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Spectral Concentration for the Helium Schrodinger Operator

by P. A. Rejto?)

Institut de Physique Théorique, Université de Genéve and School of Mathematics, University of
Minnesota, Minneapolis, Minnesota 55455, USA

(23. 1V. 70)

1. Introduction

According to a well known discovery of Stark the spectral lines of an atom in an
electric field split. For the case of the hydrogen atom, Schrédinger [1] used his
perturbation theory to compute these split levels. His results coincided with the
experiments with great accuracy. Then Oppenheimer pointed out [2] that according
to physical intuition the entities computed by Schrédinger cannot be point eigen-
values of the corresponding Schrédinger operator. Later this intuition was established
rigorously by Titchmarsh. At the same time he proposed an asymptotic description
of Schrédinger’s problem.

It was observed by Riddell [13, 14] and elsewhere [11] that the phenomenon of
spectral concentration holds for a large class of abstract operators, including the family
of Schrodinger operators corresponding to hydrogen in an electric field.

In this paper we show that the phenomenon of spectral concentration also holds
for the family of Schrédinger operators corresponding to helium in an electric field.
Actually instead of the helium atom we could consider a heavier atom but we shall
not be concerned with this fact. Specifically we show that near any isolated eigen-
value of the helium Schrédinger operator we have concentration of order 4, for each
positive integer p. For the important special case of p = 1, this is implied by a
theorem of Hunziker [20c] which says that the point eigen-functions corresponding
to isolated eigen-values of multiparticle Schrédinger operators die out at infinity
faster than any power of the independent variable. Another special case was treated
elsewhere [21].

In Section 2 we summarize some known facts about the helium Schrdodinger
operator. Then we apply the abstract concentration theorem [11, 13, 14] to the
family of Schrédinger operators corresponding to helium in a weak homogeneous
electric field. This application is carried out in Theorem 2.1. The key assumption of
this theorem is that near each isolated eigenvalue, for each integer #, the first p formal
perturbation equations do admit solutions.

1) This reseanch was supported by the Swiss and U. S. National Science Foundtions under
grants GP-12361 and GP-21331.
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In the short Section 3 we consider an abstract perturbation problem and for-
mulate two lemmas. They are versions of two other lemmas formulated elsewhere [21a].

In Section 4 we return to the proof of Theorem 2.1. In Theorem 4.1 we formulate
a property of our perturbation problem which allows the application of Lemma 3.2.
This yields the validity of the key assumption of Theorem 2.1. Roughly speaking, it
describes the effect of each of the electron-nucleus potentials on the helium bound
states. For special circumstances Theorem 4.1 was formulated elsewhere [21b]. The
novelty of the present Theorem 4.1 is its generality. In particular that it holds for
each isolated eigen-value. Its proof uses an elegant observation of Combes [22b]
concerning commutators of abstract operators. At the same time we make essential
use of Lemma 4.1. The proof of this lemma, in turn, makes essential use of the fact
that the electron-electron potential is repulsive. '

For related work on spectral concentration we refer to the forthcoming papers of
Veselic.

It is a pleasure to thank Professors Jauch and Zinnes and Mr. Salah for valuable
conversations. In particular the author appreciates his introduction to the works of
Hunziker and Combes.

2. Formulation of the Concentration Theorem

For the unperturbed operator we take the helium-Schrédinger operator. To
describe it in more specific terms let €«(E;) denote the class of infinitely differentiable
functions with bounded support in &, the real Euclidean space of dimension 3. The
Schrédinger operator in atomic units [5], corresponding to the helium ion Het, is
given on €w(E;) by

(Het) = — = df — 2 M (—:) f, e Gl (2.1)

Here and in the following we use a dot to emphasize that a given operator is defined
on Eux(Es). In equation (2.1) A denotes the Laplacian and M (1/7) denotes the operator
of multiplication by the function

1 1
— (%) = — x€&.

v [x!’

According to Kato (3, 13i] the operator He+ is essentially self-adjoint on (\foo({ig) and
the domain of its closure equals the domain of the closure of A. That is

D(Het) = D(A) .
Next define the function ¢ on £ by
g(x) = ((xg — x3)® + (25 — %)% + (¥, — 2y)%) 712 (2.2)

and let M(q) on (fw(Ee) be the operator of multiplication by this function. Using the
usual notations for the Kroneker product of operators [17], the helium-Schrédinger
operator in atomic units is given on Cx(E,) by [5b]

He = Het ® I + I ® Het + M(q), (2.3)
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where I denotes the identity operator on £,(&,). Actually, it would be sufficient to
define this operator on

Qioo(g;;) ® 600(53) = Goo(es) »

but we shall not be concerned with this fact. Remembering definition (2.1), we see that
i : : 1 | :
Hezﬁz[zl ®I+I®A}+—2M()®I-21®M(;—)+M(q).
y
According to Kato [3, 13g] this operator is essentially self-adjoint on (_f,oo(Es) and the

domain of its closure equals the domain of the Laplacian. More specifically for the
domains of the closures of these operators we have the following inclusions,

DHe)=DUR@I+1I®4)), (2.4)
DHe) « D (M (71) ® I) , DHe) <D (I ® M (;)) , (2.5)0@
D(He) <« D(M(q)) . (2.6)
For brevity, we shall set
wo (L) -u (Y er. —
7 v
M® (.1m) —ITOM (_1_) (2.7)®
3 4
and
AD=ARI+1RA4. (2.8)

Note that superscripts correspond to the decomposition

32(86) - 22(83) ® 32(83) ;

For the perturbation V' we take the operator corresponding to a homogeneous
electric field. More specifically it is the closure of the operator V' given by

Vi = (xg+x) f(x), 2€&, [€Cx(E) - (2.9)
We define the family of perturbed operators on ('zw(gs) by setting
He(e) = He + ¢ 1. (2.10)

More specifically, we denote by He(e) an arbitrary self-adjoint extension of this
operator, Since the operators He(e) commute with conjugation, the existence of such an
extension is ensured by a theorem of von Neumann [8]. We do not know whether such
an extension is unique or not. The corresponding question for the hydrogen Schrédinger
operator was treated by Ikebe and Kato [9]. They showed that in this case the ex-
tension is unique. Note that at least formally, the operator He(g) is the Schrédinger
operator corresponding to the helium atom in a homogeneous electric field of intensity
¢ [5c].
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Next let H(e) be a given family of self-adjoint operators acting in an abstract
Hilbert space. For a given Borel subset B, of the real line let E (¢, B,) denote the spectral
projector of H(e) over B,. Following a terminology used elsewhere [11], we shall say
that near a given point 4,, the spectrum of the family of operators H (¢) is concentrated
to order p, if there is a family of sets B,, such that

E(e, B,) > E(0, {4y}) as ¢ >0,
and
|B.| =o(e?) at e=0.

Here, the left member, denotes the Lebesgue measure of B, and convergence means
strong convergence.

After these preparations we return to the family of Schrédinger operators in
(2.10). The theorem that follows is our main theorem and it says that near isolated
eigen-values of the helium Schrodinger operator the spectra of these operators is
concentrated in this technical sense.

Theorem 2.1. Let the heliwm Schridinger operator He be defined by equation (2.3)
and let the family of operators He(e) be defined by equation (2.8). Suppose that A is an
1solated point eigen-value of He. Then for each positive integer p, near the point A the
spectra of the family of operators He(e) is concentrated to order p.

According to a theorem obtained by Riddell [14, 13i] and elsewhere [11], the
phenomenon of spectral concentration occurs under general circumstances. To
describe these circumstances, following Kato [13a], we say that a given subset & of
D(T), is a core of the given operator Tif the closure of its restriction to & equals 7.
In particular, if 7 is essentially self-adjoint on & then & is acore of T. Using this
notion the assumptions of the abstract spectral concentration theorem adapted to
our operators, are implied by the following;

A 1s an isolated point eigen-value of He of finite m-multiplicity, (2.11)

as & converges to zero, the operators He(e) converge strongly
to He on a set which is a core of the unperturbed operator He, (2.12)

the first p formal perturbation equations corresponding to the family He(e) at
the point A admit m linearly independent solutions for each positive integer p. (2.13)

Thus to establish Theorem 2.1 it suffices to establish these three conditions.

To verify condition (2.11) we need a theorem of Zhiclin [7] and Hunziker [20].
This says that the essential spectrum of the operator He consists of an interval.
Hence each isolated point eigen-value is of finite multiplicity and condition (2.11)
follows.

To verify condition (2.12) recall that according to Kato the operator He is
essentially self-adjoint on €« (E). It is clear from definition (2.10) that for each vector
f of this set ‘

lim He(e) f = He f.

g—0

Hence condition (2.12) follows.
It remains to verify condition (2.13) which we shall do in the two sections that
follow.
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3. A Sufficient Condition for the Solvability of the Perturbation Equations

Let H and V' be possibly unbounded symmetric operators acting in some abstract
Hilbert space § and assume that the intersection of their domains is dense. Define the
family of operators H(e) by

He)=H+ ¢V on DH) N DY) . (3.1)
Suppose that 4, is an isolated point eigen-value of H and formally set
Me) ~ DA & (3.2)
j=0
and
fle) ~ D)1 6 (3.3)
j=0
and
H(e) f(e) ~ Ale) f(e) - (3.4)

Carrying out the multiplication of the formal power series in this relation and equating
the coefficients of the like powers of ¢, we obtain the following set of recursive equations,

(H - /‘10) fo =0, (3-5)0

(H — ) 1, =_Z)Lj faj =V iia, n=12 ... (3.5),
=0

This set of equations is called the set of formal perturbation equations corresponding
to the family H(e) at the point 4,. Note that in general f(¢) is not an eigen-vector and
A(e) is not eigen-value of H(e), in fact such formal power series need not exist. The
lemma that follows is a version of a lemma formulated elsewhere [21a] and accordingly
we state but do not prove it. It gives sufficient conditions for the solvability of these
equations. These conditions are implied by the ones of Riddell [14b].

Lemma 3.1. Lef A, be an isolated point eigenvalue of $ of finite multiplicity, and let
E{Ay} denote the spectral-projector over Ay. Suppose that there is a subset S of § such that

E{d}H =G (3.6)
and

Ve 6 (3:7)
and

A—H+E{A}D1C cS. (3.8)

Then for each positive integer n the first n formal perturbation equations corresponding
to the family (3.1) at Ay, that is equations (3.5), through (3.5), do admait solutions. Further-
more, the number of linearly independent solutions equals dim E{A,} 9.

The assumptions of Lemma 3.1 are rather general and it is difficult to verify them
for specific operators. The lemma that follows, is again a version of a lemma formulated
elsewhere [21a] and accordingly we state but do not prove it. It formulates assumptions
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which are adapted to our perturbation problem and which imply the main ones of
Lemma 3.1. In it B($H) denotes the space of bounded operators defined on all of § and
o(T) denotes the resolvent set of a given operator 7.

Lemma 3.2. Let the operators A, ,, be self-adjoint on the given domains D(A, ,) in
D and let Ay in p(Ay) be an isolated eigen-value of Ay + A, of finite multiplicity with
spectral-projector E{A,}. Suppose that

Ay (Ag— Ay)1eB(H) . (3.10)
Suppose further that an infinite sequence of sets, By = 9, By, ..., s given such that for
each integer n

4, (B, ND(4y) = B, (3.11),
and

(Ag— A49)7' B, < B,. (3.12,)

Then the set
S=N 3B, (3.13)
n=-0
satisfies assumptions (3.6) and (3.8) of Lemma 3.1 withreferencethe operator H = A,+ A, .

4. Application of Lemmas 3.1 and 3.2 to the Helium Schrédinger Operator

We start by defining two different splittings of the helium Schrédinger operator
and applying the abstract Lemma 3.2 to each of them. To describe these splittings we
introduce two operators by setting

FO® — He — MOE@ (i) on Cwl(&) , (4.1)0@
7

and defining F®:® to be their closures. In analogy with previous notation we also set
M, f(x) =x,1(x), r€&, [eCun(&), 1=1,2,...,6 (4.2)

and define the operator M, by closure. Note that subscripts refer to the decomposition

22(86) = ‘82(81) ® 22(51) ® 22(81) & 32(51) ® 22(51) ® 82(81) i

The key fact in the application of the abstract Lemma 3.2 is formulated in the
theorem that follows. It extends a result formulated elsewhere for any isolated eigen-
value of the hydrogen Schrodinger operator [16] and for the lowest eigen-value of the
helium Schrédinger operator [21]. The proof of this theorem is based on an elegant
observation of Combes [22b] used in connection with his study of the decay of the
eigen-functions. Init as before for a given operator Twe denote by p(T) the resolvent set.

Theorem 4.1. Let the operators FV-@ be defined by equations (4.1)P@. Suppose
that the real number A is an isolated eigen-value of the helium Schrodinger operator He.
Then,

A€ o(F®) N o(F®) (4.3)

42
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and for each positive integer n
(A — FO.@) -1 D(M?) < D(M?) . (44"

To verify conclusion (4.3) we need a result of Zhislin [7] and Hunziker [20a].
This says that the essential spectrum of the helium Schrédinger operator is given by

o,(He) = [inf o(He"), co)
Hence for the isolated points of the spectrum we have
A < inf ¢(He™) (4.5)

At the same time it follows that 1 is of finite multiplicity, although we shall not make
use of this fact. As is well known [23], under circumstances more general than ours,
the spectrum of a Kronecker sum is the sum of the spectra. This yields

- 1
o (— EA XI+IT® He+) = [inf o(Het), o) .

Remembering that the operator M (g) is positive we obtain from these relations that
o(FW) < [inf g(Het), co) (4.6)

Insertion of this relation in (4.5) shows that 4 is in o(F"). A repetition of this argu-
ment, that we shall not carry out, shows that 4 is also in o(F®). This establishes the
validity of conclusion (4.3).

To verify conclusion (4.4)" we first note that for each positive integer =
(i + M)~" £5(Eg) = D (0 + M))* = D(M) .

Next in analogy with Section 2 we denote by B(L,(E,)) the space of bounded operators
defined on all of £,(&,). Hence remembering the definition of the product of unbounded
operators we see that conclusion (4.4)” is implied by

(¢ + M)" (2 — PO (0 4 M)~ € B(Ly(&)) - | (+.7)"

To verify the validity of this relation for n = 1, following Combes [22b] we note
that there is an elementary relation between the commutator of the inverse operator
(A — F®)~1 and the commutator of the original operator (A — F®). Specifically we
have

[+ M), (A — F)] = (A — FO) [+ M), (A— FOT (A — FO7, (48)
on (A — FO) Ce(&,). |

Remembering definition (4.1)® we see that

(i + M), (A — FO)] = [(i — M), A%9] on Cu(Ey). (4.9)
Combining these two relations we obtain

(6 + M), (A — FO)-1] = (1 — FO-1[(; + M), AL (A — FO)-1, (4.10)*
on (A — FO) Cp(E,).
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Next we define a set € by setting

Ch = (i + M) (A — FO) Ceo(E) (4.11)!
and an operator QW(4) on it by setting

QM) = (A= FO)71 4 (4 — FO) [(i + M), 4% 3 — FO)7 (i + M)~ (4.12)"
Inserting these two definitions in equation (4.10)! we arrive at

¢+ M) (A— FO)-1(; + M)t = O®(3) on €. (4.13)!

The lemma that follows will imply that this set is dense. In it, for a given set & we
denote by & its closure.

Lemma 4.1.%) Suppose that the number A is an isolated eigen-value of the helium
Schrodinger operator He. Then for each positive integer n

(i + M)" (A — FO®) C(E) = L5(Ee)?) - (4.14)@

To verify this lemma we introduce some notations. Let B, denote the ball in &
of radius 7, specifically set

B, ={x: x| <7, xe&}.

In analogy with previous notation we define the class €«(B,) and the space Ly(B,).
For a given operator 7" we denote by T, the £,(B,) closure of its restriction to C»(B,).
As is well known [13d] a densely defined symmetric operator does admit a closure.

%) Added in proof. .
Since F(U(2) is essentially self-adjoint on €u(E,) it follows from conclusion (4.3) of Theorem
4.1 that

(A — FO@) Cu(E,) = L,(E) -

In other words this set is dense. It is an interesting fact observed by McCarthy that the operator
(i + M ;)" need not map any dense subset of its domain onto a dense set. The following counter-
example is due to him. For brevity let # = 1 and let M denote the multiplication operator on
L5(&,)- Define the set It by

o0
I =1 f: f € 8,(E,) and the support of fis compact and f fx)dx =0¢
—oo

An elementary argument that we shall not carry out shows that I is dense. At the same time we
see that for every fin I we have

f(i+M)f(x)-T_|1_~;dx==0.

In other words the function

g = ——

-

is orthogonal to the set (i + M) k. Therefore this set is not dense.
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We first maintain that in analogy with relation (4.6) we have
o(FY) < [inf o(Het), oo) . (4.16),

For, according to a result of Kato [13g] to each positive number ¢ there is a number
y(e) such that for every function f in €«(Eg), in particular in €»(B,),

) 1 .
[(~2am () + M@) 1] <elan2 1]+ 6 1] 415)

In other words, the restriction of the operator on the left is e-bounded with reference
the restriction of the operator on the right. As is well known [13g] the restriction of
A2 to Co(B,) is essentially self-adjoint in €,(B,). According to a theorem of Rellich
and Kato [13e], these two facts together imply that the sum of these two operators is
essentially self-adjoint on Gw(B,) in £4(B,). At the same time it follows that in this
case the closure of the sum is the sum of the closures. Remembering definitions (4.1)®
and (2.1) we obtain the essential self-adjointness of F{!) on Cw(B,) in Ly(B,).

We see from this essential self-adjointness that the numerical range of F{! is
contained in the closure of the numerical range of its restriction to €(B,). Since FU
is essentially self-adjoint on €x(Eg) and Cu(B,) is a subset of Cw(Ey), We obtain that
the closure of the numerical range of F{) is contained in the closure of the numerical
range of FV. In symbols,

w(FO) < p(FO) |

It is an elementary consequence of the spectral theorem that the convex hull of
the spectrum of a self-adjoint operator is closed and that it equals the closure of the
numerical range. Applying this fact to the operator F¥ we obtain,

w(FO) < [inf o(Het), 0o) .

These two relations together yield

»(FY < [inf o(He"), o0) .

¥

Combining this relation with the essential self-adjointness of F{!' we arrive at the
validity of relation (4.15).

Relations (4.5) and (4.15) together imply that 1 is the resolvent set of F{!. This,
in turn, implies that

(A — F%) Go(B,) = L4(B,) (4.16)

if we remember that F1 is essentially self-adjoint on €(B,) and that on this set the
operators F{" and F® are equal. Clearly for each positive integer » the restriction of
the operator (i + M,)" to £,(B,) is bounded and admits a bounded inverse. Hence this
operator maps a given dense subset of £,(B,) onto another dense subset. Inserting this
fact in relation (4.10) we obtain

(i -+ M)" (A — F®) Ceo(B,) = £4(B,) -
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From this, in turn, we obtain

e e}

(@ + M) (2 — FO) Co(E) D U L4(B)) (4.17)

r=0

if we remember that the closure of a union equals the union of the closures and that
U G:OO(B?') = (500(86) :
r=0

Since the right member of (4.10) is dense in £,(E,) we arrive at
(0 + M) (A — F) oo Eg) = Lo(E,) -

That 1s to say, conclusion (4.14)® holds.
Replacing the operator FW by F® in the present argument we arrive at the
validity of conclusion (4.14)®. This completes the proof of Lemma 4.1.

In conclusion let us remark that this lemma extends a result of Combes [22c],
masmuch as his result shows that the intersection of the ortho-complement of the
set in (4.14) with © (¢ + M) consists of the zero vector only.

We return to the proof of conclusion (4.4)L. First we claim that the closure of the
operator QW(4) of definition (4.12)" is bounded and it is defined on all of £,(&,). That
1s to say,

OD(1) € B(Ly(Ey)) . (4.18)1
To verify this relation we first note that

(6 + M, A%Y] = — D, on Cw(E) -
Insertion of this fact in definition (4.12)! yields

QYA) = (A — FO)1 — (A — FO-1 D, (A — FO)=1 (7 + M), on €. (4.19)1

As is well known [13, 18] the operator D, is bounded with reference to the
operator A%, Relations (4.16) and (4.6) together with definition (2.1) show that the
operator F is bounded with reference the operator 442, Combining these two facts
we obtain

(A — FO)7 D, e B(Ly(E)) - (4.20)

Inserting this fact in relation (4.19)! we arrive at the boundedness of Q®(4) on G
From this, in turn, we arrive at the validity of relation (4.19)! if we remember that
according to Lemma 4.1 the set €' is dense.

Next we insert relation (4.18)! in the key equation (4.13). This shows that

(¢ + M) (A — FO)=1 (7 + M) is bounded in G .
To complete the proof of relation (4.7)! we need an observation of Kato [13b]. This

implies that if the closure of the operator A on U admits a bounded inverse and C
on € is closable and such that

CCcU,
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then the closure of the product of 4 and C equals the product of the closures, that is
AC=A4-C.

Applying this abstract proposition to
A=(@E+M), A=Cul&),
C=AQA—FO) 10+ M), C=(@E+M)A— FO1E(E)

we obtain that the E!-closure of the above triple product equals the product of the
closures. Remembering that this triple product is bounded on €' and that ! is dense
we arrive at

(0 + M) (A — FO)7 (i 4 M)~ € B(Ly(Ey)) -

This establishes the validity of relation (4.7)! if we observe that in the arguments
leading to it the operator F® can be replaced by F®.

To verify relation (4.7)" in the general case we employ induction on #n. We have
already seen that it holds for #» = 1. Accordingly assume that it holds forn = &2 — 1
and we show that it also holds for # = k. To verify this wé first need a generalization
of relation (4.10)1, Specifically we need that for each positive integer %

(6 + M)*, (A — FO)1] = (A — F®)1 [i + M)k, A%] (4 — FO)-1 (4.10)*
on (A — FQ) Gfoo(&;) "

A repetition of the arguments leading to relation (4.10)! shows the validity of
this relation and for brevity we skip the details of the proof. In analogy with definition
(4.11)* define the set €% by

Ck = (i + M)k (A — FD) Coo(Ey) , (4.11)*
and the operator Q¥(4) on it by setting

Q®A) = (A — FO) =1 (A — FO)71[(7 + M)*, AL2]) (A — FO)-1 (7 + M)—*% (4.12)%
Inserting these two definitions in equation (4.10)* we arrive at

(i + M)* (A — FO)-1 (4 + M)~% = QW(1) on C*. (4.13)%

Remembering definition (4.11)* we see from Lemma 4.1 that the set €% is dense. Next
we maintain that the operator Q'¥(4) is bounded on it. More specifically we maintain
that

QW(2) € B(Ly(Ee)) - (4.18)*
For, it is an elementary fact that

[ + M)k, ALD — —k (i + M)E—1D, — k (k— 1) (¢ + M)* =2 on Coo(Es) -
Inserting this fact in definition (4.12)* we obtain

QRA) = A — FN)1 Rk (A— F (o 4+ M)*-1D, (A — FO) (5 + M)-*

—kk—1)(A— FO)1 (g + M)*k2 (A — FO)1 (7 4+ M)~k (4.19)%
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We see from the induction hypothesis that the third term on the right is a bounded
operator. To see the boundedness of the second term, note that

(i + M)¥=1, D)) = — (k — 1) (i + M)*¥2 on CuolEp) .
Hence on €% we have

(A— FO)-1(; 4 M)*=1D, (A — FO)-1 (4 + M)~—* =

= @A—FO7D, (6 + M)* (A — FO) (i + M)~* —

— (k=1 A — FOT 0+ M)*=2 (A — FO)7 (i + M)~*.

The induction hypothesis together with relation (4.20) shows that each of the two
operators on the right are bounded. Hence the second term on the right of equation
(4.14)* 1s also bounded and according to the already established conclusion (4.3) so
1s the first term. Inserting this fact in equation (4.19)* we arrive at the boundedness
of the operator Q*(1) on €% From this, in turn, we arrive at the validity of (4.18)%
Relation (4.18)* implies relation (4.7)* similarly to the way relation (4.18)! did imply
relation (4.7)1. Thus relation (4.4)" holds for each positive integer # and this establi-
shes the validity of conclusion (4.7)". This completes the proof of Theorem 4.1.

Next we derive the main Theorem 2.1 from Theorem 4.1 and from the abstract
Lemma 3.2. According to the arguments of Section 2 it suffices to verify condition
(2.12) only. To verify this, in turn, we first maintain that the assumptions of Lemma
3.2 hold for the pair of operators

A= ama ap = —2uo( L) e
4

with reference to the sequence of sets
BOB = D (4 + M)k k=10, 1,2 s (4.22)0 &

For, we see from conclusion (4.3) of Theorem 4.1 and from relations (2.4) and (2.5)®
that

M® (1) (A — F)-1 e B(L,(E)) .

4

That is to say assumption (3.10) holds at each eigen-value A of the helium Schrédinger
operator He. The validity of assumption (3.12) is the statement of the other conclusion
of Theorem 4.1. To see the validity of assumption (3.11) we first claim that

fed (M(I) (i)) implies M® (%) feD i+ M, . (4.23)0®

For, the elementary inequality

1+ x5 1
w2 L 42 s S14 2
X1+ x5 + x5 xy + x5 + x5




664 P. A. Rejto  H.P. A,

yields for each g in Cu(Ey),
1 1
[+ 20 200 () 12 < gl + 1220 el (42400

Since by definition (ﬁw(EG) is a core for each of these two unbounded closed operators,
the validity of (4.22)! on all of D(M®(1/r)) follows by closure. Next we claim that for
each positive integer & and each f in Gw(E)

) 1 k—1 1
l (1 + M)k M@ (?) f”z \<\Z H (1 + M,)? sz + ﬂ M@ (7) fHZ ) (4.44)(1)0:)
=0
For, evidently for each positive integer i,
1 1 :
(t + Myt MO (w) = (¢ 4+ M, M® (—1-:-) (t+ My)t—1, on Cwo(E) - (4.25)
Hence for f in (\joo(&;) setting
g= i+ My f
in relation (4.22)! we obtain
, 1 _ , , 1y
116+ D MO () 112 G+ M2+ 000 () 4+ M= 112

The validity of relation (4.22)* follows by induction if we use relation (4.23) again.
From this, in turn, it follows by closure that for each integer %
1 1
feD (M(l)(m)) N D ((t + M,)*) implies M® (—) fED((1+ My)k+1). (4.23)%
4 4
That is to say assumption (3.11) of Lemma 3.2 holds for the pair of operators (4.21)W
with reference the sequence of sets of definition (4.22)1®, Thus we see from Lemma 3.2
that setting

e zzﬁa D (T + M)t (4.26)
we have

E{A} B0 « & (4.27)
and

(A—He+ EA}N1O S SO, (4.28)

A similar argument, that we shall not carry out, shows that Lemma 3.2 applies to the
pair of operators

AP — F® and AP — —2 M@’(—l—) (4.21)@
4
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with reference to the sequence of sets
BA® — D (7 + M)* (4.22)@ )

Thus we see from Lemma 3.2 that setting

SA=ND(FE— My (4.26)®
1=0
we have
E{2; ©® < &® (4.27)@
and
(A—He + E{A})1 G@ - @, 28

Combining definitions (4.26)®, (4.26)® and relations (4.27)W, (4.27)®, (4.28)W,
(4.28)@, we see that setting

S=0c0nc® (4.26)
we have

E{}}G c & (4.27)
and

(A—He+ E{A})1C < &. (4.28)

In other words, at the isolated eigen-value A the operator He satisfies the assumptions
(3.6) and (3.8) of Lemma 3.1 with reference the set of definition (4.26).

Note that relation (4.27) is a version of a result of Hunziker [20b] inasmuch as
our set § is larger than his. Actually he showed that this holds for a class of potentials
including the Coulomb potential, but we shall not be concerned with this fact.

Finally we maintain that with reference to this set assumption (3.7) of Lemma 3.1
holds for the perturbation I/ of definition (2.7). For, suppose that f is in §, which in
view of definition (4.26) means that for each positive integer %

Jf[(1 + Bk (1 + 28 [f(#) [2dx < oo . (4.29)
Since

(5 + %g)2 < 2 (4] + 25)
and

2 %56 (1 4 25 5)* < 25 4 + (1 + 25 5)2%
we see that

(%2 + %e)2 [(1 + #9)% + (1 + 25)%] <2[(1 4 25)2% + (1 + x5)24] .

Insertion of this inequality in assumption (4.29) yields, for each integer £,

[ s+ L0+ )5+ (L A [f) [ dx < oo
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Remembering definitions (2.’/:) and (4.26) this estimate says that V' fis in §. Hence

Ve 6,

that is to say, assumption (3.7) holds as we have maintained.

Therefore we can conclude from Lemma 3.1 that for each positive integer » the

first » formal perturbation equations corresponding to the family He(e) of definition
(2.8) do admit solutions. In other words we have established the validity of condition
(2.12). This completes the proof of Theorem 2.1.

REFERENCES

(1]
[2]
(3]
[4]
(5]

(6]
[7]
(8]

[9]
(10]

[11]

[12]

[13]

[14]
(15]
(16]
[17]

(18]
(19]

E. SCHRODINGER, Quantisierung als Eigenwertproblem. Dritte Mitteilung: Stérungstheorie mit
Anwendungen auf den Starkeffekt der Balmerlinien, Ann. Phys. 80, 437 (1926).

J. R. OrPENHEIMER, Three Notes on the Quantum Theory of Aperiodic Effects, Phys. Rev. 21,
66 (1928).

T. Kato, Fundamental Properties of Hamiltonian Opevators of Schvidinger Type, Trans. Amer.
Math. Soc. 70, 196 (1951).

T. Kato, On the Existence of Solutions of the Helium Wave Equations, Trans. Amer. Math. Soc.
70, 212 (1951).

H. A. BETHE and E. E. SALPETER, Quantum Mechanics of One- and Two-Electron Systems,
Handbuch der Physik, Vol. XXXV (Springer-Verlag 1957), pp. 88-436. a) Section 2,
equation (1.1); b) Section 24, equation {24.1); c) Section 51, equation (51.1).

E. C. TitcEMARSH, Eigenfunction Expansions Associated with Second Owdev Diffevential
Equations (Oxford Clarendon Press 1958). See Sections XV.16.XV.19.

G. M. ZuisLiN, Discussion of the Schvidinger Operator Spectrum (in Russian), Trudy, Mosk.
Obshch. 9, 82 (1960).

N. DunrForD and J. T. ScHWARTz, Linear Operators, Part 11, Spectral Theory of Self-Adjoint
Operators in Hilbert Space (J. Wiley, New York 1963). See Theorem XII, 4.18 and Corollary
XII, 4.13.

T.IkEBE and T. Kato, Uniqueness of the Self-Adjoint Extension of Szngular Elliptic Diffevential
Operators, Archs. ration. Mech. Anal. 9, 77 (1962).

K. O. FrIEDRICHS, Perturbation of Spectra in Hilberi Space, Amer. Math. Soc. 71965, see
Appendix 1.1 (2).

C. C. ConLEY and P. A, REjTO, Spectral Concentration 11, General Theory, pp. 129-143, in
Pertuvbation Theory and its Application in Quantum Mechanics, editor, C. H. Wilcox (J. Wiley,
New York, 1966).

P. A. REJTO, On the Essential Spectrum of the Hydrogen Enevgy and Related Operators, Pacif.
J. Math. 79, 109 (1966). See Lemma 1.1.

T. Kato, Perturbation Theory for Linear Opevators (Springer Verlag 1966). a) Problem
I11.5.7; b) Subsection II1.5.3; c¢) Subsection I11.6.5; d) Theorem V.3.4; e) Theorem V.4.4;
f) Subsection V.5.2; g) Subsection V.5.3; h) Corollary VIII.1.6; i) Theorem VIII.5.2.

R. C. RIDDELL, Spectral Concentration for Self-Adjoint Operators, Pacific. J. Math., 23, 377
(1967). a) Theorem 2.7; b) Lemma 3.2.

E. WIGNER, Group Theory and its Applications to the Quantum Mechanics of Atomic Speciva
(Academic Press, New York 1959). See Sections 18.4 and 23.3.

P. A. REjTO, Lectures on Spectral Concentration for the Hydrogen Schridinger Operator,
Universidad de Zaragoza, 1967.

J. DixMIER, Les Algebres d’operateurs dans I’ Espace Hilbertien (Gauthier-Villars, Paris 1957).
S. AGMoON, Lectures on Elliptic Boundary Value Problems (Van Nostrand, 1966).

K. JorGENs, Uber das wesentliche Spektvum Elliptischer Diffeventialoperatoren vom Schrvidinger
Typ. Research Report, Universitit Heidelberg, 1965.



Vol. 43, 1970 Spectral Concentration for the Helium Schrodinger Operator 667

[20] W. HUNZIKER, On the Spectra of Schridinger Multiparticle Hamiltonians, Helv. phys. Acta
39, 451 (1966). a) Theorem 2; b) Conclusion (a) of Lemma 1; ¢) Theorem 4 and the remark
after it.

[21] P. A. REjTO, Second Order Concentvation Near the Binding Enevgy of the Helium Schridinger
Operator, Israel J. Math. 6, 311 (1968). a) Lemmas 3.1 and 3.2; b) Corollary 4.1 of Theorem 4.1;
c) Relation (4.43).

[(22] M. ComBes, Time Dependent Approach to Non-Relativistic Multichannel Scatteving, Preprint.
a) Theorem 2; b) Equation 13; ¢) Concluding steps in the proof of Theorem 2.

(23] M. SCHECHTER, On the Spectra of Operators on Tensor Products, Preprint.

Addendum

F. H. BROWNELL, Perturbation Theovy and an Atomic Transition Model, Archs. Ration. Mech.
Anal. 70, 149 (1962).

K. VESELIC, On spectral concentration for some classes of selfadjoint operators. Glasnik Mate-
maticki 24, 213 (1969).

K. VESELIC, The nonvelativistic limil of the Divac equation and the spectral concentration. Glas-
nik Matematicki 24, 230 (1969).

J. S. HowLAND, Perturbation of embedded eigenvalues by operatores of finite vank. J. Math.
Anal. Appl. 23, 575 (1968).

J. S. HowLaND, Spectral concentration and virtual poles. Amer. J. Math. 97, 1106 (1969).
L. P. Horwitz and J. P. MARCHAND, The decay scatterving system, Rocky Mountain J. Math,



	Spectral concentration for the helium Schrödinger operator

