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On the Infinitude or Finiteness of the Number
of Bound States of an N-Body Quantum System, I

by Barry Simon
Department of Mathematics, Princeton University, Princeton, New Jersey, USA

(15. IV. 70)

Abstract. We present a general discussion of when an N-body quantum system with two-body
forces will have infinitely many bound states. A physically-motivated criterion for infinitude is
presented and proved sufficient. In a restricted class of cases, it is proven to be necessary. Two
applications are made: first, we recover the Zhislin and Zhislin-Sigalov results on the number of
bound states of atoms; secondly, we discuss the coupling constant dependence of the number of
bound states and find it very different from the two-body situation. Finally, we present examples
of N-body systems with infinitely many bound states even though the two-body forces are too
weak to bind any states.
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1. Introduction

While the last twenty years have seen the development of a mathematically
complete theory of most aspects of two-body non-relatavistic quantum mechanics [1],
there are still glaring gaps in our understanding of n-body problems, even on a
heuristic level?). It is our purpose here to present a first look at the question of when
an n-body system with only two-body forces has an infinity of bound states. Because

1) The most glaring gap is that unitarity of the S-matrix has been proven only in a small class
of cases [2].
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of the presence of negative energy continuum states, the #-body case is a priori more
complicated than the two-body case; what we will see is that the #-body question is
essentially reducible to a two-body problem and so it is tractable.

In some sense, our results have their roots in the work of Zhislin [3], who proved
atoms have infinitely many bound states; Zhislin and Sigalov [4] who showed this
remains true even if Fermi-Dirac statistics are included; and Uchiyama [5], who
included the possibility of certain kinds of magnetic fields in the atoms. Our only
strong theorem, that proven in section 3 is very similar in spirit to the results they
prove. We feel the technical details of our proof are more transparent and most
importantly that we emphasize the physical ideas behind the result. However, we
would emphasize to the reader that our strong results in section 3 are contained to
some extent in reference [3-5].

In what follows (and in the above) we intend ‘bound state’ to indicate square
integrable eigenfunction below the continuum. There are cases in which one can conceive
of (or prove the existence of!) square integrable eigenfunctions above the continuum 2)
but these are somewhat pathological beasts and are expected to be unstable under
perturbations — we choose to ignore them by defining bound state suitably!

Physically, continuum states should be those states which are capable of breakup
into at least two spatially separated clusters. Thus, one would expect the bottom of the
continuum to be determined as follows: first consider breakup of{1,..., %} into two dis-
joint sets D;, D,. Let Hp, be the Hamiltonian for the cluster D, (sothat H, + Hp is H
minus the interaction befween D, and D,). Next let inf [spectrum (Hp)] = op. One
expects:

D = inf [continuous spec (H)] = o g%izl}__ 3 [op, + 0p] . (1)

DU Dy={1, ..., n}
That (1) is true for locally square integrable two-body potentials vanishing at infinity
is a theorem of Hunziker [7]3)%).

Suppose we are in the situation where }' = op + op, for some decomposition
{D,, D,} and for no other. Suppose also that H, and Hp have discrete ground
states at the bottom of their spectra. We will call this case ‘the two-cluster continuum
limit’,

In this situation, let us consider heuristically when we might expect an infinitude
of bound states. A set of states bounded in energy and in spatial spread is compact5).
Thus, an infinite number of orthogonal states cannot be bounded in spatial spread if

%) Potentials with wiggles and long range can produce such functions: see [6]. Also, if one has
identical particles without statistics, bound states of one permutation symmetry can be
embedded in the continuum of another symmetry.

3) Equation (1) was first proven for L2-potentials by Van Winter [8]. Hunziker’s proof has been
abstracted to allow certain types of #-body forces and non-local potentials in a paper of
Combes [9]. Simon [10] has shown that worse local singularities than L2, for example L3/2
singularities, can occur without affecting the truth of (1). In the case where the minimum is
realized with D, a one-element set, (1) was proven by a different method by Zhislin [3] whose
proof was abstracted and expanded by Jorgens [11].

%) In appendices 1 and 2, we present certain kinematical considerations not explicitly treated
by Hunziker.

5) For an exact statement, see Ruelle [12].
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they are bounded in energy. If there are infinitely many bound states, they must
spread out in space into two or more clusters. If the clustering is into F,, ..., F,,
the high lying (weakly bound) states have energy very near or above of, + ... + 0F,,.
For these states to lie below J7, we must have that the F, breakup is just D;, D, (for
2 = op, + 0p, isa unique breakup) and moreover, the weakly bound states must look
like a product of the ground state wave functions for D; and D, and a wave function
for the relative position of the centers of mass for D; and D,.

Thus, when there are infinitely many bound states and we have a two-cluster
continuum limit, the loosely bound states look like ‘two-body’ states (where the bodies
have internal structure). As we will recall in section two, the finiteness of infinitude of
the number of bound states for a two-body system depends only on the large »
behavior of V(7). For large separations of D, and D,, where the ‘internal’ structure
doesn’t matter, the potential between D, and D, looks like

Vo,n, () = D] Vi) (2)

ieD; jeD

If there are infinitely many bound states for the N-body system, then the two-body
system with potential I” should have infinitely many bound states. Conversely, if V
has infinitely many bound states, we expect the n-body system to have infinitely
many bound states which look like the product of the ground states of D,, D, and a
bound state of V.

To summarize, we expect that an n-body system with a two-cluster continuwum limit
Dy, Dy will have infinitely many bound states when and only when the two-body system
with mass my®) and potential I7D, p, has infinitely many bound states. Obviously, in
cases where the V;; wiggle a lot or where large cancellations are involved in (2), we
should be prepared for our expectation to be wrong.

This picture actually suggests that one can make more detailed statements about
the high-lying spectrum; explicitly, it suggests the conjectures:

Conjecture 1. Suppose we are in the two-cluster continuum limit and that the
n-body system has infinitely many bound states of energies y,, ..., i&,, ... . Suppose
E. ...,E, ... are the bound state energies of H, = (2mp)1p% + I}DIDZ- Then
lim (u, — X)/E,+,, = 1 for some fixed m.

n—00

Conjecture 2. Suppose we have the notation of conjecture 1. Let g, be the wave
function of the bound state of the n-body system. Let ¢, be the #-th bound state of H,.
Let #7,, n, be the ground states of Hy, , Hp, . Then, for some m, fixed:

lim [y, — 7 e Primla=0.

k—00

After reviewing the two-body theory (section 2), we will prove the above criterion
for infinitude is more or less sufficient (section 3). In section 5, we apply this theorem
to atomic Hamiltonians without and with statistics. To handle the latter case, we
first discuss Hunziker’s theorem with statistics (section 4). As preparation for the
discussion of some examples of coupling constant dependence (section 7), we prove

6) That mp' = (mp,)~t + (mp,)~' with sz_:A%' m; is shown in appendix 1.
jeD .
1

39
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the above criterion is more or less necessary for infinitude in a very restricted class of
cases (section 6). It is our feeling that this result can be improved with some simple
(but clever!) proof. Finally, we give some discussion of what happens when one doesn’t
have a two-cluster continuum limit (section 8). We do not treat conjectures 1 and 2.

2. A Remembrance of Things Past

Let us recall the situation with regard to the infinitude or finiteness of the number
of bound states in a two-body quantum system. We do this not only for comparison
with the #-body case but also because, as we have discussed heuristically, we expect
the n-body case to reduce to a two-body problem.

The results we discuss are contained, more or less, in the classic work of Courant
and Hilbert [13], especially pp. 445-450. The crucial facts to remember are that the
infinitude or finiteness is dependent only on the long-distance behavior of V' and that
the dividing line between the two types of behavior is —#~2 falloff. The reason for the
first fact is best seen in the proof of proposition 3 below and the reasons for the power
(—2) is seen in the proof of:

Proposition 1. Let V be a Kato potential?) with V(r) < —CrVfor |[r| =7 > R,
where y << 2 and C > 0. Then the Hamiltonian H = —4 + V(r) has infinitely many
bound states.

Proof. We first recall®) three facts:
(i) If A4 is any operator which is self-adjoint and bounded below and if:
) =, max [ min {p, A ) | <p g =0; v =1}]

¢I’-~-’ ¢n_1 'WED(A

then either u,(A) is the n-th eigenvalue (counting multiplicity) from the bottom of the
spectrum or it is the bottom of the continuous spectrum. In the latter case u,(4) =
t,+1(4) = ... and there are no more than # — 1 eigenstates below the continuum.

(1) For a two-body system with a Kato potential, the continuous spectrum begins
at E=0.

(iii) if one can find an N-dimensional subspace, V, of D(4) with (p, Ay> < C|lyp|?
forally e V, then p,(4) < Cforn=1,2,..., N.

By (ii), if we can prove u,(H) < O for all %, the proposition will be proven, and
by (iii) we can show this by finding, for arbitrary N, an N-dimensional space Vy C D(H)
with max {y, Hy) = Vy < 09).

v, flyll =1

ylj-‘ickwany C® function ¢ with supp ¢ C {r |2 Ry > |r| > R,} and | ¢], = 1.
Let A=<{¢, (—A)¢) and B = (¢, (C77) ¢> > 0. Let §z(r) = R32¢(r R°) (R = 1).
Then | ¢z|, = 1 and:

(P, H bgy < g, (—A) > + {pg, (—C7r7) > =A R2 - BR7.

7) By Kato potential, we mean V € L2 + (L®),, i.e. a function ¥ sothat for any ¢, there is
Vie€L% Vo c€L®, ||[Vycllo <& V =V, ¢+ V,ye (6.8 771). Such potentials were first
treated by T. Kato [14].

8) (i) is an exercise in spectral analysis and is essentially Weyl’s min-max principle; (ii) is a
special case of Hunziker’s theorem (!) and is due to Weyl originally; (iii) is an elementary
consequence of the definition of u,.

9) This method of studying the number of bound states, which we will use over and over goes
back at least as far as Kato [15].
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Becausey < 2, the negative potential wins out over the positive kinetic energy for R large

enough so {¢g, H ¢g> =, < 0 for some R. If 9, = #,_,, then the ,’s have disjoint

support and each (y,, H y,> = U, < 0. Because H is local, vll-1 m?x ’ ]<y), Hy>
YH=41 PELYyy eny N

= max (v;) < 0. Thus taking Vy = [w,, ..., wy], the proposition is proven.

For the borderline behavior V,57, — C r2, the finer borderline is C = 1/4:

Proposition 2. Let V be a Kato potential with V(r) << —C »~2 for » > R, where
C > 1/4. Then H = —A + V has infinitely many bound states.

Proof. It is enough to find one ¢ with compact support in {r |» > R} with
(P, (—A — Cr2) ¢> =a < 0 for letting ¢ be defined as in the last proof:

{p, H > <a R2 <0

and we can find ¢;’s with disjoint supports and complete the argument as in the
previous proof. It is a simple exercise to find such a ¢19).
In the other direction, we have:

Proposition 3. Let V' be a Kato potential with V(r) = — C »~2 for some C < 1/4
(for example, suppose V(¥) = D »¥; »r > R, for some y > 2). Then H = -4 + V
has only finitely many bound states.

Proof. It is proven in [13] (p. 446) that <y, (—4 — 1/4 72 > = 0 for any
p € C3°11) and this can be extended to D(—A) by a closure argument. Thus, for
a=(1/4 — C):

H>—-aA+V=H

where V() = 0 if » > R, and say I;(r) = V(r) if r < R,. Since V is L? and L1, one
can show that [10]:

VO oy oo

~

By a theorem of Schwinger [16], H has only finitely many bound states!?), so u,(H) =0
for some n. Thus u,(H) = 0 for some # so H has only finitely many bound states.

Having reviewed the two-body case, let us, following a suggestion of Nelson13),
compare this result with classical mechanics. As Nelson has remarked!3), the classical
analogue of an infinitude of bound states below the continuum is to have the phase
space orbits which are bounded in x-space and which lie below ‘the continuum’ fill an
infinite volume in phase space. ‘The continuum’ here is the set of energies for which
there are orbits of unbounded extent. If V' — 0 at oo, then the continuum is (0, c0) or
{[0, oo]}. There is a direct relation between the quantum mechanical notions in the
two-body case provided one takes the ‘right’ classical limit!4):

10) In appendix 5, we do a computation needed in section 8. The computations there can be used
to construct such a ¢. Alternately, see [5].

11) This result can be viewed as a quantitative form of the uncertainty principle.

12) In many cases, if we take ¥ = min (0, ¥ + (#~2), ¥ will be bounded below so that we can
dispense with Schwinger’s theorem and compare H with a square well Hamiltonian.

13) E. Nelson, private communication.

14) The proposition is false with H, = $% + V for take V' = —1/4 v 2.
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Proposition 4. Let IV be a smooth, bounded potential'®) with:

(a) lim V{(r) =0,
(b) lim 72 V(r) exists1%) and + —1/4.
Then the quantum mechanical Hamiltonian # = —A + V has infinitely many bound

states, if and only if the classical Hamiltonian

1
Hy=p*+V 4 7
has a set of orbits, each of finite spatial extent and each with E < 0, which fills an
infinite volume of phase space.

Note: The extra 1/4 r2is, of course, familiar from W.K.B. theory. It also arose
in Nelson’s analysis of Feynman path integrals for =2 potentials [17].

Proof. The orbits of finite extent and E < 0 are precisely those orbits with
E < 0. Thus, the total phase space volume in question is just [ @3 d3p. From this
and propositions 1-3, the theorem easily follows. Ha <l

It is worth remarking that the analogue of proposition 4 doesn’t hold in the
n-body case, essentially because different mechanisms determine the continuum limit

in the classical case Jwhere = min inf (Hp (P,,7,) + Hp(P,,
%I DN Dy=¢, DA Dy=(1, ..., n} [;b,r( (P1,71) 0,(Ps

75)) ]} and the quantum mechanical case {where (1) holds}.

3. Two Cluster Continuum Limit: Infinitude

Our goal in this section is to prove:

Theorem 1. Let H be an n-body Hamiltonian system with center of mass removed,
and suppose H has a two cluster continuum limit {D,, D,}. For each ¢ € D, j € D,,
suppose

Vi) < Cyyr™

for r > R, ¥ independent of (z, 7). If either:

(a) 'y<2,2C1.j<0
or
1
(b) V=2’2C5j<_§'mD»
then H has infinitely many bound states below the continuum. |

16) These conditions are supposed merely to avoid the need of discussing any singularities in the
classical flow.

16) The limit is allowed to be 4 oo. In fact, we only need fim #2 V < — %t or lim »2 V> —}.
¥—>00 r o0
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This theorem depends on:

Proposition 5. Let y; be a bound state of Hp,, a k-body system with Kato
potentials (z = 1, 2). Let V;; be a Kato potential with

lim # V,.(r) < C

ij
¥ —00

for some y < 2. Let
Vi;(R) =f|1/)1(71) [ [palra) [P Viy(r5(R, 1y, 19)) d3 =D 9y @30T,

where 7,;(R, r,, 1,) is the distance between particle 7 € D, and 7 € D, in terms of the
internal coordinates 7,, 7, or D;, D, and the distance, R, between the centers of mass
of D, and D,7). Then Rﬁ“rﬁ R? V(R) < G-
— 00
Proof of Theorem 1. By a kinematical computation!?):
H = Hp + Hp + (2mp,)~ P, + Z Vi;(7:;) (3)
ieD,;jeD,

where P,, is the momentum conjugate to R. Let us consider trial wave functions
of the form:

B(ry, 13, R) = p,(ry) wo(ry) n(R)
where y,, p, are the ground states of H, and Hj, . Then:

G Hy =Y+, Hd

where }'is the continuum limit and
H = (2mp)~t P, + Z Vii(R) .
teD,; jeD,
By Propositions 1, 2, 5 and the assumptions for the theorem, given any N, we can
find an N-dimensional space, Vy, of 5 € D(—A4) so (5, H ) < 0, all 5 € Vy. Corre-
spondingly, we can find an N-dimensional space Wy C D(H), Wy = {y,w.n | n € Vy}
with (¢, H ¢» < 3 all ¢ € Wy. Thus for any N, H has at least N bound states. [}

Remark. This proof did not use the fact that D,, D, uniquely determines J.
If several competing decompositions determine J, there will be infinitely many bound
states as long as one of the decompositions obeys the conditions of the theorem.

All that remains is to prove proposition 5. As preparation, we notel?):

rij(R vy, 1) =R—-D'b,m, =R —r,
where the #, are internal coordinates. By changing internal coordinates, we find:

ViR) = [ @ro0lrg) Vs (R = 10) ()
where
0lro) = [ @ +5=3 1 (1) () 2 Q

with the integration over all internal coordinates but #,. To prove proposition 5,
we first show:

17) See appendix 1,
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Lemma:
(a) o(vo) € L' N L2(R?) ,
(b) r50(re) € L N L3(R¥) .

H.P. A,

Proof. (a) Sinceyp, w, € L2(R3*:+ k=) we see p € L1. We have y, p,€ D(Hp + Hp ).
Thus, by Kato’s theorem [14], for any fe L%, v, w, € D(f(»,)). In particular,

{py e, 1w wey = [ o(ro) frg) dry << oo, Thus p € L2,

(b) By a result of Hunziker [7, 18], 7, v, w, € L? since #, ¢, is a bound state of
Hp + Hp. Thus 7;o(r) € L. Since [Hp + Hp, 7)) = C p,, we see that
(Hp, + Hp,) (rop1ws) = C popr 9o + E 799, 9o € L? s0 that vy, yo, € D(Hp, + Hp).

As in (a), this implies 72 o(r,) € L2.
Finally, we conclude this section with:
Proof of proposition 5.

V(R) zfg(yo) V (R — rg) dor, :fg (R — 1) V() dor .

Without loss of generality, we can suppose V(#) = C »¥ for r > R, since the pro-

position follows easily from this special case. In this case

[Q(Ruy)wV(r)d% 5. i

R—o0

so we need only show

f|Q(R—1’)| |RY — 7| |V d3r — 0.

R—>00

But, for any e&:

R — 7| <[(1+&'— 1+ (1+eY) |R—r|

fforif (1 +¢&)~17 << R < (1+ g) 7, the first term majorizes the left and if R = (1 + &) 7

or v 2= (1 + &) R, the second term majorizes the left.]
Thus:

Tim ‘/‘Q(R—r)iR”—r”V(r)dr[\<\[(1+8)7’——1]

R—>co

T

R—0

x[Jm [ (R=rPe(R=n) V()| dr].

R—o00

Since Vel?+ (L®),and |[R—7|"p(R—7) <1+ |R—7|?2p(R—7r)ell N L?

the second term goes to 0 as R — oo. So for all &

lim ‘f]Q(R—r)] (R — 7| | V()| dor < |C| [(1+ &) — 1]

R—>00

This implies the limit in (6) is true so the proof is completed.
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4. Hunziker’s Theorem with Statistics

Our goal in this section (and appendix (4)) is to prove Hunziker’s theorem and an
analogue of Theorem 1 for #-body systems with non-trivial statistics. Here, we
consider Fermi-Dirac statistics and in appendix (4) we consider general statistics with
the aid of a little symmetric group theory.

Let us suppose {1, ..., n} is partitioned into sets Cy, ..., C,,. The particles in C;
are all identical and are assumed to be Fermions; thus the allowable wave functions
must be anti-symmetric under exchange of coordinates'8) within one cluster. We will
call {C,}7_, the statistical partition. Let D,, D, be another partition of {1, ..., n}.
We will say {C; N D;}" , is the induced statistical partition for D, and similarly for
D,. Then:

Theorem 2. Let H be an n-body Hamiltonian with center of mass removed,
symmetric in the coordinates of each cluster C,, ..., C, and restricted to the space of
allowable wave functions antisymmetric in each C;. Given D = {D,, D,}, a partition
of {1,...,n}, let Hp, = H,, + H), where Hj, is the part. of H depending on the
particles in D, restricted to the space of functions antisymmetric in the induced
statistical partition. Let 2 = inf (6,,4:(H)). Then

D= min {mf ) + inf(a(Hp))} .

Dl;

Proof. Let us first show that [}, oo) is in the spectrum of H?'%). Suppose
Ae[},00) and ¢ are given. We need only show some u e D(H) exists with
| (H—2) u| <el|u||. Suppose X =s; + s, with s, =infe(Hp) and write 4=
Sy + Sy + Ag; Ag = 0. Let us decompose H in the form (3). Pick a function, ¢,, C*® of
compact support in the coordinates of D,, and with the restricted symmetry so
| (Hp, — s1) || < 1/4 & |w,]. Pick g, in a similar manner. Now pick a function f of
compact support in R® with ||(2mp' P2 —Ag) /|| <1/4¢|f|. Let f,(?) =1 (* — a)
for any a € R3. As in [7], hm {1 W3 fos ( Z’ V“) Y, s > = 0. Thus, pick a

€Dy g
so that this last expectatlon value is less then 1/4 g ||y, yo /| and so that for any

1 €Dy, 1 € Dy:
D; [supp vl N [D; (Supp w,) + supp f,] = ¢ | (7)

where P, is the projection of R3” > R® given by projecting onto the coordinate 7;.

Let v =9, 9,7, , | (H—2)v| <e|v]. Let 4 be the operator that
antisymmetrizes in the clusters C,, is
1
A= 2 (sgnm)

(:ﬂ:cl)"(:H:Cm)1 wlnCiCCy

where 7 is a generic permutation. Let # = 4 v. Then » has the required symmetry. If
does not exchange particles between D, and D,, v = v. If it does, suppv N suppz v = ¢

18) The coordinates may be purely spatial or combined spin-spatial. If the Hamiltonian contains
combined spin-spatial terms (e.g. spin-orbit terms) we must exchange the full spin-spatial
coordinates; otherwise, ‘exchange’ can mean either spin or space, or both.

19) The proof is similar to the analogous proof in Hunziker’s paper [7]. The big difference is that
some care is needed to assure antisymmetrization doesn’t kill the trial function.
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by condition (7) so that there are no ‘cross-terms’ in |#| or | (H — ) #|. Thus
| (H—A) u|| < ¢|u|. This proves [J, oo) C o(H).
Now let Dy, ..., D; be a partition of {1, ..., n}. Then

2 <info(Hp) + +++ + inf o(Hp,) (8)
for by what we have just proven,
inf o(Hp,) + info(Hy) = int o(Hp yp)

etc.

Finally, using (8), we show the spectrum of H in (— oo, }') is discrete. It is
sufficient to show the Weinberg connected kernel [19], I(2), is compact and analytic
in the plane cut by [ }, oc), for then we need only apply Hunziker’s beautiful argument
[7]. By using the ideas sketched in appendix (3), it is enough to prove analyticity in
the cut plane (since we have compactness for Re z very negative). I(z) is a sum of
terms essentially called I (z) by Hunziker so we need only prove each I (z) is analytic.

S here stands for a collection of partitions P,, ..., Py where P, has ¢ elements and
Py, 1s a refinement of P,2°). Let Gp (2) be the Green s function for Hp, = X' H)j
DeP;

(i.e. the Hamiltonian, H, with interactions between clusters in P, removed). If P,
1s obtained by partitioning 4 € P, into B; U B,, we write

i€B,, j€B,

Then
I (2) = GPN(Z) VPN Py_1 GPN_l(Z) - Gp(2) Vb, p, -

By (8), each Gp (2) (when restricted to states with the symmetry induced on P,) is

analytic in the plane cut by (), oc). If y has the symmetry of the full statistical

partition, Vp p w has the symmetry induced on P, so Gp(z) Vp, p 9 has this same

symmetry and is analytic in the cut plane. Vp p Gp (2) Up, p, 9 has the symmetry

induced on Pj, etc. This completes the proof?). [
We can now prove the analogue of theorem 1 (slightly weakened):

Theorem 3. Let H be an n-body Hamiltonian with center of mass removed,
symmetric in the coordinates of each cluster C;, C,, ..., C, and restricted to the space
of allowable wave functions antisymmetric in each C,. Let the continuum limit be
determined (according to theorem 2) by a two-cluster breakup D,, D, and suppose:

(a) Hp, has an eigenstate g, at the bottom of its spectrum.
(b) For each 7 e D,, 7€ D,:

Viir) < CGr (r > Ry)
with
y<2;, J'CG;<0.

Then H has infinitely many bound states below the continuum.

20) Thus, P, ; comes from P, by splitting one set of P; into two parts.
1) We have proven [ (z) is analytic as a map of the fully symmetrized functions to functions
with no partlcular symmetry. Since [I(z Z’ I (2) leaves the former invariant, I(z) is an

analytic family of maps of this space to 1tself.
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Proof. Let us only sketch the proof. The idea is to take trial functions of the form
¥, ¥, 1 (as in theorem 1) and antisymmetrize them. Pick a small sphere, S, about
(0,0, 1) so that |r, — 7y| < Q if ;, 7, € S where Q is to be determined shortly. We
pick an N-dimensional space, V, of #’s with support in this sphere and are prepared
to try trial wave functions of the form v, y, nx with ng(r) = R-32 5(r/R). Let us
introduce the shorthand 4 « = [#]. Then it is sufficient to show (given N, a priori)
for some R and some ¢ > O and all ne V:

1 we Mzl Hlyy o mepl> < (Z_ 8) fE (Y1 Wa M) ”2 . (9)
In antisymmetrizing, the permutations [really (sgnx)z] fall into classes which
produce identical results when applied to v, ¥, 9z. If it were not for the cross terms
between classes, the inequality (9) would follow as it did in theorem 1. If we can
show each cross term falls off as R-2, (9) can still be proven since the ‘direct’ terms
have a ratio below 3] — C R~ (C > 0).

Let RS={R«&|xc S}sosuppnz C R S. Consider a cross-term in || [w; w, 7z] %
It is of the form:

Dy = [ 100) waloa) 7(Roa) w1(3) va(9) melRic) vy v dRsg

where y; are the internal coordinates for D, and " means the coordinates with », € D,
and 7, € D, interchanged. Then by the Schwartz inequality:

I D| = f WI()H) |2 |’I’2(Y2) 12 JWR(Rlz) ’2 dy, dys, AR, .

R,,eRS
R,eRS

By computations in appendix 1, Rjy =7, + %, + %, R}, = (L — M 'm— M3 m)) 7, +
+ %, + %, where x,; and x, only involve internal coordinates from clusters 1 and 2
respectively. If R},, R;, € R S, then |7,,| = C, | Ry — R},| < C;; Q R. By choosing
Q sufficiently small, we can assume |7,,| << R/3; | Rys|, | Rj;| > 2 R/3. Thus

\‘Dl < / 1"/’1(3’1) |2 ‘1/12(3’2) ‘2 ’WR(Rm) |2 ARy dyy dys

lx1+x2[2R/3
< [owan+ [ ow) ax,
| x| >R/6 |%,| = R/6

where g, («;) is the probability density for x, in the statey, . As in the proof of theorem 1,
23 o(%,) € L. Thus
6|x| \2 36
o(x) dx < / (———) o(x) dx < 5 f x%po(x) dx
x| >R/6 | x| >R/6 |%|>Rl6
so | D| = O(R~2). The other cross terms may be treated similarly. ]

5. Bound States of Atoms and Molecules 22

One of the more intriguing results concerning the infinitude of the number of
bound states is the fact that the ‘Helium atom Hamiltonian’ (i.e. a three body system

22) Some of the material of this section is contained in a thesis [10] submitted to the Department
of Physics of Princeton University in partial fulfillment of the requirements of Doctor of
Philosophy.
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with two attractive Coulomb forces of magnitude 2 and a repulsive Coulomb force
of magnitude 1) has infinitely many bound states. That this can be shown for this
problem which defies exact solution is a testament to the power of the qualitative
methods functional analysis.

The earliest results on this problem were obtained by T. Kato [15] who showed
that if the Hughes-Eckart terms were ignored (so-called infinite nuclear mass) then
there were infinitely many bound states. When the Hughes-Eckart terms were ac-
counted for and the physical masses used, he showed there were at least 25585 bound
states?®). The only reason Kato did not obtain infinitely many bound states was that
he was unable to show that the continuum was where common sense (and Hunziker’s
theorem24) !) say it should be. Given Hunziker’s theorem, Kato’s original 1951 argument
vmplies that the ‘Helium atom Hamiltonian’ (with the physical masses) has an infinitude
of bound states.

By using methods similar to the ones we presented in section 3, Zhislin [3] was
able to prove any atom or positive ion has infinitely many bound states?3). Zhislin
and Sigalov [4] extended this result to allow arbitrary statistics. Using theorems 1, 2, 3
and 2', 3’ (see appendix 4) and the long range nature of the Coulomb force, we can
recover their results easily:

Theorem 4. Let H be a Hamiltonian

H = Zlaijpiﬂ _agbi e |2 +ECU 757

1, 1= i<j

where (a;;) is a positive definite matrix and all b, ¢ = 0. If ' ¢;; << b, for each fixed s,
+1

then H has an infinitude of bound states. If A has identicial particles and is restricted

to states of a certain symmetry28) the result is still true. [ |

This theorem can be paraphrased as: ‘Any atom or positive ion has infinitely
many bound states’. If our criterion for necessity is correct, negative ions never have
infinitely many bound states.

Supposing the heuristic necessary condition for the infinitude of the number of
bound states is correct, we can also ask when certain ‘molecules’ will have infinitely
many bound states. Consider first diatomic molecules, A B. Here the situation is
simple. If A-B determines the continuum, there will only be finitely many bound
states. If A+ — B~ or A— — Bt determines the continuum, we will have long range
Coulomb forces and infinitely many bound states. To find an example of the latter
situation, one must only find some A whose electron affinity is bigger than the
lonization potential of some B. Alas, a look at the tables??) [20] shows the biggest

23) This corresponds to 42 principle shells. If rotationally degenerate states are not counted
separately, i.e. if eigenvalues are counted, Kato showed there are at least 903.

%) The exact status of the Hughes-Eckart terms is not made explicit in Hunziker’s paper. See
appendix 2 for a discussion of this point.

28) Zhislin did not have Hunziker’s theorem; he had to prove a special case of it.

26) See appendix 4 for the definition of ‘states of a certain symmetry’.

%7) These tables list experimental numbers for the physical atoms and molecules. Since the
purely coulombic non-relativistic Hamiltonians are only approximately correct, our conclu-
sions (about the pure Coulomb case) have a small possibility of error.
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atomic affinity is smaller than the tiniest atomic ionization potential?®). When one
gets to polyatomic molecules, the situation gets more complicated and many more
possibilities open. For infinitude, one needs the continuum to be determined by ions
of opposite charge. I was unable to find any candidates for this situation. Since there
are many competing two-cluster breakups, care is needed: for example the continuum
limit for Cs* 4 (Cl1 O,)~ does lie below that for Cs + Cl O, [20] but for the total
system, the lowest continuum state turns out to be CsCl 4+ Oj.

6. Two Cluster Continuum Limit: Finiteness

Our goal in this section is to prove a weak theorem which implies that there are
only finitely many bound states in a certain family of cases. Our main reason for
including this rather trivial result is to provide rigorous proofs for the details of the
next section.

Theorem 5. Let H be a three body Hamiltonian (with center of mass removed)
where one of the bodies is infinitely heavy?®) and where the force between the finite
mass bodies is short range and repulsive, i.e.

H = (2m,)? Ibf + (2 my) 1 Ibg + Vilry) + Valrs) + Vialria) »
Vis(r1a) = 0; Viglre) < Crpt, all r > Ry; v >2; C> 0.

Suppose H is in a two cluster continuum limit with a short range force between the
clusters; explicitly, suppose

inf [0((2 my) ! $7 + V3)] < inf [0((2 my) = p5 + V3]
and

Vo(r) + Vis(r) = — Dr* B=25 D3>0,
Then H has only finitely many bound states?3?).

Proof. Let H= H — V,,. By Hunziker’s theorem, H and H have the same
continuum limit. Since ¥, > 0, H < H so the Weyl min-max principle tells us the
number of bound states for H cannot exceed the number of bound states for A. Thus,
it is sufficient to show H has only finitely many bound states. But H = H, + H,
where H, = (2m,)* $? + V,. H, and H, commute so o(H) = o(H,) + o(H,). Since
{0,1}, {2} determines the continuum inf(o(H,)) < inf(o(H,)) = &, + inf(c(H,)).
Thus bound states3?) are of the form v, y, where H,p,= E,y,,and E, + E, <inf(c(H,)).
Thus E; << —¢ so only finitely many ,’s can enter. By the short range nature of V,,
H, has only finitely many bound states so that the number of y, , which are ac-
ceptable is finite. Thus H, and with it H, has only finitely many bound states. |l

Notes. 1. H will in general have eigenfunctions above the continuum. Presumably,
the addition of V,, makes these states ‘dissolve’ into the continuum.

2. T have barely failed several times in proving a strong version of theorem 5
allowing Hughes-Eckart terms and without any assumptions on V;,. I have an uneasy
feeling a simple proof of the stronger conjecture exists.

) 1.P. (Cs) = 3.89 eV; E.A. (Cl) = 3.76 + 0.05 V.
29) This means we surpress the Hughes-Eckart terms.
80) Remember, bound states are, by definition, below the continuum.
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7. Coupling Constant Dependence

In the body case, the number of bound states, H(1) = H, + 4 VV is a monotonically
increasing function of the coupling constant, 1 (we take 4 > 0). The reason for this is
quite simple: The functions u,(H(A)) defined in the proof of proposition 1 are
monotonically decreasing functions of 4%!). Moreover, the continuum limit is fixed
at 0. Thus:

N(A) = # of u,(4) with u,(4) strictly less than 0 is monotone in A. In particular,
if N(4y) = oo, then N(4) = oo for all 1 = 4,.

In the N-body case, this argument breaks down. The g, are still monotone
decreasing but the continuum limit is also decreasing. There thus arises the possibility
that the continuum might overtake some of the bound states, gobble them up and
presumably digest them (i.e. the eigenvalues probably do not persist but ‘dissolve’ in
the continuous spectra). If the criterion in the introduction is correct, this possibility
is quite common — in fact, the possibility of an infinite number of states being absorbed
is common in systems with some long range and some short range forces.

Let us consider some examples. In order to be able to make rigorously proven
statements, we only consider Hamiltonians of the form considered in theorem 5:
HA) =pi+ 05 +A Vi + AV, + AV,

As a first example, let 1}, be a repulsive square well, V; an attractive square well
and V} an attractive Coulomb so normalized that the ground state energy of p? + 7}
is less than that of p% + V,. Consider first what clustering determines the continuum
for H(A). When 4 is small, H,(4) = 7 + 2 V] has no bound states, while H,(4) has a
ground state energy, G,(4), equal to C 42 (C < 0), so for A small {2, 0}, {1} determines
the continuum. At some critical 4, < 1, the two ground state energies become equal
since at A = 1, the clustering {1, 0}, {2} determines the continuum. For large 2,
Go(4) << G4(A) since G{(A) > DA (D < 0). Thus, for some 4; > 1, the clustering
{2,0}, {1} takes over again. When have we an infinitude of bound states? By
theorems 1 and 5, when and only when 0 and 2 are in different clusters in a clustering
determining the continuum. Thus H(A) has infinitely many bound states only when
A €[4y, ALl

We thus see explicitly the phenomena we noted as a possibility above. As 4 passes
A;, infinitely many bound states are ‘gobbled up’ by the continuum. What happens
near A = A, is quite interesting from a perturbation theoretic point of view. At A = 4,,
there are infinitely many discrete bound states. By the Kato-Rellich theory [21],
each state is analytic (both the eigenvalue and eigenvector) in some small circles about
A = 4,, but the size of the circle can depend on the level. In fact the size of the circles
shrinks as the quantum numbers of the unperturbed level go to infinity. This
shrinkage takes place in such a way that at any 4 < 4, (i.e., a finite distance below)
there are only finitely many levels left. We also note that if the two body case®) is a
reliable guide, the eigenvalues may have an analytic continuation into larger circles

#1) The reason for this is simple: u, < 0 and g, < 0 if there is an n-dimensional subspace on
which Hy, + AV < 0. Since H, is positive, V < 0 on this subspace so A > A implies
Hy + AV < Hy + A V on this subspace also.

32) For a discussion of this case, see §11.3 of [22].
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than the circles in which they represent actual levels — it is thus quite possible that by
looking only at the perturbation series for eigenvalues, the catastrophic change at
A = A; might not be noticeable.

By adjusting the relative strength of 7} and V,, we can obtain a system with the
amusing property that H(4) has an infinitude of bound states for precisely one value
of 2. We can also modify ¥V into a Yukawa and V, into a Coulomb cutoff at small
distances and thereby obtain a system with an infinity of bound states when
A €[4y, 00)33).

More bizarre possibilities can occur. Suppose V; is short range and ¥, long range
and that G,(4) and G,(4) cross infinitely often, i.e. there are 4, = 0, 4,, 4,, ... so that
Gy(A) < God) if A€ (Ay;41, Aa;+0) and Gy(A) > Gy(A) of 1 € (43, A3;+1)- Then H(2)
has infinitely many bound states if 4 € [4,, 5] U [45, 4,] U ... so the continuum keeps
absorbing and re-emitting an infinity of bound states. A priori, it is not clear that
such a V] and V, exist. In reference [23], it was shown the large A behavior of G(4)
mirrors the small #» behavior of V(#), so it is to be expected the requirement that V,
be long range and V] be short range should present no problem. In fact, using the
techniques of the last section of [23], V; and V, with the properties above can be
constructed. One takes V; ~ 7% as » — 0 and V, to grow alternately as »—{*+®),
r~(*=% as y — 0, adjusting the size of the intervals of growth for V, suitably.

To summarize: In any N-body system, the number of bound states is not necessarily
a monotone function of coupling constant. In fact, as the coupling is increased, an
infinity of bound states can disappear. These facts of N-body life do not bode well for
any attempt to carry over the beautiful theorems on the number of bound states in
the two-body case (see, e.g. [24]).

8. N-Cluster Continuum Limit

We have thus far presented a fairly complete discussion of the question of
infinitude or finiteness when the continuum is determined by a clustering D,, D,
where Hp, and Hj, have eigenvalues at the bottom of their spectrum. In this section,
we wish to make a preliminary analysis of what happens when this is not the case.

Suppose H;, has continuum at the bottom of its spectrum. Then D, = Dy, U Dy,
(D11, Dyg disjoint) with o(Hp ) = inf o(Hp ) + info(Hp ). We can continue this

wm
process until we find a decomposition Cy, ..., C,, with (o,,,,(H)) = X inf o(H,) and
i=1
so that each H., has an eigenfunction at the bottom of its spectrum3*). We will now
slightly change terminology and only say C,, ..., C,, determines the continuum. We
will say H has an m-cluster continuum limit. Continuum states near the continuum
limit look like bound clusters C,, ..., C,, moving relative to one another in an unbound
manner.

33) For comparison, we note in the two-body case, say ¥V = —#~2, N(4) = oo in the open interval
(1/4, o0).

8) 11 C, has one particle, Hc, (which has the center of mass removed!) is 0 on the one dimensional
space C. Thus, one particle clusters always have an eigenvalue at the bottom of their spectrum.
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We remark that by the way we obtained the clustering, inf o(H; y¢) =
inf ¢(H) + inf 0(Hc). In particular, there cannot be any really long range force
(i.e. —#7%, ¥ < 2) between the clusters C;. For if there were H; ¢, would have an
infinitude of bound states thereby violating the inf condition above.

If there are only really short range forces (i.e. —7~%, y > 2) or repulsive forces,
we expect that there cannot be an infinitude of bound states.

That leaves the borderline situation of forces I , ~ —#~2 Consider, for example,
an N-body system of identical particles of mass m with »—2 potentials and center of
mass removed, 1.e.

N-1 N—1 N—1 N—1
Hy(C) =D m)2p2+ 3 2m)2p;p; —C 3 Vir) — C 3 Vir;)
i=1 i<f, 1 i=1 i<q, 1
where
r2 r>1
_ 1
Vi) {1 r<1. (10}

We have cut V off to ensure IV is a Kato potential. We have removed the center of
mass by using coordinates relative to the Nth particle (see appendix 1).

Let us set m = 1, and let us temporarily take C = 1/4. We wish to show for the
case at hand that one has the following situation: for some N, > 3, Hy has no bound
states for N << N, and an infinitude for N > N,. We suspect N, = 3 but are unable
to prove it. In appendix 5, we prove N, < 7!

Lemma a. 1f Hy_, has spectrum [0, oo) and (¢, Hy ¢> < 0 for some ¢, then Hy
has an infinitude of bound states.

Proof. If such a ¢ exists, we can find o, normalized and C® of compact support in
R3N=3 — {0} with {y, Hyp)> < 0. If pp = R12BEN=3) g(y R-1) a simple computation
shows {yr, Hyyr> < R %y, Hyw)> if R > 1. We can thus find an infinity of
y,’s = wg,’s with disjoint supports and (y;, Hyy;> =0 if ¢ 7, <0 if 2=7;
i,y =0,;. Thus p,(Hy) <0 all ». If H; had any spectrum in (—oo,0) for
j <N —1, then Hy_, would have continuous spectrum in (—oo, 0) contrary to
assumption. Thus ¢(H;) = [0, o) all < N which implies o,,,,(Hy) = [0, o0). This
combined with u,(Hy) < 0 all # implies Hy has an infinitude of bound states. ||

Lemma b. For some N and some ¢, {p, Hy ¢ < 0.

Proof. Let f be spherically symmetric and C® of compact support in R® with
|fle= 1. Let @u(ry, ., #x_1) = £ (1) ... [ (Fx_1). Then

1 1
v Hygwp = (V=D <}, (= V) 1> - g W=DV -2 <f @

Vire f ® D

where (f ® f,V(rp) f @ > = [V (ry, — ry) |[(ry) |2 | (7o) |> dry dry. 1t is clear that
this is negative for some N.

Let N, be the smallest N for which Hy has negative expectation values. By
Lemma a, Hy_ has an infinity of bound states. By definition, Hy has no bound states
for N << N,. The situation for N > N, is described by:
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Lemma c. If N > N,, Hy has an infinitude of bound states.

Proof. Let Cy, ..., C, be the clustering determining the continuum. Since
inf o(Hy,) + inf o(Hy_y) < 0, some C;, say C;, must have N, =#C, = N,. We
shall show H¢ ¢, has an infinity of bound states. This will imply C; U C, = {1,...,n}
and thereby the theorem. The C; — C, intercluster massis M1 = (N,)"1 + (Np) 1 <2
so (2M)~1 < 1. Thelongrange component of the intercluster forceis (N; N,) (—1/4 R~2).
Thus, the intercluster Hamiltonian is of the form for » large: a 2 — b#—2 with
b > 1/4, a < 1. Thus by theorem 1, H ¢, has an infinity of bound states. ]

We have thus proven:

Proposition 6. For some 3 << N, < 7, o(Hy) = [0, o0) for N << N, and Hy has
an infinity of bound states for N > N,,. N

As we have remarked before, we present in appendix 5, a proof that (y, H,p> <0
for some .

The proof of Lemma b makes it clear that with any C (<1/4) at all, Lemma b
would hold as would Lemma a. Lemma ¢ does not obviously carry through but it is
probably also true. We can also see it is possible for N to find a —c¢ »—2 potential
so that the N-body system with — ¢ 7~ 2 potential (cutoff) has no bound states but so
that for some m > N (probably m = N + 1 will do for suitable ¢!), the m-body
system has an infinitude of bound states.

To summarize, we expect the following: An N-body continuum limit (N > 2)
15 only possible if there are no really long range (V ~ —r=", y < 2) forces between the
clusters determining the continuwum. If there arve only veally short range forces (V ~—r=7,
y > 2) or repulsive potentials between the clusters determining the continuum, a system
with N-cluster continuum limit has only finitely many bound states. In the border line
r=2 case, there can be an N-body continuum limit with either a finite ov infinite number
of bound states depending on the size of the total coupling constant.
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Appendix 1

Some Kinematics

Let T=Hy= 3 (2m;) ' p7 = 3 1/2m,;r:. We want to find H, as a function

i=1 i=1

- of the momenta in different coordinate systems Q,, ..., Q,. We will write 7 as a
function of the Q,’s and then use
oT
Pi =
0Q;

to find P,. Solving for Q, as a function of P, we can find H, as a function of P;.
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(a) Coordinates relative to r,
Consider the new system:

R—M1()'m,r),

¥, =r,—r, (t=1,...,n—1)

where 3’ = Y and M = 3} m,;. Solving for r;, we find:

1=1
r,=R-—1g,
r,=x,+R—n
n—1

where M n = 3" m; x; and })' = 3. Then:

=1

1 . L . 4 _— .
T =3 omd o M(R— )2+ X mx, (R — 1) =

1 . i 1 .
=Z’*2*mix?+MR2“EMT]2.

Thus
P=MR,
. . On , ;
ki=mx; — Mn ()Zi =m; (%; — n)

so X' k=M n — (M — m,) 5 = m, 5. Therefore
Hy=2M)"* P2+ D" (2m) k] + m; n2 — ._}_M;?z
0 ; = ; 5

; 1
— @My P S 2m) R

- DN

=@My PR 3T @m) R m () )R

Thus, finally:
Hy=Q2M)7 P2+ )7 Qu) ki + Y m ki &y

1<<q

. W
(M~ amy) g7+ o My

H.P. A.

with (u;)~! = (m,)~' + (m,)~1. The ¢ — j cross terms were originally discovered by
Hughes and Eckart [25] and are known variously as Hughes-Eckart, mass polarization

or specific mass terms.
(b) Two cluster breakup

Let us consider the breakup into two clusters {1,...,7}; {{+ 1,...,n}. One

‘natural’ set of coordinates for the breakup is:

y,=t,—r, 1=1...,1—1, y,;=r,—r, 1=1+1,...,

Ry, =0,— 0, RzM_l(Zmiri)

n—1,
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where

! !
91:Mf12mirf (Mlzzmz)
=1 i—1
szMz_ljmirf (M2=£1mi)-

1=1+1 i=Il+1

To find H,, we first go to a coordinate system g,, 05, ¥; (¢=1,...,7, ..., n), where
by (a) we have

Hy=H,y .. 5+ Hy g o+ (2 M)™ P} 4 (2 My P;

.....

_____ 3 1s the free Hamiltonian for {1, ..., [} with the center of mass removed
and relative coordinates used. Now using

Roy =01 — 02,

R =M1 (Mo, + Msp,) .

We see:

Hy= H0,{1 ..... 5+ HO,{H—I,...,n} + (2 M) P?z + (2M)* PR

M'= M+ M;?.

This is the form used throughout this paper. In several places, and in section 3 in
particular, we need the fact that:

If kef{l,...,I} and he{l+1,...,n}, then 1, =1, —1,= R, + Y al?y,.
Since 7, = ¥, — ¥, + #;,, we need only shows 7,, = R, + 3'b;y;. This in turn
follows from the formulae in (a):

-1
—1
7l:Q1_M1 z;miyi,
t=1

n—1

Tnm92_M2—12miyi'

i=T11

(c) Exchange between clusters

We have just seen if 2 € D;, I € D, then R,y =7, + 3 a;y; where the y’s are
relative coordinates within D, or D,. Let D], D, be D, and D, after interchanging %
and / and let R;, be the relative center of mass for D;, Dj. Suppose m, = m,. Then,
we wish to show:

Rizz(1“Mflmk_M;17”z)7kz+2aiyi

a formula we need in section 4 [same a’s; the y’s are still relative coordinates within
Dy, D, (not D, D})]. Since m,, = m,, the only difference between (p,, 05) and (7, 03)
1s the exchange of k& and /. Thus

Rip — Rip = (01 — 07) + (02 — 02) :mkal (rg — 7)) +my Mgl (re — 7))

which proves the required formula.

40



626 Barry Simon H.P. A.

Appendix 2

Hughes-Eckart Terms and Hunziker's T heorem?2)

It is our goal in this appendix to make explicit the statement of Hur ziker’s
paper [7] that kinematic center of mass corrections don’t matter. Let us present the
Helium atom as a paradigm. If the nucleus has mass M and the reduced mass of the
electron is u, the Helium atom Hamiltonian with center of mass removed and co-
ordinates relative to the nucleus is:

Hy,=@Qu™ (i +p2) + M7 py-py— 2 (7" +777) + 27y’

It is this Hamiltonian whose continuous spectrum should begin at the binding energy
for Het, i.e. the ground state energy of:

Hyp = (2p0)71 2 — 262771,

Hunziker’s argument explicitly tells us we get the continuum limit by breaking
{1, 2, 3} into clusters and considering the ground state energy of the Hamiltonians
with the intercluster pofentials thrown away. Thus the continuum for the Hy, begins
at the bottom of the spectrum of

Hy o= QU i+ 90+ M2p, - p— 262171

We are thus faced showing inf c)'(H~ ue+) = inf 6(Hpy,+). On the surface, since we have
gotten rid of the intercluster potential but not the intercluster Hughes-Eckart terms,
it is not even clear that this equality should hold (although physically we do expect
inf 0,,,,(Hy,) = inf 0(Hy,+)). Let P be the center of mass momentum, m the mass of
the electron, K the momentum of the nucleus and £; of the sth electron. Let X, x,, %,
be the positions of the particles. Then:

Hy.+@2M+4pm1P=H,,
where
Hy,.=@2m (R + )+ @M1k —-2e |5, — X|.
Since P and H .+ Involve independent coordinates:
inf o(f,,,.) = inf o(Hy,.) +inf [(2 M + 4 )~ P¥] — info(H,,.) .
Since %% and Hyy — (2m)? k2 = Hy,+ involve independent coordinates:
int o(H,;,+) = inf o(H},,.) + inf o[(2 my)~1 k2] = inf o(H},,+) -
Finally, since Hy, = Hy,» + (2m + 2 M)~! P2, with P,, = k, + K, we see
inf o(Hp;,+) = inf o(Hy,.) .
Thus

inf ¢(Hy,.) = inf ¢(H,;,)

as we desired to prove.
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Appendix 3

Compactness of 1(z)22)

We give here a simple proof of the compactness of the Weinberg connected
interaction [19] when the potentials are locally L2 falling to zero at infinity. This fact
is used crucially in the proof of Hunziker’s theorem. Hunziker’s proof depends on an
involved inductive argument [26]. The proof we will give depends on the following
elementary lemma:

Lemma. Let A(z) be an analytic operator valued function on a connected set D.
Suppose A4(z,) is compact for a sequence z, with a limit point. Then A(z) is compact
for all ze D.

Proof. The compact operators are closed. Thus given any 4 ¢ Compact Ops.,
we can find a continuous linear functional / on Hom(H) so that /[Compact Ops.] = 0
and /(4) =1 (by the Hahn-Banach theorem). Since /(4(z,)) =0, and }(4(z)) is
analytic, /(A4 (z)) = 0 so A(z) is never A. [ |

Note. Hunziker proves a similar theorem in an appendix of [9].

As a result of the lemma, we need only prove I(z) is compact for Rez very
negative. When Re z is very negative, I(z) is the norm convergent sum of all con-
nected Weinberg diagrams. Since the compacts are norm closed, one need only show
every connected diagram is compact. For VV € L2, a direct computation shows the
diagrams are Hilbert-Schmidt. For V € (L?),,,, V — 0 at oo, we need only use a
limiting argument.

loc

Appendix 4

Particle Statistics

We wish to develop here the machinery that will allow one to extend theorems 2
and 3 to systems with arbitrary statistics. Suppose H is an #-body Hamiltonian. Let
Ci, ..., C, be a partition of {1, ..., n} so that H is invariant under permutations
which leave the sets C, invariant. Let 3)(C,, ..., C,) be the group of such permutations.
We define the action of w e 3(C;) on LE2(R3") by (mv) (%1, ..., %) = W(Xnag1)s + -+ Xami(m))-
Then we are supposing H & = n H for all w € J(C)).

Let A(C;) be the group algebra generated by 3(C,), i.e. all formal sums of ele-
ments in ' with complex coefficients and a multiplication generated by the group
operation. ‘Statistics’ should be thought of as restrictions on the allowable wave
functions involving relations among the various 7 . For example, full Fermi-Dirac
statistics is just wy = (sgnx) w for all . Alternatively, certain elements of A(C,)
when applied to allowable ¢ must be 0. If ae A(C;) and ayp =0, then bay =10
for all b € A(C,). Thus the set of elements of A which annihilate any fixed g or any set
of ¢'s is a left ideal. We thus define a ‘statistics’ for an n-body system with clusters of
wdentical particles C,, ..., C,, is a left ideal, I, of A(C,, ..., C,). The space of allowable
wave functions is then #; = {y |ayp =0 for alla e I}.

Given a statistics for such a system and a decomposition {D,, D,} of {1, ..., n}
we define the induced clustering of identical particles to be {D; N C;, D, N Cy,
DiNC,,...,D,NC,}.Then I p =1NA(D,,D,)isaleftidealin 4(C;)NA(D;) =
A(D; N C;). This ideal defines the induced statistics.
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One important object used in the proofs of theorems 2 and 3 was the anti-
symmetrizer, 4 - A4 had two crucial properties. It was a self-adjoint projection?%) and
1 — A generated the statistical ideal 14, in the sense that I4 = {b (1 — A) | b€ A(C})}
so that H; = Ran A. If I is any left ideal, an analogous self-adjoint idempotent, e,
for which (1 — e) generates I will be called a (actually the) natural projection for I.
The crucial group theoretical result we will need is:

Lemma. Every ideal I C A(G) has a natural projection.

Proof. This is actually a simple consequence of the Wedderburn structure
theorem (see [27], pp. 239-243 or [28], pp. 12-27) but let us sketch a proof for the
reader’s convenience. G has a natural representation on A(G) (the left regular
representation) given by U, a = g a. In the inner product {}'a;g,, }'b,g;> = X a;b,,
this representation is unitary. The left ideals I C A(G) are precisely the invariant
subspaces. Since every invariant subspace in a unitary representation has an orthogonal
invariant subspace, every left ideal I C A(G) has an associated complementary ideal
I+ with I @ I+ = A(G). Corresponding to this decomposition, we can write 1 =
e; + €y, ¢ € I, e, € I+, Itis not hard to prove that ¢, is a natural projection for I. i

Using this natural projection in place of A, the analogues of theorems 2 and 3
can be proven?3):

Theorem 2'. Let H be an n-body Hamiltonian with center of mass removed
symmetric in the coordinates of each cluster C, and restricted to the space, ?l,,
generated by some ideal I C A(C,). Given D = {D,, D,}, a partition of {1, ..., n},
let H, = Hp + Hp, where Hp, is the part of H depending only on the coordinates in
one cluster and restricted to the space Hrj, , generated by the induced ideal
Ip, p,CA(C,ND)). Let }' = inf(o,,,,(H)). Then:

2: mi}l)l {inf o(H} ) + inf o(H},)} .

D,, D, :

Theorem 3'. Let H be an n-body Hamiltonian with center of mass removed

symmetric in the coordinates of each C, and restricted to the space, H,, generated

by some ideal I C A(C;). Let the continuum limit be determined (according to
theorem 2’) by a two cluster breakup D,, D, and suppose:

(a) Each Hj,. has an eigenstate yp, at the bottom of the spectrum.
(b) Foreachze D,, 7€ D,

V() < C,;r7 if r > R,

tJ

with
y<<2; ))C,; <0.

Then H has an infinitude of bound states.

%) A(G) has a natural * operation given by (}'a; g,)* = }'a; g;7%.
3) One should first write I* as a sum of minimal ideals. 3f; correspondingly breaks up into a
direct sum of spaces left invariant by H. Every minimal ideal in A (C, ..., C,) is a tensor of

product of minimal ideals in A(C,), ..., 4(C,) (since every irreducible representation of

C,, ..., C.) is the direct product of irreducible representations of C.)). It is easier to
1 P B i

mn
prove these theorems for these minimal ideals and then patch together.
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Appendix 5

A Computation: Ny < 7
N-1
We want to prove for some ¥, (¥, H, ¥> < Owhere Hy = ' (p; — 1/4 V(r,)) +
i-1

+ 2 (p; - p; — 1/4 V(r;;)) with V' is given by equation (10) (in 8), i.e. V' = V| with

<]
r2 o>
V(T’)={_2 /8
€ Y <L g

We first not that it is sufficient to prove the result with H, replaced by H ; Where H 7
is obtained by taking & = 0. For, if (¥, H, ¥)> < 0, then (¥, H, . ¥> < 0 for some
¢ > 0 where H, _is obtained by replacing V in H, by V. But letting ¥ () = 2 ¥(e7r),
we see:

(Vo Ha W o= W, H, . Pr=0,
Let us use the trial wave function Y, (ry, ..., 75) = ¥y(ry), ..., F,lre) with
Y r) =7r* e (0 > —1/2). We will show lim <(¥,, H, ¥,> <0 which will be

a
o—— %

sufficient 37).
Now we compute:

MV, Y>=4al (2a+ 3) —> 47,

«—>—3%

W, r 2Py =4al (2a+1),

<Ta,——ASPa>:47?;[oc2F(2m+ 1) —al" 2a+ 2) +%—F(20¢+3)—J38)

1
(¥, (RA + ) ?’—2) Yo —> 7.

Finally, let us compute
A=<V s @ V_ipp, 1y Po1p ® Py

= f (e (yle¥) |x —y|2d3x d3y .
Using [10]:
. 1 |

f(x) g(y) | % — y |2 dix dPy = e A% g (p) p~' dop

(with fﬁ(p) = [ eir-* f(x) dx) and the well-known Yukawa Fourier transform
(4 z/p® + 1), we see:

A= (8n)e2.
37) For o > —1/2, ¥, is in the domain of H, as a quadratic form. We can thus find @, € D(H,)

s0 (D, H, D> is arbitrarily near <¥,, H, ¥,>.
38) We see explicitly ¥_,/, € form domain of H.
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Thus:

1
fim (F, Hy ¥ = (V= 1) lim (P, (=4 = o 772 B Wy, ¥y

B—F—ip a—>—3

1 1, .
o (A’ - 1) (N - 2) <l-1U—1/2 @ Yf—uz’ D "12~ gj—1/2 ® 5U—1/2> <5U~1/2’ gf—1/2>h :
2 4

= (¥ P P () A (N — 1) — (N — 1) (N —2)
= (P, PN @) (N — 1) (6~ V)]

This becomes negative at N = 7.
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