
Zeitschrift: Helvetica Physica Acta

Band: 43 (1970)

Heft: 6-7

Artikel: Differentialraum-Quantentheorie

Autor: Ochs, W.

DOI: https://doi.org/10.5169/seals-114187

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114187
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


(.68

Differentialraum-Quantentheorie1)

von W. Ochs
Sektion Physik der Universität München

(11. V. 70)

Summary. Differential-Space Quantum Theory reformulates quantum mechanics as a theory
with hidden variables. In this new theory all observables of a physical system have welldefined
values which change in a deterministic way. In analogy to statistical mechanics a quantum
mechanical state (here regarded as a macro-state) is represented by an ensemble of micro-states
with an appropriate probability distribution.

The following paper contains a simplified presentation of Differential-Space Quantum Theory
and the underlying mathematics.

1. Einleitung

Von Anfang an war die Interpretation der Quantentheorie Gegenstand lebhafter
Auseinandersetzungen, die bis heute nicht verstummt sind [1-3]. Diese Auseinandersetzungen

entzündeten sich vor allem an der neuartigen Beschreibung mikrophysikalischer

Objekte, wie sie - unabhängig von aller Interpretation - in der formalen
Struktur der Quantenmechanik enthalten ist.

Bekanntlich gelang es nicht, den klassischen Zustandsbegriff, der allen beobachtbaren

Grössen eines physikalischen Systems gleichzeitig einen «scharfen», d.h. innerhalb

der experimentellen Fehlergrenzen reproduzierbaren Wert zuordnet, in die
Quantenphysik zu übernehmen. Dies liegt einmal an der Tatsache, dass bei allen
quantenmechanischen Systemen verschiedene Gruppen von Observablen auftreten,
deren experimentelle Bestimmung sich gegenseitig prinzipiell ausschliesst; zum
anderen scheiterten alle Versuche, den jeweils nicht gemessenen Observablen einfach
bestimmte hypothetische Werte zuzuordnen. Die Quantenmechanik verwendet daher
eine allgemeinere Zustandsbeschreibung, die von der Präparation physikalischer
Systeme ausgeht und jedem Individuum aus einem Kollektiv gleicher, identisch
präparierter Systeme den gleichen Zustand E zuordnet. Ein System im Zustand E
besitzt demnach nicht für alle Observablen eindeutig bestimmte Werte, sondern es

kann zu einer Observablen im allgemeinen mehrere Werte mit einer gewissen
Wahrscheinlichkeitsverteilung annehmen. Die Zustandsfunktion E gibt dabei zu jeder
Observablen % den Erwartungswert E (f&) an, der sich aus der Wahrscheinlichkeitsverteilung

der 2I-Messwerte ergibt. Diese Zustandsbeschreibung enthält nur noch
verifizierbare Aussagen, da sich in einem Kollektiv von gleichen, identisch präparier-

1) Auszug aus der Diplomarbeit des Autors, Frankfurt a. M. 1964.
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ten Systemen durch Bildung zufälliger Unterkollektive auch die Erwartungswerte
unverträglicher Observablen mit beliebiger Genauigkeit bestimmen lassen.

Diese im quantenmechanischen Formalismus enthaltene Zustandsbeschreibung
hat nun radikale Konsequenzen, welche die Interpretation des Zustandsbegriffs der

Quantentheorie bis heute umstritten machen: Erstens sind die an einem Objekt
messbaren Grössen keine «Eigenschaften», die das Objekt unter allen Umständen (und
damit unabhängig von einer Messung) besässe, sondern sie kommen dem Objekt nur
potentiell zu, und erst die Wechselwirkung des Objekts mit seiner Umgebung
entscheidet darüber, welche der Möglichkeiten sich realisiert. Das bekannteste Beispiel
für diesen «potentiellen» Charakter der quantenmechanischen Observablen finden wir
im Teilchen-Welle-Dualismus [4, 5]. Zweitens erlaubt die Zustandsbeschreibung der

Quantentheorie auch bei komplexen Systemen im allgemeinen keine exakte Analyse
ihrer zeitlichen Entwicklung als Zusammenwirken selbständiger Teilsysteme; im
Prinzip gilt jeder Prozess als unauflösbare Einheit. Dieser Unterschied zur klassischen

Physik wird besonders deutlich bei der Betrachtung verschränkter Systeme [6, 7]. Eine
Diskussion verschränkter Systeme, insbesondere des quantenmechanischen
Messprozesses, zeigt drittens, dass der quantenmechanische Zustandsbegriff nicht «objektiv»

ist, insofern sich die zeitliche Änderung des das Objekt beschreibenden Zustands-

operators nicht immer als Beschreibung der Entwicklung des physikalischen Objekts
auffassen lässt. Vielmehr ändert sich der Zustandsoperator bei einer Messung auch
durch Informationszunahme, die das physikalische Objekt nicht beeinflusst [8, 9].

Diese Konsequenzen der Quantenmechanik erschienen vielen Physikern
unannehmbar, und insbesondere Einstein liess die Quantenmechanik trotz aller Erfolge
nur als vorläufige Theorie der Mikrophysik gelten. Für Einstein war der statistische
Charakter des quantenmechanischen Zustandsbegriffs ein Zeichen für die Unvoll-
ständigkeit der Theorie, und er glaubte an die Möglichkeit einer deterministischen
Quantentheorie, deren Zustandsbegriff von den oben aufgezählten «Schwächen» frei
ist [10].

Eine vollständige und deterministische Formulierung der Quantentheorie, die
das unterschiedliche Verhalten gleicher, identisch präparierter Systeme auf
unterschiedliche Zustände der Systeme zurückführen will, muss offenbar den Zustand eines

physikalischen Systems durch Einführung zusätzlicher, experimentell nicht zugänglicher

(«verborgener») Parameter genauer charakterisieren als die Quantenmechanik.
Daher nennt man eine deterministische Formulierung der Quantentheorie auch eine

Theorie mit verborgenen Parametern (VP-Theorie).
Das Einsteinsche Programm einer deterministischen Theorie der Mikrophysik

blieb lange Zeit eine blosse Forderung, deren Realisierung nur Wenige für möglich
oder nötig hielten, und die Kopenhagener Deutung der Quantentheorie als

vollständige und adäquate Theorie der (nichtrelativistischen) Mikrophysik setzte sich

allgemein durch. Diese Entwicklung wurde vor allem auch durch v. Neumann
gefördert, der - scheinbar - nachwies, dass sich die statistischen Eigenschaften der
quantenmechanischen Zustandsfunktion in VP-Theorien nicht darstellen lassen [11].

Dennoch wurde im Jahre 1951 die Frage nach der Interpretation der Quantentheorie

erneut aufgeworfen, als D. Böhm eine erste deterministische Neuformulierung
der Quantentheorie vorlegte [12-14]. Böhms Theorie erfüllt einen Teil der Einstein-
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sehen Forderungen; insbesondere erlaubt sie - wenigstens im Prinzip - die
vollständige, deterministische Analyse aller quantenmechanischen Prozesse.

Andererseits sind die Observablen in der Bohmschen Theorie noch weniger
«Eigenschaften des Objekts» als in der orthodoxen Quantenmechanik. Der genaue
Zustand eines Objekts (und damit alle seine Zustandseigenschaften) werden in dieser
Theorie durch Parameter beschrieben, die sich unter keinen Umständen experimentell
feststellen lassen. Die Observablen charakterisieren dagegen die verschiedenen
Möglichkeiten, den Quantenzustand des Objekts - und damit das auf das Objekt wirkende
Quantenpotential - zu beeinflussen.

Obwohl die Bohmsche Theorie als Alternative zur Quantenmechanik kaum
akzeptiert wurde, bewies sie doch die Möglichkeit einer konsistenten VP-Theorie und
veranlasste dadurch die Entwicklung weiterer VP-Theorien [1].

In den Jahren 1953/56 schlugen N. Wiener und A. Siegel eine Formulierung der
Quantentheorie vor, deren Zustandsbegriff - im Unterschied zur Bohmschen Theorie -
ganz dem der klassischen Physik entsprach [15-17]. Diese Differentialraum-Quantentheorie

(DRQ) ist als deterministische Ensembletheorie in Analogie zur statistischen
Mechanik konzipiert : Ein physikalisches System im quantenmechanischen Zustand E
wird durch ein Ensemble virtueller Systeme dargestellt. Jedes virtuelle System
befindet sich in einem Mikrozustand, in dem jede Observable einen genau bestimmten
Wert besitzt. Dabei ist das Ensemble so gewählt, dass die im Quantenzustand E
auftretenden Streuungen von Observablenwerten gerade durch die unterschiedlichen
Mikrozustände der virtuellen Systeme des Ensembles beschrieben werden. Die
Zustände der virtuellen Systeme entwickeln sich deterministisch. Die DRQ lehnt sich
damit in ihren physikalischen Annahmen eng an die Einsteinschen Vorstellungen an.

Gegenstand der vorliegenden Arbeit ist eine vereinfachte Darstellung der DRQ.
Kapitel 2 enthält eine systematische Zusammenstellung der physikalischen Vorstellungen

und Annahmen dieser Theorie. In Kapitel 3 entwickeln wir den mathematischen
Formalismus der DRQ, der zu jedem quantenmechanischen Zustandsoperator ein
Differentialraum-Ensemble konstruiert und dessen zeitliche Entwicklung festlegt.
Wie Wiener und Siegel gezeigt haben, führen diese Differentialraum-Ensembles zu
den gleichen statistischen Aussagen über Messergebnisse wie die Quantenmechanik.
Der abschliessende mathematische Anhang enthält u. a. eine vereinfachte Definition
und die (für die DRQ) wichtigen Eigenschaften des Differentialraums.

2. Die physikalischen Vorstellungen der Differentialraum-Quantentheorie

Bevor wir den mathematischen Formalismus der DRQ entwickeln, gehen wir
zunächst ausführlich auf die physikalischen Vorstellungen und Annahmen ein2), die
N. Wiener und A. Siegel ihrer Neuformulierung der Quantentheorie zugrunde gelegt
haben [15-18].

2) Diese Einteilung vereinfacht die Untersuchung3) der Frage, inwieweit gewisse Mängel der
DRQ bereits aus den physikalischen Annahmen der Theorie folgen oder sich (ohne Ab-
schwächung der physikalischen Annahmen) durch blosse Änderung des mathematischen
Formalismus eliminieren lassen.

3) Eine solche Untersuchung wird demnächst veröffentlicht.
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Jede Theorie, die die aus der Quantenmechanik bekannten Erwartungswerte der
Observablen und ihre zeitliche Änderung durch Mittelwertbildung über ein Ensemble
deterministisch sich entwickelnder Mikrozustände herleiten will, enthält zwei Teile
mit eigenen Vorstellungen und Annahmen: Einen dynamischen Teil, der Konzeption
und zeitliche Entwicklung der Mikrozustände beschreibt und die dazu notwendigen
verborgenen Parameter einführt, und einen statistischen Teil, der erklärt, wie ein
Ensemble aus einzelnen Elementen mit vorgegebener Dynamik das aus der
Quantenmechanik bekannte (und experimentell bestätigte) statistische Verhalten zeigen kann.
Beginnen wir mit den Vorstellungen, die dem dynamischen Teil der DRQ zugrunde
liegen.

(I) Die DRQ übernimmt alle Axiome der Quantenmechanik, soweit sie nicht
unmittelbar die Interpretation des quantentheoretischen Zustandes betreffen.
Insbesondere macht sie folgende Annahmen:
a) Jedem physikalischen System ist ein komplexer, separabler Hilbertraum "U zu¬

geordnet, und es existiert eine bijektive Abbildung a der Menge aller Observablen
des Systems auf die Menge aller selbstadjungierten Operatoren aus ?/; dabei ist a
mit allen borelschen Funktionen vertauschbar.

b) Eine Observable kann nur Werte aus dem Spektrum des zugeordneten Operators
annehmen.

Die Übernahme dieser Voraussetzungen ist nicht verwunderlich, da Wiener und Siegel

ja die quantitative Beschreibung der nichtrelativistischen Mikrophysik durch die
Quantenmechanik als vollkommen exakt akzeptieren und lediglich eine neue,
deterministische Interpretation ihrer Resultate mit Hilfe eines neuen Zustandsbegriffs
einführen wollen.

(II) Jedes physikalische System befindet sich in einem sogenannten Mikrozustand,
in dem alle Observablen einen wohldefinierten, durch die Vorgeschichte des Systems
eindeutig bestimmten Wert haben. Darüber hinaus ist der Mikrozustand eines einzelnen

Systems durch Angabe der Werte aller Observablen des Systems bereits eindeutig
festgelegt. Es gibt also in der DRQ keine zusätzlichen, prinzipiell «verborgenen»
Parameter, sondern alle den Mikrozustand definierenden Parameter sind messbar.

Verborgen sind sie nur insofern, als (in einem bestimmten, durch die experimentelle
Präparation definierten Makrozustand des Systems) nie alle Observablen gleichzeitig
gemessen werden können, sondern nur jeweils eine Untermenge von miteinander
verträglichen Observablen. Daher lässt sich der Mikrozustand eines physikalischen
Systems auch nicht experimentell bestimmen, wird aber von der DRQ als real
vorausgesetzt.

(III) Für jede Observable gibt es (im Prinzip) eine ideale Messung, die den Wert
dieser Observablen und der mit ihr verträglichen Observablen nicht stört. Die ideale
Messung registriert den bereits vor der Messung vorhandenen, «objektiven»
Observablenwert.

(IV) Die zeitliche Entwicklung des Mikrozustandes ist deterministisch, d.h. der
Mikrozustand zur Zeit t t0 bestimmt den Mikrozustand zu allen Zeiten eindeutig.
Darüber hinaus wird in einem (im Sinne der Quantenmechanik) abgeschlossenen
System die Änderung des Mikrozustandes allein durch die Struktur des Systems (den
Hamiltonoperator) bestimmt.
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(V) Der statistische Teil der DRQ ist wesentlich durch die Annahme charakterisiert,

dass der «statistische Überbau» der eben grob umrissenen Dynamik der
Mikrozustände den gleichen Prinzipien genügen soll wie in der klassischen statistischen
Mechanik und dass alle Unterschiede zwischen DRQ und statistischer Mechanik nur
auf die unterschiedliche Dynamik der individuellen Systeme (Mikrozustände)
zurückzuführen sind. Das bedeutet: Da jede experimentell realisierte Situation (jeder
experimentell präparierbare Makrozustand) nur wenig Information über den
Mikrozustand des betreffenden Objektes enthält, repräsentiert man einen solchen
Makrozustand zweckmässig durch ein Gibbssches Ensemble identischer «virtueller» Systeme.
Ein Gibbssches Ensemble hat zwei wesentliche Eigenschaften: 1. Seine Elemente
stimmen in allen Observablenwerten, die wir vom Originalsystem mit Sicherheit
aussagen können, sämtlich mit diesem überein. 2. Bei den übrigen Observablen, von
denen wir nur die Erwartungswerte kennen, verteilen sich alle mit unseren Kenntnissen

vom Originalsystem verträglichen Observablenwerte so über die Elemente des

Ensembles, dass die Mittelung über alle Ensembleelemente (mit Hilfe einer geeignet
zu definierenden Wahrscheinlichkeitsverteilung) für alle Observablen gerade die

experimentell beobachtbaren Erwartungswerte ergibt.

(VI) Der Verwendung der Gibbsschen Ensembles liegt in der DRQ - wie in der
statistischen Mechanik - die physikalische Annahme zugrunde, dass die Ensembles
nicht nur formale Bedeutung haben, sondern auch stets ein statistisches Kollektiv
realer, identisch präparierter Systeme repräsentieren können. Folgerichtig besitzt
daher jede physikalisch sinnvoll definierbare Teilmenge eines Gibbsschen Ensembles
eine nichtnegative Wahrscheinlichkeit, die als relative Häufigkeit der (in der
Teilmenge liegenden) Mikrozustände in einem statistischen Kollektiv identisch präparierter

Systeme interpretiert werden kann, unabhängig davon, ob sich die betreffende
Teilmenge von Mikrozuständen auch experimentell isolieren lässt.

(VII) Was den Umfang und die Eigenschaften der experimentell präparierbaren
Makrozustände angeht, so übernimmt die DRQ hier ebenfalls die als exakt
angesehenen Aussagen der Quantenmechanik und setzt insbesondere voraus:

a) Es existiert eine bijektive Abbildung {r der Menge aller Makrozustände 3B auf die

Menge aller positiv semidefiniten, normierten selbstadjungierten Operatoren W
aus "U, und der Erwartungswert der Observablen 31 a^(A) im Makrozustand
2B - ¦d-1(W) ist gegeben durch E(%) Sp(AW)

h) Ein physikalisches System besitzt zu jeder vorgegebenen Situation einen unitären
«Entwicklungsoperator» U(t, tf), der die zeitliche Entwicklung des Zustands-

operators durch die Beziehung W(t) U(t, tf W(t0) U+(t, tf
eindeutig bestimmt.

(VIII) Durch die Präparation des Makrozustandes ist die Wahrscheinlichkeitsverteilung

der Ensembleelemente im Zustandsraum eindeutig festgelegt. Im Laufe
der zeitlichen Entwicklung eines physikalischen Systems ändern sich im allgemeinen
die Mikrozustände der einzelnen virtuellen Systeme, d. h. die den virtuellen Systemen
zugeordneten Punkte des Zustandsraums durchlaufen eine bestimmte Bahn im
Zustandsraum. Dabei darf sich aber die Wahrscheinlichkeitsverteilung der virtuellen
Systeme im Ensemble nicht ändern. Denn diese Verteilung ist durch die Art der
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Präparation (und damit durch eine bestimmte Information) festgelegt und kann nur
durch eine neue Information über den Makrozustand (d.h. durch eine Messung)
geändert werden.

Im Anschluss an diese systematische Zusammenstellung der physikalischen
Annahmen der DRQ überlegen wir uns noch, dass die obigen Annahmen die Theorie des

Messprozesses im Rahmen der DRQ bereits eindeutig festlegen.
Betrachten wir etwa den Vorgang einer exakten Messung der Observablen 31 an

einem mikrophysikalischen Objekt. Gegeben seien das Objekt und ein zur exakten
Messung der Observablen 31 geeignetes Instrument; beide mögen sich vor der Messung
in wohldefinierten Makrozuständen befinden, so dass auch der Makrozustand des

zusammengesetzten Systems Objekt + Instrument vor Beginn der Wechselwirkung
gegeben ist. Dieses Gesamtsystem beschreibt die DRQ nach Annahme (V) durch ein
Ensemble zusammengesetzter virtueller Systeme, dessen statistische Eigenschaften
dem vorgegebenen Makrozustand des realen Systems äquivalent sind. Während der
Wechselwirkung zwischen Objekt und Instrument verändern sich die Mikrozustände
aller Ensembleelemente gemäss der Annahmen (IV) und (VII), bis nach Beendigung
der Wechselwirkung ein spezieller, für die exakte 3I-Messung charakteristischer
Makrozustand des Ensembles erreicht ist: 1. Der Wert der Observablen 31 ist während
der Wechselwirkung bei allen virtuellen Systemen konstant geblieben. 2. Die Wechselwirkung

zwischen Objekt und Instrument hat eine enge Korrelation (im Idealfall eine

eineindeutige Zuordnung) zwischen den Werten der Observablen 31 und den Werten
der zugehörigen Instrument-Observablen 31® hergestellt, so dass eine (als problemlos
angesehene) Ablesung des Wertes der makrophysikalischen Observablen 3I® den
Wert von 31 vor der Messung angibt.

Wir unterscheiden nun zwei Arten von Messungen:

a) Bei der ersten Art interessieren wir uns für den Makrozustand des einzelnen
realen Objekts nach der Messung. Dazu lesen wir nach Beendigung der Wechselwirkung

zunächst den Wert von 31 am Instrument ab (z.B. 31 af) und betrachten

dann das Teilensemble aller Ensembleelemente mit dem 31-Wert ak. Die
statistischen Eigenschaften dieses Teilensembles repräsentieren nun eindeutig
den Makrozustand des Originalsystems nach der Messung, da der Prozess

Wechselwirkung + Ablesung + Auswahl des Teilensembles mit 31 ak die gemeinsame,

wohldefinierte Präparation von Teilensemble und Originalsystem darstellt.
Diese Art der präparativen Messung nennt man eine Präparation oder Filter,
da dieser Messprozess nur Systeme mit ganz bestimmten Zuständen «durchlässt».

b) Bei der zweiten Art der Messung interessieren wir uns für den Erwartungswert
F(3I) der Observablen 31. Mathematisch ergibt sich £(31) einfach als Ensemblemittel

des den Makrozustand repräsentierenden Ensembles. Kennt man aber den
Makrozustand und damit die statistischen Eigenschaften des Ensembles nicht, so

muss man das virtuelle Ensemble durch ein Kollektiv identisch präparierter
Systeme «realisieren» und den Erwartungswert E(31) experimentell bestimmen.

Damit die DRQ eine gültige, alternative Formulierung der Quantentheorie
darstellt, müssen natürlich beide Arten der Messung zu dem von der Quantenmechanik
geforderten Ergebnis führen, i.e. im ersten Fall zu dem Makrozustand 1F2

Pak Wx PaJSp(Wx P und im zweiten Fall zu dem Erwartungswert F (31) Sp(WA).
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Diese Überlegungen zeigen, dass sich die Erklärung des Messprozesses im Rahmen
der DRQ bereits aus den Annahmen (I) bis (VIII) ergibt, ohne dass dabei eine
zusätzliche Voraussetzung notwendig wäre, wie sie der Schnitt (i.e. die Vernachlässigung
der Interferenzglieder im Zustandsoperator des zusammengesetzten Systems nach
Abschluss der Wechselwirkung) in der quantenmechanischen Beschreibung des

Messprozesses darstellt. Das ist auch nicht verwunderlich; die Operation des Schnittes
setzt ja den quantenmechanischen Zustandsbegriff voraus, bei dem auch in einem
maximal bestimmten Zustand stets mehrere Zustände «koexistieren», d.h. kohärent
überlagert sind. Der Zustandsbegriff der DRQ ist dagegen so konzipiert, dass eine
Koexistenz verschiedener Zustände unsinnig ist. Daher ist auch eine dem Schnitt
analoge Operation in der DRQ unmöglich und überflüssig.

3. Der mathematische Aufbau der Differentialraum-Quantentheorie

Nachdem wir im letzten Kapitel die physikalischen Vorstellungen der DRQ
skizziert haben, kommen wir nun zum mathematischen Aufbau der Theorie.

Ähnlich wie in der statistischen Mechanik werden die Mikrozustände in der DRQ
durch Punkte eines Zustandsraums dargestellt, und den Gibbsschen Ensembles
entsprechen Wahrscheinlichkeitsbewertungen der Punktmengen im Zustandsraum.
Zur Konstruktion des Zustandsraums verwendet die DRQ den von N. Wiener
untersuchten Differentialraum4). Unter einem Differentialraum verstehen wir die Menge S
aller komplexen Zahlenfolgen x (£1; f2> ¦¦¦), auf der folgende Strukturen definiert
sind:

a) Führt man auf den Lebesgue-Mengen M der komplexen Zahlenebene C das Mass

i r
/ dx dy exp{— (x2 + y2)}

n J
M

oo

ein, so ergibt sich auf dem kartesischen Produkt £=XCS durch Bildung des
»-i

Produktmasses ein normiertes Mass /i, das wir als Wienermass bezeichnen.

b) E enthält als Teilmenge den Hübertraum I2 aller quadratsummierbaren komplexen
Zahlenfolgen. Jedem Element a (a,, a2, aus I2 wird durch die Vorschrift

oo

<«M:=27a*£"
n »1

eine lineare Funktion auf E zugeordnet, die nach einem Satz von Wiener ^u-fast
überall endlich ist.

c) Zu jedem unitären Operator U aus I2 lässt sich eine fastunitäre Transformation U
in E konstruieren, die 1. fast überall auf E definiert ist, 2. dort die
Eigenschaften eines unitären Operators besitzt, 3. auf I2 mit U übereinstimmt und 4.

//-masstreu ist.

4) Eine Definition des Differentialraums und eine Zusammenstellung seiner wichtigsten
Eigenschaften finden sich im Anhang; hier begnügen wir uns mit einer anschaulichen Charakterisierung.
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Der Differentialraum stellt also eine Erweiterung des Hilbertraums dar. Eine
solche Erweiterung erweist sich als nützlich, wenn man ein drehinvariantes Mass
einführen will; dabei nimmt man in Kauf, dass die Hilbertraumstruktur von I2 bei der
Erweiterung weitgehend verloren geht [19, 20].

Die DRQ ordnet nun jedem physikalischen System einen Differentialraum D von
gleicher Dimension zu wie der des Hilbertraums aus Annahme (I) ; dadurch lässt sich
der (einem System in der Quantenmechanik zugeordnete) Hilbertraum "U stets als
Teilraum des (dem System in der DRQ zugeordneten) Differentialraums T) auffassen.

Jedes Element von D soll ein virtuelles System in einem wohldefinierten
Mikrozustand darstellen. Um dies zu erreichen, definiert die DRQ auf dem Differentialraum
zu jeder Observablen 31 des physikalischen Systems im Makrozustand 2ß eine
Observablenwertfunktion °AW, deren Funktionswerte °Aw(x) gerade aus den
Eigenwerten des Operators A <r(3l) bestehen. Das geschieht durch die

Definition (3.1)5)

Sei W= £ wi Qi der Zustandsoperator zum Makrozustand eines physikalischen
Je/CN

Systems und sei A £ an Pa der Operator zur Observablen 31. Mit Hilfe einer ge-
neKQ N "

eigneten festen Vorschrift6) wählen wir aus y Qt 'U ein normiertes Element y mit der
iel

Eigenschaft

(VneK) [Sp(WPaJ *0~<y|P.Jy>*0]
und konstruieren mittels y die Indexmengen

L(A, W) := {n e K C N | Sp(W PaJ > 0}

ç/ a im \ t\ \<y\Pas\x)\2 \<y\P.t\x)
S(x, A, W) := < s e L \ — * — min

<y | Pv j y> Sp(W Paf teL <y\ Pa{ | y> Sp(WPaA

Die Observablenwertfunktion definieren wir schliesslich durch

°AW := ax mit t(x, A,W):= min {s e S}

Wie man sich leicht überlegt, sind die Funktionen °AW für alle diskreten7), selbst-
adjungierten Operatoren A und alle Zustandsoperatoren W im ganzen Differentialraum

eindeutig definiert und sind dort endlich und Wiener-summabel.

6) Wiener und Siegel haben in ihren Arbeiten [15-18] verschiedene Definitionen der Obser-
vablenwertfunktionen °AW angegeben, die zudem alle elementare Zustandsoperatoren
W |<y<ip[ voraussetzen. In Definition (3.1) führen wir Observablenwertfunktionen für
beliebige Zustandsoperatoren ein, und für elementare Zustandsoperatoren stimmt diese
Definition mit der jüngsten Definition von Siegel [18] überein.

6) Ein Beispiel für eine solche Vorschrift geben wir im Anhang III.
7) Definition (3.1) ordnet nur Operatoren mit diskretem Spektrum eine Observablenwertfunktion

zu, und diese Zuordnung lässt sich nicht ohne weiteres auf Operatoren mit
beliebigem Spektrum ausdehnen. Vom physikalischen Standpunkt aus scheint dieser Punkt
nicht wesentlich, da sich eine Observable mit beliebigem Wertebereich stets durch eine

- experimentell von ihr nicht unterscheidbare - Observable mit hinreichend dichtem, diskretem
Wertebereich ersetzen lässt.
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Die Gesamtheit aller Observablenwertfunktionen definiert nun zu jedem Element
xeX) durch die Beziehung

Xw (%):=»Aw(x) (3.1)

eine neue Funktion Xw auf der Menge aller Observablen des betrachteten Systems.
Die Funktion %w ordnet bei vorgegebenem Zustandsoperator W dem Punkt xeX)
zu jeder Observablen genau einen der - nach Annahme (I) möglichen - Observablen-
werte zu. Damit können wir unmittelbar den Zustandsraum der DRQ einführen.

Kinematisches Postulat
Bei vorgegebenem Makrozustand 3B definieren die Funktionen %w zu jedem

Punkt aus X) eindeutig einen bestimmten Mikrozustand und machen TA damit zu
einem Zustandsraum für das betrachtete physikalische System.

Nun müssen wir durch eine geeignete Gewichtsverteilung der Mikrozustände im
Zustandsraum die Gibbsschen Ensembles einführen. Hierfür verwendet die DRQ
einfach die mit der Definition von X) bereits vorgegebene Wahrscheinlichkeit /j. Unter
Berücksichtigung der ^-Integrierbarkeit der Funktionen °AW formuliert die DRQ ihr

Statistisches Postulat
Jeder Observablen 31 eines physikalischen Systems im Makrozustand Ï8 ist durch

Definition (3.1) eindeutig eine Zufallsgrösse °AW auf dem Differentialraum X)
zugeordnet: Bei einer Serie unabhängiger 31-Messungen im Makrozustand SB treten die
Funktionswerte von °AW mit der zugehörigen Wahrscheinlichkeitsverteilung als

Messergebnisse auf.
Damit ist das Differentialraum-Ensemble zu einem vorgegebenen Makrozustand

eingeführt und es fehlt lediglich noch die Definition der deterministischen Bewegung
der Zustandspunkte im Differentialraum. Die DRQ konstruiert diese zeitliche
Entwicklung der virtuellen Systeme in enger Anlehnung an die Quantenmechanik:

Dynamisches Postulat
Ist U(t, tf der Schrödingersche Entwicklungsoperator im Hilbertraum des

betrachteten physikalischen Systems, so wird die Bewegung der Zustandspunkte im
Differentialraum durch die Bewegungsgleichung

*(*) Ü(t, tf X(tn) (3.2)

beschrieben, wobei U die durch U in X)induzierte fastunitäre Transformation bedeutet.

Aus diesen Postulaten lässt sich nun die zeitabhängige Wahrscheinlichkeitsverteilung

aller Messwerte berechnen.

Satz 1. Sei 3t eine beliebige Observable, <t(3I) A JfanPan der zugeordnete
n

selbstadjungierte Operator und U(t, tf der unitäre Entwicklungsoperator eines

quantenmechanischen Systems. Befindet sich das System zur Zeit t t0 im
Makrozustand 2B0, so ergibt sich aus den obigen Postulaten folgende Verteilungsfunktion
für die Wahrscheinlichkeitsverteilung der 3I-Messwerte zur Zeit t y t0 :

*W«. t) E SP \W* U+(t, tf P% U(t, tf] (3.3)
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Dieser Satz zeigt, dass die DRQ mit ihrer ensembletheoretischen Ableitung der
Streuung von Messwerten zu den gleichen Ergebnissen kommt wie die
Quantenmechanik.

Damit ist unsere Darstellung der DRQ abgeschlossen. In einer weiteren Arbeit
werden wir untersuchen, inwieweit die DRQ als konsistente VP-Theorie gelten kann.

ANHANG I

Einführung in die Theorie des Differentialraums

Vorbemerkung. In den zwanziger Jahren entwickelte N. Wiener eines der ersten
nichttrivialen Masse auf der Menge aller komplexen Funktionen [21, 22]. Ausgehend
von anschaulichen Vorstellungen über die Wahrscheinlichkeitsverteilung aller
möglichen Bahnen in der Brownschen Molekularbewegung konstruierte Wiener auf der
Menge $1 aller komplexen Funktionen über dem Intervall (— n, n) einen
Wahrscheinlichkeitsraum (91, £, fj) mit der Eigenschaft, dass für jede endliche Zerlegung
— n ^ a.x < ßx < • • • < ßN y n die Differenzen tp(ßj) — tp(o.A einen Gaußschen Zufallsvektor6)

mit den Eiwartungswerten 0 und den Varianzen ßt — a; bilden. Diese
«gewichteten » Funktionen - von Wiener auch Brownian motion functions genannt - sind
fast alle stetig und in keinem Punkt differenzierbar; darüber hinaus bilden die
Grössen inj y>(t) e~int dt für n #= 0 einen Gaußschen Einheitsvektor*). Mit Hilfe einer
formalen Differentiation der zugehörigen Fourierdarstellung lässt sich eine bilineare
Verknüpfung / / dip* zwischen den Elementen des Hilbertraums \-\-Vi ^ und den
Brownian motion functions definieren. Dabei erscheint der Ausdruck / / dxp* als eine
Art Skalarprodukt von / e L2 (mit Fnn\itionswerten als Komponenten) und dem
«Vektor» dtp, dessen Komponenten aus den «Differentialen» d%p(t) bestehen. Diese

Veranschaulichung der Brownian motion functions als Vektoren mit stochastisch
unabhängigen Komponenten dip(t) führte zu dem Namen Differentialraum [15, 21].

Bei näherer Betrachtung sind aber die analytischen Eigenschaften der Brownian
motion functions ohne Bedeutung für die DRQ. Der mathematische Formalismus der
DRQ benötigt lediglich eine bestimmte Klasse von eineindeutigen Abbildungen
g: X) -^ E des Differentialraums auf die Menge aller komplexen Zahlenfolgen mit der
Eigenschaft, dass q(x) einen GEV auf X) darstellt. Wir verwenden daher in dieser
Arbeit einen vereinfachten Massraum, der nur noch die für eine Formulierung der
DRQ notwendigen Eigenschaften des Differentialraums besitzt; trotzdem werden
wir diesen «ärmeren» Raum ebenfalls als Differentialraum bezeichnen.

Einführung des Differentialraums
Auf der c-Algebra B aller Borelmengen des R2 definieren wir das normierte Mass

q>(M) — / exp {- (x2 + y2)} dx dy (A1)

Unter einem (komplexen) Gaußschen Zufallsvektor versteht man eine Vektorfunktion auf
einem Wahrscheinlichkeitsraum, bei der die (Real- und Imaginärteile aller) Komponenten
unabhängig- und normalvcrteilt sind. Als Gaußschen Einheitsvektor (GEV) bezeichnen wir
einen komplexen Gaußschen Zufallsvektor, bei dem die Real- und Imaginärteile aller
Komponenten sämtlich den Erwartungswert 0 und die Varianz 1/2 besitzen [23].
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Die bijektive Abbildung t: (x, y) -*¦ x + i y des R2 auf die unitäre Gerade C

induziert in C das Wahrscheinlichkeitsfeld (A, cp) := (1(B), î(ç>)) und definiert so den
Wahrscheinlichkeitsraum (C, A, cp). Nun bilden wir den Produktmassraum

© (C„. An, cpf (xcn, © An, © cp\ (A2)
n 1 \ n - 1 n 1 n --1

aus D gleichen Wahrscheinlichkeitsräumen und erhalten durch Vervollständigung
von (x) An bzw. ® cpn den neuen Wahrscheinlichkeitsraum (E, C, /F). E ist gerade die

n n
Menge aller komplexen Zahlenfolgen x (£x,ij2, ¦¦¦) der Länge D, und D bedeutet
eine Kardinalzahl < X0.

Führt man in der Untermenge H={xeE\2Jj\Ci\2< °°} aUer quadratsum-
î l d

mierbaren Folgen aus E das Skalarprodukt (d, g/=fff ôf yt ein, so stellt 'U einen
i-l

Hilbertraum dar. Wir wollen nun den Definitionsbereich des Skalarprodukts über
D

"U X 71 hinaus ausdehnen. Offensichtlich ist die Verknüpfung (x, y) 2J |* r){ nicht
M î l

für beliebige Paare x, yeE definiert, da der Grenzwert lim £Ç* rjj nicht immer
Dn~* » -

existiert. Es zeigt sich aber, dass der Ausdruck (d \ x) £ <5* lj für alle d G~U und
»-1

fast alle x eEexistiert9). Um das zu sehen, betrachten wir zunächst alle Verknüpfungen

der «natürlichen» Basiselemente en := (0,..., 1, 0,...) mit beliebigen Elementen x.
Die Funktion en(x) := <[en \ x) £„ ist nach Konstruktion in ganz E definiert, endlich
und jM-messbar. Ausserdem folgt aus der Definition des Massraums (E, £, ft)

pi {x e E | Re eH(x) < v{, Im et.(x) <ut; i=l, ,n)

[Jcp{ÇeC j Re| < vit Im| < u,}
s«l

n

[J f {(x, y) e R2 | x < Vj, y < u,}
i i

11 ¦ 7= / dx e-x* •-=- dy e~yS. (A3)
i-i fa J v* J

-oo -oo

Die Funktionenfolge ex(x), e2(x), bildet also einen GEV. Ist nun d (ôx, ô2, ¦¦¦)
ein beliebiges Element aus "U, so schreiben wir formal

d(x):=(d\x)=]Tô*ej(x). (A4)
«-i

Bekanntlich konvergiert jede abzählbare Linearkombination von Komponenten
eines GEV mit quadratsummierbaren Koeffizienten fast überall gegen eine endliche

9) Eine spitze Klammer auf einer Seite eines Skalarprodukts bedeutet, dass das betreffende
Element in ^ liegt.
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Zufallsvariable [24]. Folglich ist d(x) eine endliche Zufallsvariable auf (3,C,ß).
Ausserdem hat die Verknüpfung - bis auf den unsymmetrischen Definitionsbereich

- alle Eigenschaften des normalen Skalarprodukts.
Definition (AI). Den Wahrscheinlichkeitsraum (E, £, pi) mit dem oben definierten

Skalarprodukt (¦'¦¦) bezeichnen wir als Differentialraum X)-

Eigenschaften des Differentialraums
Die wesentliche Eigenschaft des Differentialraums besteht darin, dass die

Unabhängigkeit der Zufallsvariablen dfx), die oben für die «natürliche» Basis {en}

abgeleitet wurde, für alle orthonormierten Basen {dn} von H gültig bleibt.

Satz (AI). Ist {ha, a e K} eine beliebige Menge orthonormierter Elemente aus "U,

so bilden die Funktionen ha(x) := (ha \ x) einen | K j-dimensionalen Gaußschen
Einheitsvektor [22].

Im Falle eines endlichdimensionalen Folgenraums fällt E offensichtlich mit seinem
Unterraum ?/ zusammen und das Wienermass pi ist invariant gegen unitäre
Transformationen in E. Die Aussage von Satz (A1) über die richtungsunabhängige gemeinsame

Verteilung der Basis-Zufallsvariablen <Aœ | x) lässt eine analoge Eigenschaft des

Wienermasses auch für den Fall eines unendlichdimensionalen Folgenraums erwarten.
Nun kann man den Begriff der unitären Transformation nicht unverändert auf X)

übertragen, da weder die «Länge» (x \ x)112 noch alle Komponenten (hx | x) für alle
Elemente x eX) existieren bzw. endlich sind. Wir werden aber eine Transformation in
X) definieren, die fast überall die Eigenschaften einer unitären Transformation
aufweist. Die Idee besteht darin, die «aktive» unitäre Transformation von E mit Hilfe
der richtungsinversen, «passiven» Koordinatentransformation zu definieren, d.h.
durch eine Drehung der natürlichen Basis {y}.

Definition (A2). Zu jeder unitären Transformation U des Hilbertraums H (f_E
definieren wir in E zwei Zuordnungen

U: x=(ÜxA2,.. -+y (r]x,r]2,

m- x (£xj2, ...)-?*= (fi.C,
durch die Vorschrift

Vi := <et Û x):= (II-1 et j x)

Ç,:=<e,\Û#x): (Uet\x). (A5)

Lemma (A2). a) Die Zuordnungen U und CT** bilden jeweils eine Teilmenge vom
Masse eins umkehrbar eindeutig auf eine andere Teilmenge vom Masse eins ab.

b) Der Teilraum ?/ ist vollständig in den Werte- und Definitionsbereichen aller
Abbildungen Û und tfi enthalten und in U gilt Û U, Û* U+= U~\
c) Die Abbildungen Û und Ö* sind durch die sie induzierende unitäre Transformation
U umkehrbar eindeutig bestimmt.
d) Überall in "U und fast überall in E gelten die Beziehungen

(TJ-1 h\x) (h\Û x) (Uh\x) (h\lßtx)
Û Û# Û# Û 1

(e) Die Abbildungen U und Uw sind linear.
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Beweis : Nach Definition gilt

Ü x (rjx, r]2, mit rjt (î/"1 ^ | x) - : <A; | x) hfx)

Wie wir gesehen haben, sind die Funktionen hfx) fast überall eindeutig definiert und
endlich; folglich ist auch Û x für fast alle x eindeutig definiert. Der Wertebereich M
von U ist die Menge aller Folgen (hx(x), h2(x), Bezeichnen wir die Menge aller
Folgen (hx(x),...,hn(x),in+x,...) mit Mn, so gilt Mn\ M und aus Satz (AI) folgt
pt(Mf 1 für alle n. Damit ergibt sich pi(M) 1. Das gleiche Ergebnis gilt natürlich
auch für £/#. Wie wir weiter oben gesehen haben, konvergiert eine Linearkombination

der Komponenten eines GEV genau dann fast überall, wenn auch die Summe
der Absolutquadrate der Koeffizienten konvergiert. Ist nun g (yx, y2, ein belie-

ü
biges Element aus "U, so gilt £ \yn |2 < oo und wir erhalten

n 1

(U-1 g | x) (U^Evi «¦ I *) =Erf <[/"1 ei I *) =ErT <e* ü x)
i i

(£yt e,\Ûx) (g\Û x)

fast überall. Entsprechend ergibt sich

<Ug\x) (g\ Ü#x)

fast überall. Ist N nun der Schnitt der Definitions- und Wertebereiche der beiden

Abbildungen U und Û#, so gilt

(et x) (U U-1 e,\x) (TJ-1 et \ Û* x) (et | Û Û* x)

für alle i und alle x e N. Wegen pi(N) 1 ergibt sich U c7# 1 fast überall und
entsprechend £/# 0—1 fast überall. Daraus folgt ebenfalls die Eineindeutigkeit von Û
und &* fast überall. Damit haben wir die Behauptungen a) und d) bewiesen. Die
übrigen Aussagen ergeben sich unmittelbar aus den entsprechenden Eigenschaften
der unitären Transformation U.

Die oben eingeführten Abbildungen U, £/# haben also fast überall die
Eigenschaften einer unitären Transformation; daher bezeichnen wir sie als fastunitäre
Transformationen. Mit Hilfe dieser Begriffsbildung lässt sich nun die vermutete
Drehinvarianz des Wienermasses auch im Falle eines unendlichdimensionalen
Differentialraums präzise formulieren.

Satz (A3). Das Wienermass pi ist invariant gegen fastunitäre Transformationen
in 7J.

Beweis. Sei S die Klasse aller Zylindermengen der Form

f n \ D \

X I*<) x (X Cr) {*eS | ev.(x) e I,(] i 1,... n}

i

wobei die Iv. offene, zusammenhängende Intervalle aus Cv bedeuten. Offensichtlich
ist S ein Semiring [24]. Für ein beliebiges Element M e S folgt dann

ÛM {Ûx\ev.(x)eIV{}={x\hv.(x)eIVi} mit hv.(x) := <hv.\x) :- <U ev.\x). (A6)
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Da die Funktionen hv. nach Satz (AI) Komponenten eines GEV sind, so ergibt sich

(VMeS) UMeC- (AT)

Setzen wir Si := Û S := {Û M \ M e S}, so folgt aus (A7)

°SXCC (A 8)

und das bedeutet: U ist C-messbar. Damit ist die Funktion pt(U.) auf ganz £
eindeutig definiert.

Ist M {xeE \ ev.e Iv; i 1, n} wieder ein beliebiges Element aus S,

so gilt nach (A6) Û M {x \ hv.(x) e Ff-
Da die gemeinsame Verteilung der Zu fallsvariablen evv eVn bzw. hVx, hv„

nach Satz [1] identisch ist, erhalten wir für alle M eS

pi(M)=pt(ÜM) (A9)

Nun besitzt jedes auf einem Semiring erklärte Mass genau eine Fortsetzung auf
die von dem Semiring erzeugte a-Algebra [24]; damit ergibt sich aus (A9)

(VMeQ pt(M) pjt(ÜM) ¦
ANHANG II

Beweis von Satz 1. Im Interesse einer besseren Gliederung beweisen wir
zunächst folgenden

Hilfssatz. Sei X) ein Differentialraum von mindestens zwei Dimensionen; sei

{hr,r 1, R,2 < R < dim X)} eine beliebige Menge orthonormierter Vektoren
aus "U C X> und sei {pr ,r=l,...,R} eine Menge reeller Zahlen mit der Eigenschaft

R

pr > 0, Z, pr= 1; sei S(x) die Teilmenge der Indizes aus {1, R} mit der Eigen-
r-l

schaff

| -\(hs |%)|2 min - \(hr \x)\2

und sei r(x) := min {s e S(x)}, Mk := {x e E j x(x) k). Dann gilt

Mm f\ Mn 0 im m * n; \J Mj S (A10)
»-i

und

fi(MJ=p„. (All)
Beweis. Aus den Voraussetzungen erkennt man unmittelbar, dass die Funktion

r(x) in ganz X) eindeutig definiert ist. Daraus folgen bereits die Beziehungen (A10).
Die Messbarkeit der Funktionen (hr \ x) impliziert die Messbarkeit der Mengen

Ark:=\xeE\]- \(hr \ x) j2 < - - \(hk \ x) j2} (A12)
{ fr Pk
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und damit auch die Messbarkeit der Mengen (") Ajr. Nach Konstruktion unterschei-
R r-l

den sich die Mengen |") Asr und Ms höchstens durch niederdimensionale ^-Null-
r-l

mengen; folglich sind auch die Mengen Ms messbar und es gilt
R n

pi(Ms) pi{f] Asr) lim^n A,r) ¦ (A33)
r 1 r 1

n
Um pt(Ç\ Asf zu berechnen, verwenden wir die Invarianz von pi gegen fastunitäre

Transformationen in X)- Ist TJ eine unitäre Transformation aus H mit der Eigenschaft
et U hj für i 1, R, so folgt aus Satz (A3)

t4r\Asr)=pc(Ûf\Asr)=pt(f)ÛAsr).
r r r

Aus (A12) ergibt sich

FA., - {ÜxeSl - \(hfx)\2 ^ \(hr\x)\2
Ps Pr

xeE\ — I (TJ hAx)\2 < — |<C/äJ *) I2

Ps Pr

*\ J K(*)|2<y \er(x)\2\ - :B,

(AU)

(A15)

Aus (AI4), (A15) und der Produktkonstruktion des Wienermasses erhalten wir dann

09»i PI 4, fürs<«
-i-l J V-1 '

^in^r) -
y, ® ©Vi)i-i /

(A16)

r|ßsr für s> «

Ohne Beschränkung der Allgemeinheit können wir s < n annehmen, da uns nur der
Grenzwert n -» R interessiert. Aus (A15) ergibt sich

©J (\\b\ \- f dux... f dvn exp(-j>? + i£
J-l J \r=l / n J J i-l

P, ("1 + "2) S *>s («2 + »2) für i-l,.., n

drx drn exp j- ^r,
/>,¦ r < £„ r? für i 1,.., «

^ e~l ¦ TJ / ^r e~

!**s (^>s) Za-
(A17)
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Aus (A 13), (A 14) und (A17) folgt schliesslich die Behauptung (All)
Ps

pi(Mf=pi (fl4r) =j™^ Ps

Ei
»-i

Nun lässt sich Satz 1 leicht beweisen. Setzen wir

P vany

<y\Pa\yyK ¦ — ÏT-1-XÏ- und pn := S^(TT Paji

für alle n mit S/>(PFP0n) 4= 0, so bilden die hn ein System orthonormierter Elemente
aus 11 und für die pn gilt: pn> 0, fffpn= 1. Die A„ und ^B erfüllen also die Voraus-

n
Setzungen des Hilfssatzes, und ein Vergleich von Definition (3.1) mit den
Voraussetzungen unseres Hilfssatzes zeigt unmittelbar, dass die - in beiden Fällen auftretenden

- Funktionen r(x) identisch sind. Damit ergibt sich für die Observablenwertfunktion

von 31 der Ausdruck

Uw(x)=aT{x)=2JanCh(Mf. (A18)
n -1

Aus (A18) und dem statistischen Postulat folgt dann bereits

FA,w(a) ¦= Pr{A <a}= pt{xet>\ °Aw(x) < a)

E^Mn) =EPn=ESP(WPaJ ¦ (A1Q)
an<a an<a an<a

Da dieses Ergebnis für alle Zustandsoperatoren W gilt, können wir die zeitliche
Entwicklung eines physikalischen Systems durch den Operator W0 (des Zustandes zur
Zeit t t0) und den unitären Entwicklungsoperator U(t, tf) ausdrücken und erhalten
schliesslich

^ÄM)=27^>(t/iF0t/+paj. ¦an<a

ANHANG III
Vorschrift zur Auswahl eines Elements y(W) eH zu Definition (3.1)

Wie man sich leicht überlegt, existiert eine Abbildung X von K in J mit der
Eigenschaft

(V n e K) (Sp(W PaJ +- 0 - Sp(Qx(n) PaJ 4= 0)

Daher können wir zu jedem Index ne K ein normiertes Element zMn) e QMn) § finden
mit den Eigenschaften

(V n e K) (zMn) | P^ | *AW> * 0

und

(V(n,r)eKxK) (zMn) zxM oder <y,„, | y(r)> 0)
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Nun wählen wir eine beliebige Folge {bt; i e T:= X(K) C /} positiver Zahlen mit der
Eigenschaft 0 < j| ^f bi z{ jj < oo und konstruieren das Element

ieT

ZbjZj
y:= fzV'il

ieT

Ist Sp(WP„f 4= 0 für einen beliebigen Index re K, so gilt

(F I Par \ V) yyy- ||2
{b'ir) <*aw I p.r I *am> +27*? <*i i Par | *i>} •

II Z, °« zi || i *A(f)
ieT

Nach Konstruktion ist der erste Summand positiv und der zweite Summand
nichtnegativ. Damit erfüllt das oben definierte y die gewünschte Beziehung

Sp(WPJ * 0 ¦> (y | Pa I y> 4= 0 für alle r e Ä ¦
Herrn Professor Dr. G. Süßmann danke ich für die Anregung zu dieser Arbeit und für viele

wertvolle Hinweise und klärende Diskussionen. Herrn Professor Dr. H. Dinges danke ich für
einige kritische Anmerkungen.
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