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Four-Particle-Two-Hole Core-Excitation in Heavy Nuclei

by U. Gotz, J. Hadermann and K. Alder

Seminar fiir theoretische Physik der Universitiat Basel, Basel, Switzerland

(23. 11. 70)

Abstract. Four-particle-two-hole core-excitation in heavy nuclei with two nucleons outside
the closed shells is investigated by including the highest core orbits into the configuration space
of a shell-model calculation. The core-excitation is supposed to be effected by an interaction
between core nucleons and valence nucleons which is essentially the same as the well-known
residual interaction between the valence nucleons. The nucleons in the core are assumed to be
excited only in pairs coming from the same core orbit. Therefore, the angular momentum of the
core is always even.

For the description of core-excited configurations in second quantization formalism an
orthogonal system of four-fermion operators is constructed. Using a phenomenological interaction
potential with appropriate spin-spin and tensor parts and restricting to excitations with core-
spin 0 energy levels and transition probabilities of the nuclei Pb2%, Po?10 and Hg?% are calculated.

1. Introduction

Low-lying energy levels and transition probabilities of many nuclei with two
identical nucleons or holes outside or inside the closed shells can rather well be
reproduced by assuming a phenomenological residual interaction between the valence
nucleons, and by treating the completely filled closed shells as inert core. Thus the
calculation of the energy levels of Pb2* by using a simple residual interaction with
appropriate spin-spin and tensor parts yields the correct sequence of the lower nuclear
states [2].

In the last years it has become clear from experimental and theoretical investiga-
tions that the core nucleons are not quite unaffected by the residual interactions and
that the excitation of these nucleons to outer orbits can play an important role.
Especially the effects of 4-particle-2-hole core-excitation can be so great that treat-
ment as perturbations does not seem to be convincible [21].

In Reference [1] we presented a short review of a simple model which allows to
account for 4-particle-2-hole core-excitation by direct extension of the configuration
space. We are giving here a more detailed representation of this model together with
the application to the nuclei Pb2%¢, Po?10 and Hg?%. Although the core-excitation
effects in these heavy nuclei are less pronounced than in light and medium heavy
nuclei, Pb206, Po210 and Hg2% offer the advantage that proton shells and neutron
shells are well separated. Thus we need not deal with excitations of non-identical
nuclei. Also the violation of translation invariance, which is a common feature of
shell-model calculations, but can become even more important in a model where many
core nucleons are considered, is less serious in these heavy nuclei.
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In section two the physical model and its approximations are described. In
sections three and four the Hamiltonian is introduced and the secular matrix and
electromagnetic transition probabilities are calculated. The interaction potential and
numerical results for the nuclei mentioned above are discussed in section five.
Concluding remarks and a discussion of Ni® can be found in section six.

In the appendix the most important relations of two- and four-fermion operators
and some details about the construction of the base functions of four-fermion systems
are stated. The notations and abbreviations which are used in the text are also quoted
there.

2. Model for 4-particle-2-hole Core-Excitation

We extend the configuration space of the shell-model calculation by including
the highest few orbits of the core, and permit to one pair of nucleons in any of these
orbits to jump out from the core to the valence orbits.

For this excitation process we make the following approximations:

—  The configuration space of the nucleus consists of three kinds of orbits,
the outer orbits or valence orbits, which are considered in usual shell-model
calculations,

a number of core orbits whose nucleons may interact with the nucleons in the

valence orbits

and an inert core, not taking part in core-excitation.

—  The core nucleons are excited only in pairs coming from the same core orbit, but
they may occupy different outer orbits after excitation. Thus the excitation of
single nucleons from the core is neglected.

—  The nucleons remaining in the core are always coupled in pairs of total angular
momentum 0, except for one pair which takes up the recoil angular momentum
of the excited nucleon pair, i.e. the spin of the core.

An important consequence of the second approximation is that the angular
momentum of the core must always be even, since Pauli’s principle permits only even
values of the total angular momentum of two identical nucleons in the same state.
It is shown in [1] that at least for pure configurations the effects of excitations with
core spin 4 are small compared to those of excitations with lower core spins.

The validity of the approximations is discussed further in the following sections.
But we point out here that they are based mainly on physical arguments and are
introduced in order to reach some mathematical simplicity, and therefore cannot be
satisfactoring in all cases.

The total spin I of not core-excited configurations is the sum of the single-
particle spins of the two outer nucleons (the angular momentum of the completely
filled core is zero), whereas in core-excited configurations it is the sum of the core
spin R and the total spin of the four nucleons in valence orbits, A:

I=R+A.

As in [1] we denote the quantum numbers of outer orbits by lower indices,
those of core orbits by upper ones. A bar over the respective quantum numbers
indicates both kinds of orbits.
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3. The Base-States and the Hamiltonian

The base states of not core-excited configurations are given by
| 7142 I ', &> = By, .li1 72) F‘”HB*? )% 0>, (1)

where w; denotes the number of nucleon-pairs that can be placed in an orbit of spin ¢,

2ji 1 g
) i GBS ol 2)
2 2

and ¢ indicates the number of core orbits considered. The operators B, (7] 1;) create
one pair of nucleons with single-particle spins j;, 7, and total spin I’ with magnetic
quantum number # (see appendix).

Since the states Bf,,,.(j;7.) |0> form an orthonormal set and are orthogonal to
the core functions, the normalization of the base states (1) is determined by the scalar
product of the core functions, (A14):

The base states of core-excited configurations are chosen in direct relation to the
core-excitation Hamiltonian described below. We construct them by applying the
operator Bpy (7979 on the states (1) for all possible values of ¢ and all possible
core-spins R.

The correct orthogonal and normalized base functions can then be chosen as
follows:

!7'1?'2?'3?'4 (Ao Rg) Im,6>:Q"1J2E<AARM‘ Im>
i

Djl_ﬁa (717273 74) BRM (72 99) Bt;'()(fq HBOD 78 79)% 10> . (4)

i=q

The orthonormalized four-fermion operators D};,(71 7 75 74) are defined by

Dianlin 2 faa) = X, 45 (1 Tadad) Dix G 72 S, 7674 S7) (5)
55
where
D3i(fy 12 S, 13 7a S') :2 (S S"V[AL> B, (j1 72) Bé’v’(?‘{’x 7a) (6)

and the d5°(7; 757574 are orthogonalization coefficients (for further details see
appendix).

Since we are not directly interested in the nuclear states which consist mainly of
core-excited configurations, we could attempt to describe the four-fermion states by
boson-pair operators (Boson approximation [22]) and thus reach greater mathematical
simplicity in the following formulas. But an important advantage of the consequent
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use of Pauli’s principle is that it reduces the size of the secular matrix, since many
4-particle states which can be constructed in the boson approximation are not
antisymmetric and are thus forbidden. We therefore prefer to construct a complete
orthonormal system of antisymmetric base functions.

In (4) the spin R of the core is carried by a nucleon pair in the orbit ¢ from which
an other pair is excited to the valence orbits. It is combined with the total angular
momentum A of the outer nucleons to form the spin I of the nucleus with magnetic
quantum number m. The number ¢ is the same as in (1). The normalization, £2, of
these states results from (A16) and (A17):

«w

g —2 ) )
N /| (1;5;), it R=0
260 - [T o) [T (1---) "
i+g k=1 i (w,— 2! [] (1_im)’ #R+O.
I=2 W,
The Hamiltonian is devided into five parts
H=Hy+H =H,+HY) + HY+ Hp + H' . (8)

H, represents the mean shell-model potential with single-particle energies &;, which
1s diagonal in the above system of base states,

H, Z's'sAooH (9)

The general residual interaction H' may be expressed as

H = 3 Gy (GodoTulv) BEulals) Brulie 7o) 2AGa T Ta o) (10)
fa> in 3 > 7
where G is the antisymmetrized matrix element between the coupled states |7, 7, K u>
and [}, 7, K > [2).
We retain only three parts of H’, namely the residual interaction of the valence
nucleons between themselves

HYS =2 2 Gx (o foTo o) By UaTs) Bry U 1) Ala 15 1o To) » (11)
74?75 Ta, >7b
the interaction of nucleon pairs in the core
AH£$”*—222<? (G4 77 7 §7') B 77 1) B (57 1) , (12)
74 1‘1
and the core-excitation interaction
Hep =2 Z Gg (o 7o 7979) Ii:_u(ja’ Tp) Ky(7q 92— ‘Sf il h.c. (13)
7a, >7b ?q

The term H” summarizes the various other processes that are neglected in our model.
These restrictions are in accordance to the choice of the base states. In the following
(11) and (12) shall be designated as residual interaction, not including core-excita-
tion (13).
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We consider first the term Hg. Since the orthogonalization procedure of the
base states cannot be inverted, the matrix elements of H.; must be calculated by
decomposing the base states of core-excited configurations into their non-orthogonal
constituents

71757303 (A"X S S) R M' ¢, 0> = Q7 D35 (71 12 S, 7374 S')

B (7 §7) Bao(i 19)" = [ [ Booli* %) 10>, (14)

1+q
(cf. equation (4)) and by calculating the following expressions from (A13) and (A24):
By i) 1i{ 15 I" m", &> (15)
and
By ula1y) 1711757574 (A" A SS)R"M' ¢', 0> . (16)
The further evaluation can be made with help of equations (A11)-(A17). Then

reintroducing the orthogonalization and the coupling of the spins of the valence
nucleons and the core, we get :

Gifadsis (Ao R q) 'm0 [Heglgy gz I"m", 0> = (=)R0Oppe Oy

A Asolpn e s
x 2 ? {(67';1'{’ 6?‘21’2’ g ]/2 - 5;‘;;‘; ﬁi 117213 1s) Gg- (117577 77)

Ay A

>F b 4 ‘r c! ji(“‘_)jé
o o 108
{1 Jo -+ {73 T4} {?3 +—>74}

= Suit Oy V2 — Oy, Ay Gt 1270 17)

Is11 " 1ale
— () 8y B0 V2 — 60 AN G (i 1277 7"")} : (17)

The ‘recoupled’ orthogonalization coefficients f&7.(71 75 74 7;) are defined in (A32).
The residual interaction matrix elements of not core-excited configurations are
well known. We have
<?{ ]é b m/, o IH(val) A H(core) | ?i.' 7g I ‘WL”, o>

res res
= 81 By 2 A1 1571 18) Gy 7571 73) + 8105 0ir E) (18)
where the contribution of the completely filled core,

a

E=2) D/ LG (7 ') (19)

=1
even
is only a renormalization of the total energy and may be omitted together with a
similar term in the matrix elements between core-excited configurations.
In order to calculate the contribution of the outer nucleons to the residual
interaction matrix elements of core-excited configurations we must first determine by
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(A26) the scalar products between non-orthogonal states of the type (16). Then, by
introducing the orthogonalization coefficients (A28) and (A32) and the coupling of
the spins of the valence nucleons and the core, we get

LAY (A RY g It o | By (A of R ) I o', 0>

res

— 2 (Splw 6m1mll aA;At/ 6R;er aq;qﬂ (Tl —I“ T2 + T3) 3 (20)
where
1, = SZL, (5;';1';' 61;7‘;' A3 94 75 14) G_L(fg fq 15 fe) di{da' dfl‘?oc”
wa it s gse Les+a J11 08| gsp grs
+ (—)ESHA P IS GLS L dSE L+ (—)EtST { A 5 T
( fy e if Cre Bt + 1) fo o daf e
[7'1 73
! (_) Wl
+ ;f H;.f, dLs, dks.y (21)
3
Ifé’ 7y
A i ar A s r A T A Y
T2 _ Jida T 9ala T 11 7s 75 14 (S-: Y 6.’ _”A(?'f 7‘1 7:':' ?'Il) GL(;’; ?if 7; ?;)
Ay Ajyjy Ay Ajgye 788 EEEE z

x ; o (117295 78) Firar (1 73 75 13) (1 +{ien+ e

T ) ( T PP (14 H?’é’})
+ 37 : 1+ SNG4 L 4+ =, (22)
{13 « 74} Ui ek s ) {7é’ \ndH

A iw Ao oo PR LS A
I; = (— AT:——I': Afzji 5,';,1';' 61';7';' A1 12 7 3’:)2(_)“ e dfﬁa'

7172 T 15 7a LS

S Sl ap R

X fororlit T2 74 74) Gp (7o 74 1178) + {01 <275} + {75 &> 71
ikay It 52715 a0

oy g i 2 i o @ .7
+ {;IHL}) + ()L o i i (23)
3 4 LS ind o o

In 7] and T the ordering of the single-particle spins in the arguments of the ortho-
gonalization coefficients @, must always be preserved, even if the arguments of the
other functions are interchanged, because the ordering of the states is determined
from the beginning by the base functions. We point out that the recoupled exchange
terms T, and T3, which involve 9-j-symbols or products of these through the definition
of the recoupled orthogonalization coefficients f/],, are in general not much smaller
than the ‘direct’ term 7;. In many cases they may even cancel it.

The contribution of the core orbits to the residual interaction matrix elements
of core-excited configurations,

res

i 7s 73 74 (A" 0" R" ¢") I" m", ¢ |H | 11575 7a (A" R ¢) I'm’, 0>,  (24)
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is most easily calculated by introducing the state of the completely filled core, \5>,
as new reference state. If we define this state by

a w;—1 —1/2
r0>:H[(w'H( )) B&(H)]m (25)
=1 z
we have from (A14) and (A15) and according to Pauli’s principle the equations
D)0>=1, (20)
Bf (173 10> =0, if 42 or 42 in |0), (27)

and

6,(057»;7-37'3 |0>, if 4t and 42 in |0).

Ax 1 10> = {o (28)

otherwise.

Moreover, the states By (1 72) | 0> form an orthonormal set, as may easily be verified.
With help of (25) and (A13) the matrix elements (24) can be written in the form

04047 O or O jr Bcin 8y i B0 2 2 CANRM | I'm>
FM M
% (A' MR M | Ve mﬂ>2 GL (T-a ?'a j;a’ 7@’) (_)M’+M”
ja,‘a'
x 0| Bgr_ar (77 §7) BE, (7% 7% BL,(1* 1) Bg s (7 17) |0>. (29)

Using (27), (28), (A10) and (A11) the core contribution can now easily be calculated.
We get the result
<?£I ?g ]g]i’ (AH 0!.” er qh’) I” m G'Hcore [?i 7! 7:; 7; (A/ Of.’ Rr qr) Ir ml’ 0_>

res

:2(51,1»5m,mu(§/1,A"5a,anaR,R”5 0(3 ”5 ”6

L9 Cdafs iafs dada
« " . ” .’ o ! 2 & .’ 2 . ! . 7 e
X [GR, (2 77 19 §9) — Oppe -----——ZL Gy (19 17 79 17) + 04 o E] ,  (30)
L

Wy

where E is defined by (19) and may again be omitted.
The nuclear states are defined as

[ Imk> :chk(7-1 T2) l Iile Lm, o>
1127:

+ 2 Z CAath?z?sh) [j17273la(Aa Rqg) Im, o). (31)

11227314 Rg Aa

The coefficients ¢'*(j, 7,) and ¢, ¢ (7 7275 74) are the amplitudes of not core-excited
and core-excited configurations respectively. The index £ numbers the states of spin 1.

4. Electromagnetic Transition Probabilities

Using the definition (A6) of the particle-hole operators and the Wigner-Eckart
theorem [4], multipole operators can be expressed by the formula

2.1 (32)
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The reduced matrix elements <j | T | /' > for electromagnetic M1- and E 2-transitions
may be found in [3]. The reduced transition probabilities are calculated by the same
methods as the secular matrix. We therefore state only the final results.

It is convenient to define the function

o LSS
Tt L tad = {

Fz } Spll T | 70> — (—)atiotS" {5 «>7,} . (33)
Jar 16 1o

The reduced matrix elements between nuclear states <I m k| and | I’ m' k') can be
expressed as

<IWLkH TL“ I’m’k,>:UneV+UeV+UgCJ (34)

where U, ;- is the contribution of not core-excited configurations

Uy = (=) 1 1"y jhﬁm (=Yt A, 7,) €% (e 7y)
1a>?b Talb " Talb
ja’=1p
X (TE (Go g Ta 1) — (=)0 {1 >4, }) (35)

and U, is the contribution of the core orbits in core-excited configurations

UgC:Z(—)LJJI I" 2 (— )Acikazeq(h?z?sh)

I1=212a=>0321a
Aog RR’

o s ‘
X CIAiszq(]l Jofafa) R R" ju|| T, | 7> {R’RA}' (36)

The contribution of the valence orbits in core-excited configurations may be written
as follows:

Up= (=T 3 p, Giiaiats) ¢k rg (17575 92)

J12212220522 74
J1=>13=>73 =14
AaxRqgA o
~ ~, |II'L 1
R (=yAtA4+R I A7 U. U, , 37
( ) A’A R A A?shAhhAhh ( 1+ 2) ( )
where
- (Lo o .
U = Y d9% d 71'72“ - ’ -
1 b AQQZS‘ 6.55 QQ SfAAr (55(73?47374)
, J1€> I3 o
X TEO (17 dyd8) + (=)0 5480 o fup | — (V9 {51 g3}
QS
e S 1 > 14
S LA (AP A B AR (AR (38)

QI PEEN SI QI > Sf
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and
U, = ”*Q%‘ dgsa @’ h ' FZJFS’Z U { S'A A} [65' (727473 74) T?.’U (717371 72)
H N4 M 14
X fin Griadste) + {1 <> 7o} + {5 > 1a} + {71 72}] — (—)tite
13 € ]a

1> 1 S J1 4>

R T R GO MR ¢ MR M o O LR R AL AR 4 . (39)
QI (_) SI QI <__) S’

For the same reason as in (21) and (23) the ordering of the single-particle states in the
orthogonalization coefficients d// must always be preserved. The reduced transition
probabilities are obtained by substituting the expression (34) into

BloA I'F — Ik = [Imk| T, | I'm k2. (40)

241

5. Numerical Calculations

5.1. The interaction potential

Since we assume that core-excitation is produced by an interaction between the
core nucleons and the valence nucleons which is essentially the same as the residual
interaction of the valence nucleons between themselves, we employ the same form of
potential for both interactions, namely [2]

3(0, 1) (O, 1
Vi 1) = Va1 [ 1+ a0, 45 (2208050 _g6)]
12
with the scalar part
1 :
Volry, 19) = Vo - 777 8(£2y) (42)
17

This interaction, especially its angular dependence is not realistic at all, but it yields
a good accordance between calculated and experimental energy levels for the nuclei
Pb2%¢, Pb21® and Po?!% when core-excitation is neglected; and it is rather easy to handle.

For this potential the antisymmetric two-particle matrix element G/, 7, 7 7,-) has
been given in [2].

Although the same general shape for both interactions is assumed, the values of
the parameters which fit best to the experimental level schemes are not necessarily
the same, for the approximations in the treatment of the interactions are different.
Thus the neglection of some low-lying core orbits may cause a change in the core-
excitation coupling constant V..

The relative strength of the spin- spin and the tensor part have been fixed in all
calculations as the values given in [2], i.e. @ = 0.1, b = 0.776. These values yield
results which agree best to experimental level schemes when core-excitation is
neglected, and they are very close to those determined by the deuteron properties.
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In the potential of the residual interaction the range parameter « was as well
fixed as the value of [2], namely « = 2.0 for Pb206, Po2® and Hg?%, and « = 3.6 for
Ni®%8, This corresponds to about one quarter of the nuclear radius. On the other hand
the range of the core-excitation interaction has been varied in order to test if a longer
range could be more appropriate. However, we got the best results with equal ranges
for both interactions.

5.2. Determination of nuclear states

Since the secular matrix of core-excited configurations with core-spin 0 is already
very large, we have restricted ourselves to core-spin 0 excitations in all numerical
calculations. It is shown in [1] that at least for one pure configuration the influence
of core-spin-2 excitations on level positions is much smaller. In actual nuclei, however,
where various types of configurations occur, the contributions of core-spin-2 excita-
tions may become more important, because selection rules let a great number of
matrix elements vanish between the not core-excited configurations and those
excited with core-spin 0. On the other hand, as a consequence of these selection rules
only a few core-excited configurations contribute essentially to the wave functions of
nuclear states of low energy. Therefore, it will be possible to neglect the other core-
excited configurations from the beginning. This enables to include higher core-spins.
An investigation of this problem will be the subject of further work.

The single-particle energies ¢; in (9) have been extracted from experimental level
schemes of neighbouring nuclei. The levels that are considered for Pb2%6, Po?® and
Hg?% are shown in Figure 1.

The energy difference AE between the lowest outer level and the first core orbit
has been determined from reaction data [10]. A small change in this energy gap
causes essentially only a renormalization of the core-excitation coupling constant V.

All calculations were performed on the UNIVAC 1108 computer at the SANDOZ
Computing Center at Basel. For the computation of the energy eigenvalues the varia-
tion method described in [20] has been used, which is excellently adapted to the
determination of the lowest few eigenvalues of large matrices. Thus the entire level

neutrons protons
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scheme of Pb2% up to 5 MeV could be calculated in a few minutes. The main amount
of computer time is however necessary for the construction of the secular matrix, for
it implies a computation of an enormous number of 9-j-symbols to great accuracy.

5.3. The lead isotope Pb°

The level scheme of Pb20¢ is very well known [11, 12] and it therefore offers an
excellent opportunity to test the changes in the positions of energy levels which are
caused by core-excitation.

In our calculations only four states of Pb?'” were considered, namely the p,,
the f5,, the p4, and the 7,4, levels [7]. As a consequence of this restriction some of the
experimental nuclear states are missing entirely in the calculated scheme, e.g. the
4+-state at 2,9 MeV whose main configuration is (P, f72). The influence of the f;,
level on the lower states can nearly be absorbed in the potential strength.

The energy gap AE between the lowest valence orbit and the first core orbit was
determined from reaction data [10] to be 3,28 MeV. The level scheme is not sensitive
to small deviations from AE, but only the exact value yields the best fit with equal
coupling constants Vj,,, and V.5 of residual interaction and core-excitation inter-
action respectively.

Calculations have been performed with two and with four core orbits. It turned
out that the effect of the 7,5, and the d;j, core orbit is very small since the excitation
of nucleon pairs from these orbits requires an energy of at least 6 MeV.

If the coupling constants of both interactions are equal (AE = 3.28 MeV) the
value V,,, = Vocg = — 6.4 MeV fits best to the experimental scheme; it is about
ten percent less than the value determined without core-excitation. (Note that the
definition of coupling strength is not the same as in [2].)

The interaction energy of a nucleon pair in the ground state is —1.2 MeV. This
energy may be compared to the (Q-value of the reaction Pb208(d, {)Pb%'7, which is
—1.13 4 0.01 MeV [13].

In Figure 2 the theoretical level scheme, calculated with two core orbits, is
compared to the experimental one and to the scheme of [2]. It is obvious that the
positions of the second O0+-state and of the first 3+- and 1+-states agree better with the
experiment. We conclude that core-excitation with core-spin 0 is important for these
lower states of Pb2%. Nevertheless, the second O+-state is always too low.

A second problem is the energy gap between 2.2 and 2.5 MeV, which is even
slightly enlarged by core-excitation. The region where higher single-particle states
become important begins somewhat above this gap, so that it cannot be explained
satisfactorily by the neglection of those states.

The states consisting mainly of core-excited configurations are not shown in
Figure 2. The first one appears at about 8 MeV. It has spin 0 and positive parity and

consists mainly of the configurations (f52)2 (P1j2)® (€ar2) 2 [60%], (fs12)® (P312)® (Zor2) 2

[10%] and (f512)® Paj2 Pria (Gor2) ™ [7 %o)-
The 3--state at 2.53 MeV is known to be an octupole vibration of the core and

therefore cannot be reproduced in our simple model.

In the calculations of transition probabilities the gyromagnetic ratios of orbital
angular momentum have been supposed to equal one for neutrons and protons, and
the effective charge of the nucleons has been assumed to be one electron charge.
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= V,cE = —6.4 MeV, c: theoretical level scheme
0- " L ” i A o without core-excitation [2].
Table 1

Some reduced transition probabilities in Pb?08, calculated with two and with four core-orbits, are
compared. Units are (barns)? and (nuclear magnetons)? for E2- and M1-transitions respectively.

Transition ol B(o 4)

2 core orbits 4 core orbits
0F 3 1+ M1 280 + 10+ .293 . 10+
0;-—> 2% ; E2 .330 - 102 327 - 102
13— = 0F M1 671 : .688
11L—> 2 M1 .360 - 10+ ‘ .349 - 10+
23- —> 0F E2 .890 + 102 943 - 10—23)
21——> 0f E2 170 - 101 .167 - 101
21-—> 23‘ E2 400 - 102 405 - 102

M1 771 - 108 104 - 108
2;- < 2% E2 170 - 101 170 - 101
M1 460 - 102 .310 - 102
2; 3 2f E2 189 . 103 217 - 108
M1 102 104
3; ~3- 2 M1 925 . 101 115
31‘—)— a3+ M1 124 - 101 123 - 1041
43 > 2F E2 654 - 102 611 - 102
d 2y 2 F E2 125 - 101 118 - 101
55 = 65 E2 .845 - 102 874 - 102
M1 .808 716

3) The experimental value is (.270%9:9%) - 101 [19].

As was already mentioned only a few core excited configurations contribute
appreciably to the wave functions of low-lying states. Therefore, the changes of the
transition probabilities which are caused by core-spin-0 excitations take place mainly
because of the changes in the amplitudes of not core-excited configurations. The
contribution U, (equation (37)) of core-excited configurations is much smaller and
U, (equation (36)) vanishes.
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In Table 1 some reduced transition probabilities, calculated with two and four
core orbits, are compared. It can be seen that the influence of the 7,5, and the dgj, core
orbit is rather small, except for the M1-transition from the second 2+- to the first
2*-state. This transition also depends strongly on the choice of the spin-spin and
tensor part of the residual interaction [2].

The calculated probability for the E2-transition from the first 2+-state to the
ground state is rather independent of the parameters of the interaction [2], but still to
small compared to the experimental value. It must be expected that for transition
probabilities higher core-spins, at least core-spin 2, must be taken into account, even
if the core-spin-0 excitations are more important for level positions.

5.4. The polonium isotope Po>'0

Although energy levels and transition probabilities of Pb21® have been mesured
recently [14] only little information on spins and parities is available.

In [2] it is pointed out that the level scheme at low energies is rather insensitive
to the choice of the parameters of the residual interaction. The same is true for the
influence of excitations with core-spin 0.

In all our calculations the s,j,, the dy;, and the Ay, core orbits were taken into
account. The energy difference between the ground states of Bi20® and T1297 is 4.24 MeV
[10]. As for Pb2% the level scheme is not sensitive to small deviations from this value.

For a coupling constant V,,,, = V,cz = —4.0 MeV, which matches the energy
difference between the ground state and the first excited state, the ground state is
lowered by 1,63 MeV with respect to the pure single-particle picture. Core-spin-0
excitation makes up 0.17 MeV of this value.

In Figure 3 the calculated scheme is compared to the experimental one and to the
scheme which is obtained without core-excitation. It can be seen that the changes
induced are very small especially for the lower states. Therefore core-spin 0 excitation
alone cannot account for the large gap between the first 2+- and the first 4+-state.

E
A
MeV
- 4‘?2’5”
L
——(p] o
4 —®
(5"} 1 T
A
- O 2
3 (5-2 2’%3‘6" =7,
- T’3"0+5¢
=—=E%) ¥
TR 5 7
24 46+ _._..4':2?
- —_ !Z: — %
1.4 z Figure 3
The theoretical level scheme (b) of Po?°, calcu-
= lated with core-spin-O excitation, is compared
to the experimental one (a) and to the scheme
0.- o o+ 0 obtained without core-excitation (c) [2].
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In Table 2 some reduced transition probabilities are given and compared to
experimental values, as far as they are known, and to the values of [2]. The calculated
transition probabilities agree rather well with the mesured values, but it is obvious
that they are practically not changed at all by excitations with core-spin 0.

Table 2
Some reduced E 2-transition probabilities in Po?1® are compared to the values of Ref. Z and to
experiment, Units are (barns)?2

Transition B (E2)
This work Ref. 2 Experiment

25 >0 107 - 101 107 - 102 -

45 > 25 132 - 101 134 - 101 (.192 4 0.025) - 10-1 [10]
47 > 47 188 - 103 .186 - 10-3 -

45 > 5, 795 - 102 .826 - 102 -

55 = 65 123 - 104 121 - 104 -

64 > 43 .923 - 102 933 - 102 (.128 4 0.016) + 10-1 [10]

5.5. The mercury isotope Hg208

No experimental information is available about the excited states of Hg?%. This
nucleus is however of theoretical interest since its configuration space is the same as
the one of Po?'%, but with the roles of outer orbits and core orbits interchanged (Fig.1).

In our calculation we considered the s, the dyj,, the 4y, and the dg, states of
T1207 and the kg, the f;, and the 7,4, states of Bi2®. For the approximate determina-
tion of the coupling constants of core excitation and residual interaction the energy
gap between the ground state and the first 2+-state was assumed to be about the

%2 %8 54 50 56 62

Figure 4
The dependency of theoretical energy levels in Hg?% to coupling constants. Left: With core-
excitation, near V,,.s = V,cg = —4.8 MeV. Right: Without core-excitation, near Vy;,s=— 5.6 MeV.
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same as in Po?0, i.e. about 1.1 MeV. The coupling constants of core-excitation and
residual interaction were assumed to be equal.

A gapof 1.1 MeV corresponds to the coupling constants V,,,, = Vocp= —4.8 MeV.
If core-excitation is neglected, the coupling constant of residual interaction alone is
V,,es = —5.6 MeV. The interaction energy of a nucleon pair in the ground state
equals —1.81 MeV with, and —1.49 MeV without core-excitation.

The dependency of the calculated energy levels to coupling constants near the
values mentioned above is illustrated in Figure 4. One sees that the level scheme 1is
sensitive to core-excitation with core-spin 0 in contrast to that of Po*% We recall
that a similar phenomenon is observed in the pair of nuclei Pb?¢ and Pb2!°, where
only in Pb2%¢ the lower part of the level scheme is sensitive to the parameters of the
residual interaction [2].

6. Conclusion

The calculated level schemes show that core-excitation may substantially affect
the low-lying states of nuclei in the lead region. But excitations with core-spin O are
important for those nuclei only whose general properties are determined by single-
hole states of small spins. On the contrary for Po?'9, which has two protons with large
single-particle spins more than the magic numbers, the admixture of configurations
excited with core-spin O is small in the lower states, and the transition probabilities
are practically unaffected. We expect that the same will be true for Pb?1?, since the
single-particle spins of this nucleus are also very large and [2] shows that the properties
of the low-lying states are also rather independent of the parameters of the residual
interaction.

This difference in behaviour is a consequence of the different magnitude of the
single-particle spins of the valence nucleons. In Po?? all the low states Of, 27, 4F and
63 have the same main configuration (4,,)? and are influenced in about the same way
by residual interaction and core-excitation. On the other hand the single-particle
spins in Hg?% and Pb2% are small and therefore various different main configurations
are necessary to build up the sequence of low-lying states.

We have already mentioned that electric dipole transitions are strongly forbidden
in our model, since the reduced matrix elements between all considered single-particle
states vanish. Based on the assumption that core nucleons are excited only in pairs
from the same core orbit, the term U, (equation (36)) contains only diagonal matrix
elements, which are zero for electric dipole transitions because of parity selection rules.
Consequently the contribution of the core orbits in excited configurations vanishes
too. On the other hand, electric dipole transitions have been found [15] in the decay
of the first 4—-state in Po?!0. Because these transitions are weak, they can be explained
by the admixture of further single-particle states not included in our calculations.
Core-excited configurations may also bring about finite electric dipole transition
probabilities, but only if the scattering of single nucleons from one core orbit to the
other is permitted.

Since the term U, (equation (36)) contains directly the influence of transitions
between different core-spins, we expect that this term contributes appreciably to E2-
transitions [23]. But if only excitations with core-spin 0 are considered, U, vanishes
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identically for E2-transitions. Therefore, from this point of view the restriction to
core-spin 0 is certainly very crude and it is desirable to consider at least also excita-
tions with core-spin 2. '

We have made the attempt to calculate the level scheme of Ni®® [16]. As was to be
expected, the level positions are changed considerably by the admixture of core-
excited configurations. However, no reasonable correspondence between the calculated
and the mesured levels could be achieved. The large gap between the first 2+- and the
first 4+-state cannot be explained by excitations with core-spin 0 nor at all by four-
particle-two-hole excitation alone.

Since the level scheme of Ni®? [17] contains states of low energy which consist
mainly of two-particle-one-hole configurations, we conclude that the approximations
made in our model cannot yield satisfactoring results for Ni%. Furthermore, beyond
the excitation of single protons excitation of neutrons and neutron pairs from the Ni%
core should also be considered.
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7. Appendix

We give here the definitions and the most important relations of the two- and
four-fermion operators and some details about the orthogonalization of four-fermion
operators. Some of these relations may also be found in [18].

In this paper the following abbreviations are used:

j=2j+1, (A1)
6] (?1 7‘2 73 74) = 671 fs 6f25i4 - (7)j1+j2+f 671 fa 67‘21-3 2 (AZ)
A?-M.e = (1 + 67;11'2)1/2 2 (A3)
Afy727ads) = (2 —6;;) (2—6,,)1M2. (A4)

Exchange terms of the form A(j; 5) + ¢ A(j5 71), where A4 is any expression in §, and 7,
and ¢ is independent of 7; and j,, are generally denoted by

[A(717) + ¢ {11 <> 72} -

In all definitions of angular momentum algebra the notation of [4] has been adopted.

Single-particle states are characterized by their angular momentum quantum
numbers 7 only. Thus, dj,1, requires the equality of the states @ and b. From the single-
particle creation operators a;, , which obey the anticommutation relation

Jm?

+ oy
{95 m> @i} = 0,5 Oy

34
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the pair-creation operator

.. 1 . : . .
B}LM(h Ja) = A 2 {JymyJamy | J MD a;;i-ml G‘j_:m.2 (11 =172 (A5)

fifs My m,

and the particle-hole operator

A}M(?l 72) :2( )h e <71 ml 72 — My | ] M> a’hm1 Joty (A6)

Wy My

are constructed. The convention
12 1s (A7)

and the factor 1/4; ; have been introduced in (A5) in order to get an orthogonal and
normalized system of base functions for two-fermion states.
The operators satisfy the symmetry-relations

B}_MUI ja) = — (=)Hitd B+ mll271) . (A8)

Ayl o) = — (VM AL (G, 1) (A9)
and the commutation relation

(4 jM(:’.l T2) » B;_’M’(j; 72)]

(_)7-1+7.2+J’

AL ‘(7272 it %‘ <]M]M|LA>{

71i3

]]L}

71 1172
% B g(jv i) — (=) (1 7';}) . (A10)

If the convention (A7) cannot be applied, the commutator between pair-creation and
pair-annihilation operators is

5]]’ Oprarr O 1(7'1 T2 71 ?-é)_
Az As

fiiz <9175

[B sl T B % f2)] =
+M(‘S JI Y (" JMm] —M'|L— A>{
A jad

Iz =i LA

7T

Ta T1

1 i
T2

— (- )1.—[»12—!—]{7 (_)1} 11+1Z+J {7 (_)?2}+ h+1a+1+71 +i+J i?1<—>]-zl) (A11)
1 > s

From (A11) we get immediately

<01 Bypjy 72) Biopse (71 75) 10> = 657 Oprape 65, 651 » (A12)

v 71212

if 7; =7, and j; = 4; hold. (A11) and (A12) are both necessary since in many inter-
mediate calculations the single-particle spins are arbitrary.
From (A10), (Al1l) and the operator relation

-1 m—1
(A" B = 3 X B AMA, Bl AT B

v=0 u=

3
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the following equations can be derived (in most cases by recursion), which are used
to calculate the normalizations of the core-parts of base functions:

[Bry(i1 72)s B'{')*[)(j 10> = ah?z am

2 ) )
{5R05 mo M Bl 1)1 BTN (=) (n—1) Bf_ (1) BSB(M)"”}W% (A13)

.. . %1 2k
0| Booli i) Biafi )" 105> = m! [ (1 _ T) , (A14)
k=1

|/§

[A 31 72), Bopli )] = 6;,, 4, n By (i 1) Booli 1)" (A15)
O Boo(7 1)* Brali 1) Brear (1 7) Booli 1) 10> = s Oppags ¥ » (A16)
where
‘ n k
(n + 1)1]](1 _ 32-), if R=0
T=1 aap J (A17)

nf]](l—-——), if R+0.

Four-fermion operators are built up by coupling two pair operators to a total angular
momentum / with projection A:

DiGyis Josda J') 22 Jv J'v' | AR BY (11 72) B}: w3 7a) - (A18)

If base function of four-particle systems are to be described by (A18) a convention
similar to (A7) must be made, namely

1 =0 =13 =14 - (A19)

The four-particle creation operators defined in this way are however not orthogonal.
They have to be orthogonalized later (see below).
They satisfy the symmetry-relations

DiiGiie Jodsta J = (— )”HJUM Dj{a(?.a Iat i J)s (A20)
Djfz(?'l o Ji7ata J') = — (_)iIHﬂLJ Dja(?'z i l1s1a ) (A21)
and
.. ., ST TN .
Dialiria Jo1sta J') = ()t ] Jr —iiesieds
jljd. j2j3
. T17a J _ _
X 2(‘“)L LL' {7 1s J ¢ Diaide Lojsda L) (A22)

L L LI A
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Without the convention (A19) the commutators between two-particle and four-
particle operators are

[Ag s 1a), DSl 72 Jo g1 Y =

A . P , KJL

T1de LL 71 1372

K
{]— i; } DLJTA-H,;\?] is L, 11 fg J') — (=)ptitd {1i > 72} + ( —) A

h e e
X g > Jg ¢+ (=) TEREEEA LG o ) (A23)
Jo T Jo T
and
[BK.U(?'?’ 1), D2 o 1175 J)1 =
(5 ap op
= U Ok adadade) T J' 2w | A D> By (i )
f172 < 13la
e S(i 7 " "Wl A LS BT .
+A e 2 k(1727370 <JA—p J | AA> By ,;_, (1:72)
ids S isda
KJ7JT . N
- ‘A—‘“Zli“]Tﬁ (Am;(sK (?3747272)21‘ (LA—uKp|A2d>
fufe < iada “i11a ) L
172 J o o
X 37172 BIJ,FA—u(h i) — (=)t {i, & 2} — (rtistd {11 <> 12}
LKA
A e A {71 == 72} + terms in B+ A+ . (A24)
11 € 12

Equation (A24) can be slightly simplified by introducing the conventions (A7) and
(A19).

The vacuum-expectation value of the commutator between two four-particle
operators can be expressed in the formula

O[[Dyaljsfe [ 137a J)» Dialiiis K 1574 K')1 10
A 0yp A A Ao A 5]1( a]‘K’ 6](?1 7271 72) 6]’ (737475 74)

fifa < fafs S 9172 < dada

=0

+ (=) 8k 8y 07071 72 75 18) O (s 7adsda) +

1172 K
— JJ'KK (5](7'1 fa 7t 1a) 8p UpTa 300 172 1L K ¢ — (—)EHAHELS o 3} +
774



Vol. 43, 1970 Four-Particle-Two-Hole Core-Excitation in Heavy Nuclei 533

— P o 4 s (OB (429
Is <2 14
If the convention (A19) can be used, (A25) is simplified to the form

O [Dya1rda T 1s7a J) Djl-’l’(ji 12 K, 7514 K')]1 10>

=044 O aml 61312 678?3 6141, ‘SJK aJ’K’ + (_)I+J’+A 5J’K 0k 0j,, 0

JK’ Zi1fs Viada

o 1172 K
AhTaA?ahAhh N j] KK 13 74K 61‘51‘3 ’
JJ A _
fiZfeZla2lnli=ls =15 =704 (A26)

which is to be used for the description of base states. It can be seen from (A26) that
by the convention (A19) the four-particle operators become orthogonal with respect
to the total angular momentum and the single-particle spins. Therefore, only the
orthogonality of operators with the same single-particle spins and the same total spin
must be investigated further. First we consider two special cases:

If all single particle states are different or if 7, + 75, the operators are indeed
orthogonal. If only the middle single-particle spins are equal, the operators can be
orthogonalized by recoupling the spins with help of (A22), so that the states which are
equal are coupled first. Then Pauli’s principle can be satisfied by allowing only even
values of the intermediate angular momentum. We thus define orthogonal four-
particle operators in this case as follows:

111s J
1 e el e 3
Diwgphiidd === (=) T S8 377 J' ¢ DiaGaiS:77.S). (A27)
J’even VZ SS’ S SIA

In the case that three or four single-particle states are equal the operators with
different intermediate coupling modes create a non-orthogonal and redundant set of
states. Then an orthogonal set of states is constructed numerically by Schmidt’s
procedure, starting with the state of lowest seniority. We thus define the general
four-particle creation operators by

DAAoc (717273 74) Zd w U1727370) Dha Gide Jodsda J') (A28)

where dJ7(j, 5757, are the coefficients of numerical orthogonalization or the
coefficients in (A27) and « denotes the different orthogonal coupling possibilities.

It is easy to show that the general orthogonalization coefficient 4% , (we denote
here the pairs of intermediate angular momenta symbolically by small greek letters)
can be expressed by the recursion formula
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1 oao—1
~ 5 2 2 i, <0] D y(w), DF5(0) 105
= o=1
dﬂax if f=1,...,(axa—1) , 1f N >0 (A29)
1
TV’J if 610(
and
dﬁa:O, if N=20, (A30)

where N is the norm of the constructed orthogonal states
N =Dl d4a <01 Dyy(p), D) 10> (A31)
v

For the description of ‘recoupled’ exchange terms it is convenient to define the
‘recoupled’ orthogonalization coefficients

1 T
PR e
ﬁLa(?i Te 11 7m) ZZ.] S LL 'tjl;if; Todm J dﬂja (71 727374) » (A32)
JI ' LL' A

where the phase factor is given by

(L+ (=)F0:) (14 (=)F 6¢)

ik —
"W (1 + 6;) (1 + dx,)
1, o if ;=1 0=7a 11 ="TarTm=1a
o (_)Tfﬂ.ﬁf’: if 7, =7, k=711 =13:Tn="1a
— ()t if §; =1, Jk = Jo0 I1 = 4> T = T3
(=)t Ittietl” i = o, S =10 1 = far T = T3 - (A33)

It should be noted that the transformation (A32) is in general not equivalent to
(A22), for the orthogonalization procedure is not unitary and cannot be inverted.
However, if only the middle single-particle spins are equal, we get by (A22)

’ . . . . 1 e 5 4
fﬁL(SS')(?z J17272) = — 1/7 (“)7”+7‘+L+L + aL's 5Ls' . (A34)
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