a' by separation 2.1 (a) applied to p^.

Convexity and functional closure are not invoked, so proposition 3.6 holds even when
2.2 and 2.3 do not. The same is true of the following

3.7. Proposition

For any separated general information system px : SXX OxX B -> [0, 1] and

any 1:1 map rj: $x -> S2 onto a set S2, there is a set 02 a map rj+: Ox -*¦ 02 and a

separated general information system p2: S2X 02X B -> [0, 1] isomorphic under the
pair (»;, 97+) to ^j.
Proof: Because of the separation property, 02 is specified by giving an S2-indexed
family of probability measures. Thus, let 02 {A'; A'a pfrj^fa), A, Vae S2)

and define p2: S2x 02X B^ [0, 1] by p2(ot, A', pfrj-^ot), A, ri+~1:02-*01
by rf- (A') A. Then »j-1, rj+ form an isomorphism ^>2 to px, so they are invertible
to (rj,r)+): px^p2.
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Corollary 1. The convex hull in S2oir](R), where R C Si, is the image under r\ of the

convex hull R in Si •

Proof: Let a /fx t{ a,- where each <x,- e R and observe that
px(a,A, .)=ZttiPMi,A, V^eOj

Zi*{Mri(*i), y+(A) A',
_ \fA'e02in 3.7.

Hence rj(a) Zt h *?(«,-) is contained in r?(i?) or rj(R) C rj(R). The reverse inclusion
is proved likewise.

Corollary 2. The image in $2 of a convexly independent set in Sr is convexly independent
in S2; the image in S2 of a convexity basis in Si is a convexity basis. The proofs follow
immediately from the definitions 3.2-3.3 and the application of corollary 1 to the
convex hulls entering into these definitions.

The stage is now set for the main

3.8. Fheorem

In an isomorphism class of general information systems satisfying 2.1 and 2.2
the cardinal numbers of any pair of convexity bases are equal to each other and to a

number, characteristic of the class, called the convex dimension of the class.

Proof: Let px: $x x Ox X B ->¦ [0, 1] and p2: S2 X 02 X B -> [0, 1] be isomorphic
under maps rj, rj+; and let Rx Q Sx and R2 C S2 be convexity bases. The proof
proceeds by showing that \RX\ < [ R2 | leads to a contradiction.

By 3.7 corollary 2, rj(Rf is a convexity basis for p2 and either (i) rj(Rx) C A2

properly or (ii) r](Rf u R2 — R (4= rj(Rf). In case (i) g a 6 i?2 — »7(^1) nonzero and

a e rj(Rx), contradicting the convex independence of R2. The case (ii) must be reduced
to (i) by a suitable isomorphism.

Let rj(Rf RvRx and R2= RDR2 Rf D R2 Rn Rf Rn Rf cf>, and

suppose I Rf I <| Rf j so there is a 1:1 map Ç900: Rf->Rf for which Rf Im<p00 is

properly contained in Rf. Define tp0: rj(Rf -> itj by ç>0(a) JJ7_1(a) if a e i?

iT^VooM) if *eRi ¦

whose image in Si is a convexity base for the new system defined by constructing cpf,
03 <p+(Of) and p3 as in 3.7. By construction ^(^(^(Rf))) RuRf properly
contained in R u Rf R2, reducing case (ii) to case (i).
Corollary. The cardinal numbers ftÇK) of definition 3.4 are independent of convexity
base.

Proof: For any convex K consider the non-separated general information system px:

Kx Oi X B -*¦ [0, 1] and the following equivalence relation in Of- Ax ~ A2 if
px(oi, Ax, pfai, A2, tor all a. in K. Let 02 Oxj~ and let [A] in 02 denote the
^--equivalence class which contains Oi-observable A. Then the map p2: Kx 02X B ->
[0, 1] defined by p2(<x, [A], px(oc, A, is a general information system satisfying
2.1 and 2.2 (possibly 2.3, too). For any convexity basis R of Si, Kf) R is convexly
independent in K. Moreover, An R A O R K O Sx K which means that
K(~)R is a convexity basis for the system defined by p2. By application of the
theorem to p2, \KOR\ /u(K) is independent of choice of R. The set 0C(S) of
convex subsets of the states for some p: S X O X B -*- [0, 1] is partially ordered by
the inclusion relation which will be denoted <. In fact, 0C(S) is a complete lattice
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with meets A«/ A,- =ntw A: for all /-indexed families of convex sets and
corresponding joins VieI Ki (J M Ki. Given a convexity basis R C S, these lattice
operations are conveniently expressed in the form
3.9. (a) AieIK.= nMkiy

(b) V{eIK{ Ui^ki
where kt R O Ki is the generator of K{ in the sense kt Ki. The unit of 3C(S) is S

and the zero is cf>, the empty set. Most of the properties assumed for suitable extensions
(such as Qf) of the Q0 associated with p are easily proved for Jt(S), as is shown in the
following

3.10. Fheorem
The complete lattice 0C(S) is orthocomplemented, weakly modular [12, 14] but

not modular (a fortiori not distributive) and atomic. The covering law [7] is also true
in X(S).

Proof: (i) Atomicity. The singleton sets {a} 6 0C(S) are atoms, for K < {a} and
K 4= {a} => K <f>.

(ii) Orthocomplementation. The axioms of orthocomplementation are
(a) K" K, (b) Kx < K2 ^=> A; < Kf, (c) K v K' <f>, K v A' S,

given a convexity basis R, define k= (RC\ K) Q K as above and let K' R — k.
To show that this is independent of basis let R0 be a convexity basis different from R
and let K° R0 — k0 where k0 R0 O K. If K' < A0, then by interchanging R and
R° A°< A', proving the identity of ' and °. Let a Zl-™ f> *< be an element of K'
so that each of the a/s lies outside A. But each a; outside A is a mixture of ßfs in k0:

a,- ^7T11°° Sjj ßj where the S;/s are suitable weights. Hence a is a mixture of ßfs
in k0, or a e A0. To prove (a) we note that k' R — k, k" R — (R — k) k,
therefore k" K" k K. To prove (b) we note that Kx < A2 implies that kx C k2

or, taking complements in R, that k'2 Q k'x. Hence kf<kf. To prove (c), we note
that knk' <f> and tf> cf>; also that k\Jk' R and R S-

(iii) Non-rrodularity. Denote {a t a,- + (1 — t) a.f, 0 < t < 1} by Ktj and let
ccs be some point in the interior of the interval K{,. Then Kis A (({oq} V {a,}) UT,- •)

Kts> i-K-is h {a,}) V {otj} Ktj and these must be equal if 0C(S) is modular.
(iv) Weak modularity. This property can be defined in three equivalent ways:
(a) Kx < K2 => A2 (A2 A Kf) V Kx;
(b) Kx < A2 and Kf AK2 <f,^Kx K2;
(c) Ai < A3 and A2 < A3' => (A3 v K2) /\ K3 Kx.

The equivalence is proved in Zierler's [14] lemma 1.3. Form (b) is easily proved:
Kf A A2 (f> => a/ n k2 cp1 and Kx <r K2 => kx C k2; by Boolean algebra in the

power set of R, k1 k2 and hence A, K2.
(v) Covering axiom. This takes the form Aj < Kx V {a} for some atom {a} <=

either K Kx or K Kx v {a}. The case {a} belongs to A3 is trivial since in this
case Kx y {a} Aj. In any other case a tu.x (1 — tf) a2, 0 < t < 1 and otj 6 A1(
a2 S K[ ; thus i?2 kx u a2 is a basis for Aj V {a}. Now A < A2 implies that
Kn R2 C R2. Let K d R2 k O k0 so that £0 Ç {a2} and since {a2} is an atom in
the Boolean algebra of the power set of R2, this implies that either k0 <f> (K K
or k, {a2} (K Kx V {a}).
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Not only does X(S) have the properties desired of the usual lattices of questions,
but in some weak sense elaborated below, it contains the questions. Moreover, the
containment is such that when the hull Qx of Q0 is formed, a fairly serious contradiction
can be produced. The set Q0 is first embedded in a set X(S)°° constructed as follows.

Let {V2}' be the set [0, x/2 [u] Va> 1] C [0, 1] and let X(S)CC be the Kronecker
product {/: {i/t}' -> X(S) \ / a map}. In X(S)œ let
3.11. (a) fi < f2 if fi(tf) < f2(tf) V*e{7,}',

(b) f FfeJfiif Ut) VieIUt) V«e{V,}',
(c) f ylte/ f, if f W AisI f,.(tf) V < e {V,}',
(d) fi f, if fx(tf) f2(tf)' V'e{Vi}'-

That 3((S)oo possesses essentially the same properties as X(S) is shown in the following.
3.12. Proposition

X(S)œ with the pointwise operations 3.11 is a (i) complete, (ii) atomic, (iii) ortho-
complemented, (iv) weakly modular but (v) non-modular (a fortiori non-distributive)
lattice in which (vi) the covering axiom is true.
Proof: (i) The R.H.S.'s of 3.11 (b) and (c) are defined since X(S) is complete, (ii) The
atoms of X(S)°° are obviously the functions f : {1/2}' -> S whose values are singleton
sets (atoms) of X(S). (iii)—(vi) are simple consequences of the corresponding properties
of X(S) which hold for all points of {^}'-

The embedding of Q0 in X(S)œ is described by the following
3.13. Fheorem

The map /: Q0 -* X(S)°° defined by j(Q) (tf) St(Q) {<* e S | Ma(Q) tf}

V tf E {Va}' is W one-to-one, (ii) monotone, and (iii) preserves complements only in
/he weak sense j(Q') < j(Q)', (iv) is not generally lattice-continuous in the sense

t((?i V ft) /(ft) V j(Qf) when the join on the left is defined in Q0.

Proof: (i) Let /(ft) /(ft) or SfQf S,(ft) if tf * Va- Since S CT, S((ft)
UtS,(Q~), Si/2((?i) Si/2(ft) aiso; and by separation ft ft. (ii) Let ft < ft or
M,(0i) < Ma(Qf) V oc 6 S. Then V*e [0, 1] CTS<, Ss(Qf Q Us<t SS(Q2) and also
CTs<t Sj(Çi) C Us<tSs(Q2). Taking complements of the smaller unions in larger,
St(Qi) Q SfQf), hence /(ft) < /(ft), (iii) For tf 4= Va. i(Q') W {^e I Ma(Ç)
1 - tf} C {a I Mœ(Ç) 4= tf} /(C)' (tf). (iv) Let ft. F ft. be defined in Q0, and let ft 4= 0.

Then {/(ft) F /(ft)} (tf) SfQf V S((ft) and /(ft V ft) (tf) {a £ S I sup[Ma(ft),
Ma(ft)] tf} Si(tf) C7 S2(tf) where Si(tf) {« | Ma(Qf) t and Ma(Q2) < tf} and
S2(0 {a | ATa(ft) tf and Ma(ft) < tf}. Both these sets are convex, and so is their
union, hence /(ft V ft) (tf) $x(t) V S2(t); and since Sx(tf) C S((ft) and S2(t) QSfQ.f),
it follows that /(ft F ft.) < /(ft) V /(ft.). The equality leads, however, to a
contradiction: /(ft F ft) (tf) {/(ft) F /(ft)} (tf) - Si(tf) SfQf) and S2(tf) St(Q2) or,
more explicitly, SfQf Ç Us<t SS(Q2) and Ss(Qf) Q C7,<s Sr(ft), which together
imply that S,(ft) C Ur<t Sr(Qx) or that S,(Çi) is empty for all tf, or that ft 0, the
null question.

Although this embedding theorem is not quite as tidy in the mathematical sense
as that, for example, quoted by Jauch [12] (p. 127), it has the merit of involving
states, rather than some mathematical extension of Q0 which could always be further
extended by a monomorphism without an obvious stop on the process of extension.
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The extension of Q0 stops here at X(S)°°, a set which is built out of the physical data
contained in the states.

4. Construction of a Hilbert Space

The lattice X(S) already resembles the lattice of subspaces of a normed space:
convex subsets of states are highly reminiscent of unit spheres of subspaces. Not
unexpectedly there is a 'dual' of X(S) which is indeed a normed space - in fact it is a

Hilbert space. The ensuing definitions are a first step towards constructing a 'dual' of
X(S).

Let R C C and C be a sfield with a valuation | | : C -> R+ and an involution * :

C -^C for which c* c \c\2 Ve eC. A function /: S -> C is convex if f(Zt h ai)

Zi h f (ai) f°r all mixtures Zt fy a> 0I states. Such functions exist in abundance, for
any map cp: R -> C from a convexity basis A of S extends to a convex fa[/ft ti a,)

Zt h tpfci)- Let R (<x,)»e/ be a convexity base for S- A convex function /: S -> C is

A-summable if \\f\\R Zt I/(a,-) J2 is finite. Such /'s exist: a function tp: R -> C which
is nonzero on only a finite number of states in the basis generates an / with ||/_ H^

Z> l^^i) !2' ^e sum of a finite number of real positive terms. The map [[. \\R clearly
satisfies the triangle inequality and ||c/||K \c\2 \\f\\R, which makes ||. \\R a semi-

norm on the linear vector space of A-summable functions. In fact j. \\R is a norm, for
||/||j{= 0 implies that |/(a;) |2 0 \j ie I and hence that / is the zero function.
A sequence of functions which is Cauchy with respect to the ||. ||Ä norm clearly has a

limit which is A-summable, so the space Tfl(S, C) of A-summable, convex functions
is a Banach space. In fact it is a Hilbert space whose inner product is given in the
following.
4.1. Proposition

The Banach space 7H(S, C) of C-valued A-summable convex functions on S is a

Hilbert space with respect to the sesquilinear form (fx,f2)R A&r/*(«*) f2(&i)-
Moreover, if R' (<x.f)jej is some other convexity basis for S the sesquilinear form
(fx,ff)R' is a multiple of the former (fx,ff)R- The Hilbert space will be denoted
\H(S, C).

Proof: By the Schwartz inequality (fx, ff)R converges. Sesquilinearity, completeness
and definiteness follow from above. The second part, (fx, ff)R (fx, ff)R, is proved
by showing that the two inner products generate the same orthocomplementation,
hence the result by straightforward application of a theorem of Birkoff von Neumann
(Ann. Math. ,57 823(1936). Kow (fx,ff)R 0 implies | (fx,f2)R |2 0 and | (fx,ff)R \2

Zt f,M /iW I2 ZiZAj li(«i) /tW I2 where *t =Z/iJ «/¦ Let T{J) =ZifU
and let the infimum of these (positive, finite) numbers be Fx. Then

{i (h, h)R i2 > n Zifv^s) fMj) \2 t\\ (A, u)R, n
thus (/i, ff)R 0 implies (fx, ff)R, 0. Similarly if F2 denotes the supremum of the
T(j), I (fx, h)R I2 < T2 | (fx, f2)R. \2 and (fx, ff)R. 0, thus allowing the Birkhoff von
Neumann theorem to be invoked.

The proposition 4.1 establishes that the Hilbert space H(S, C) does not depend
on choice of basis for the states. It remains to show that questions can be made into
projection operators on H(S, C) for any reasonable C.
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For any question ft let p(Q) be the characteristic function of the set SX(Q) of

states for which Q is true. Then define ft H(S, C) -> H(S, C) by (Q f) (a.) p(Q) (a) / (a).

The operator is obviously linear. Moreover (Q f, Q f)R Zt \P(Q) (a;) /(a;) I2 ano^ ^e
effect of the p(Q) (xf) is to cut out some of the summands which occur in ||/|[*,
ensuring the convergence of the sum ||Ç/||R The operator is a projector because

p(Q) (a)2 p(Q) (a), a property of characteristic functions.

5. Conclusions

The developments reported here, though not absolutely conclusive, seem to
suggest that the quantum logic approach to the foundations of microphysics is

unlikely to tell physicists that they must not use complex-valued wave-functions.
The whole question of the sfield is avoided by fixing attention only on the lattice
X(S) which has a 'dual' H(S, C) for any suitable C. In any case only the probabilities
p(a, A, E) enter the formation of statistical hypotheses to be tested by experiment.
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