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Nucleon Transfer Reactions Below the Coulombbarrier

by D. Trautmann and K. Alder

Institute of Theoretical Physics, Basel, Switzerland

(23. I1. 70)

Abstract. A DWBA treatment for nucleon transfer reactions is given which is applicable for
energies below and in the neighbourhood of the Coulomb barrier. At energies well below the
Coulomb barrier the theory is essentially exact and the radial integrals describing the reaction
may be evaluated analytically by means of generalized hypergeometric series. Methods for their
numerical calculation are given. Semiquantal and semiclassical approximations are considered.
From those it is possible to recognize a close similarity between transfer processes and Coulomb
excitation. The effects of nuclear interaction, which become important at energies close to the
Coulomb barrier, are treated in an approximate manner. Expressions are given for the differential
and total cross-section. The deuteron stripping reaction is treated as a special case and the
polarisation of the outgoing proton in (d, p)-reactions is calculated. The connection between this
treatment and the diffraction model developed by Dar and Frahn and Sharaf is discussed. An
improvement of the model is given. A method similar to the one used in scattering and Coulomb
excitation calculations is used to improve the slow convergence of the sum over the orbital angular
momenta. Comparisons with actual experiments are discussed.

1. Introduction

During the last few years there has been considerable interest in nucleon transfer
reactions below the Coulomb barrier. This is due to the fact that many of the diffi-
culties, which arise in the theoretical description of these processes at higher energies,
can be avoided and consequently spectroscopic factors can be extracted with greater
accuracy.

Almost all the theories used for transfer reactions are based on the distorted
wave Born approximation (DWBA). In the method of Breit et al. [1-3] one calculates
the probability amplitude for a neutron tunneling from the potential well of one
nucleus into that of the other while the two nuclei are at rest. The relative motion
of the two nuclei is described by the DWBA. This method is particularly successful at
energies below the Coulomb barrier. Dar et al. [4-6] developed a diffraction model for
transfer reactions. This model can be obtained from the DWBA if several simplifying
assumptions are made. It can be applied particularly to reactions at high energies,
where the agreement with experiment is in general quite good. A method which avoids
all the approximations connected with the former models is the direct numerical
calculation of the DWBA amplitude [7-8]. But, since the zero-range approximation
used successfully in deuteron stripping reactions cannot be justified for general
transfer reactions, this numerical calculation becomes very troublesome. The reliability
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of such calculations depends furthermore quite sensitively on optical potentials used.
Information on optical potentials describing the elastic scattering of heavy ions from
nuclei is however rather scant. A considerable simplification results from the theory of
Buttle and Goldfarb who, by extending work of Abelishvili [9], restrict themselves to
energies below the Coulomb barrier [10-12]. This leads to radial integrals which can be
easily evaluated.

It is the aim of this paper to show, that it is also possible to solve these radial
integrals analytically, which gives a further considerable numerical simplification.
It will be furthermore shown how the influence of the nuclear interaction can approxi-
mately be taken into account. This extends the validity of the theory to energies in
the neighbourhood of the Coulomb barrier. In chapter 2 we summarize the well
known DWBA expressions which we want to calculate for energies below and in the
neighbourhood of the Coulomb barrier. This will be done in chapter 3. The radial
integrals describing the reaction are quite similar to those occuring in the theory of
Coulomb excitation and can be handled with the methods developed there. This will
be discussed in chapter 4. In the fifth chapter it will be shown how to take into account
the influence of nuclear interaction. This becomes important to energies close to the
Coulomb barrier. In chapter 6 we come back to the case of pure Coulomb distortion.
Using the WKB-approximation for the radial wavefunctions we obtain the so-called
semiquantal and the semiclassical approximations. This results not only in a
numerical simplification but also shows the great similarity between transfer reactions
and the Coulomb excitation process [13]. Furthermore, since the semiclassical ex-
pressions depend only on a few general parameters, it is possible to tabulate some
functions which are applicable to a large variety of reactions. The accuracy of these
approximations will be estimated. Because it is interesting to test the energy de-
pendence of the reaction we will give formulas for the total cross-section in chapter 7.
In chapter 8 the special case of deuteron stripping is considered. The polarisation of
the outgoing protons in (d, p)-reactions is given in chapter 9. It will be shown that
polarisation measurements well below the Coulomb barrier lead to an unique deter-
mination of the angular momentum transfer 7. In chapter 10 we discuss the connection
between our treatment and the diffraction-models of Dar and of Frahn and Sharaf.
Chapter 11 contains numerical results and a comparison between the theory and some
experimental data. In performing these calculations we use a method similar to that
employed in electron scattering and Coulomb excitation calculations for improving
the slow convergence of the sum over the orbital angular momenta.

2. A Short Review of the DWBA-Formalism

In this chapter we summarize the basic formulas of the post-interaction form of
the DWBA for one-nucleon transfer reactions. Consider a reaction of the form

CH+n+T—-(T+n)+C, (2.1)

where a neutron being in a state ([;, m,, 7;), goes from the cluster C to the target
nucleus 7" where it will be in a state (/y, m,, 75). The mass of projectile and target
nucleus are denoted by a and 4, respectively.
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Neglecting effects of Coulomb excitation the DWBA T-matrix element can be
written as

Ty = <PO(r,) X,| V,olr) 1P9(r) X5, (2.2)

where ¥ O)(r,) describes the relative motion of C in the final state and ¥™(r,) gives
the motion of the projectile in the center of mass system. X ,is the product of the two
wavefunctions describing the internal motions of the residual nucleus (7" + #) and
the cluster C while X is the corresponding product of the internal motions of projectile
and target nucleus. Thus

X, = 6;'111 2 <% G by iy | 11 > <Japay, 1, | Ipﬂp>

Gy, gy My
e le X (&) @r(n) [1, m(re) 25" 217 A
X,= %LZ <% (;n: Lymy | 1o > <o o, J; ;| ]fﬂf> - (@3)
Gy tha My o !
uili X @ (§) pr(n) Py, o, (Ta) 23" XTE XIE

where the X?’s are spin functions and g¢;, I, and u; are the internal wavefunctions,
the spin and magnetic quantum numbers of particle ¢, respectively. The quantities
0, and 6, ; are the spectroscopic factors for the bound neutron in the initial and
tinal state.

The coordinate system used in equation (2.2) is represented in Figure 1.

Figure 1
The system of coordinate vectors.

The vectors are mutually related as follows

tp=1+1,,
1 1 A !
r,=1r+—r o I o ey, e o ry. 2.4
SRR E A it O’ IV L i (24
Assuming that the masses of C and T are large compared to the neutron mass we get:
A
PSP, re~ ————r. 2.5
¢ I A 4 T ( )

Under these assumptions we may write for the differential cross-section:
do  mfm} k; J m¥m* k[ ( o)
i  (2mh)? R, J? a2 R, J Jily Vil
LS ? L l Iy *% ?
P PaSs Fp (26)
«, 8 L % b5 |m1m2 My — My — 6

where we have used the notation x = /2 x + 1.

2

’Tfilz -
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The reduced masses in the entrance and exit channel are given by:
" aA (a—-1)(A4+1)

mr = M, mf ]

a+ A

where M is the nucleon mass.
The transfer amplitude F7";”: is defined by

Fpe = [[an ar WOr (< ) 98 (1) Vade) fmlr) YOI . (25

(2.7)

A+1

3. The Cross Section at Low Energies

a) With nuclear distortion

The calculation of (2.8) may be simplified by a reasonable choice of the captured
neutron wavefunction @/, (r,). While this wavefunction is given outside of the
nucleus by a Hankel-function, we have to choose a suitable wavefunction in the
nuclear interior. A form which has been shown to be quite good for low energies is the
function introduced by Morinigo and El-Nadi [15-17]. So we have

e %"
Cbz’:,ma(")—JN G i —— e Y} ulra) for 7, <R
N, i " h G nr) Y, (r) for r,> R, (3.1)
where the Hankel-function is defined by
T B (ly+ E)! 1
P TA a— Uy + &) (3.2)

w1y = Rl (ly— R (2xryt

and x is related to the binding energy of the neutron through » = (1/%) Y2 m* | E,;, |,
where m* is the reduced mass of the neutron in the exit channel. The quantity C, is
determined by the matching condition at R, namely

WG x R) &R

G,==nR 0 (3.3)
Inserting (3.1) into (2.8) we get with r — — r:
do mF m¥* k. J? To ]
- t ; 2 7f ‘]A]; (67151 Jala 1)22 2l '
as 2r A2 k; J? = hil,
> > Z(_)m2+ll ,1,}'~l2 ll l2 o (C (L) Frm, m e (Z)le,mg) . (343)
with
00 R
6—7().’
(I)F;’:i:n? :f ary I/nn(rl)fll,ml(rl)/dr o - Y, mg( ) WO R(r) WH(r) (3.4D)
0 0

@ Fym — f dr, V, (1) fio o (r) f dr Wi %) Y, (%) PO*r) PO (3.40)

and
X=1r —r. (3.4d)
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For the further calculation we have to use addition theorems for the wavefunctions
(3.1). We have [10, 16, 17]:

e NNEEANT A l—A
Sy Yim = aan ZO () ()4
ly — A l l , i
(j (s + 1) %:2) jL ) RPG xr.) Yzzifﬂt) (1)
XY, (1) Yf,M (r) Yo a0 (1), (3.5a)
o s «n (LA (L Is A
()¢, * _ o+ L—A 2 2
By (@ % x) Y (%) ]/47'5;;1 Li,A (OOO) (Mmgu)
LM
X BPEnr)jfGer.) Y ulrs) Yy . (rs), (3.5b)

where »_ and 7_ denotes the smaller or greater value of 7 or 7,, respectively.
Substituting (3.5) in (3.4), summing over the magnetic quantum numbers,
integrating over the angles and using

(lllz;ﬁ) ?11'21 _ 1 (71?2}“), (3.6)
000/ |72713 55 \3-30
we get

do mEmr k ]

— =4 M S oF i 0., N,)®.

40 L (2737@2) k ]1 (hl j2lz lz)

(N) A, ,u 7'] 722' (C) pA, 1 5
xZ‘ Rii+ {3 30 Ry4 (3.7a)
where we have used the followmg abbreviations:
R
; A
o f dr Po* ( Lo ) P (1) Y3, (1) e, () (3.7b)
+1
0
A
CYRA L dr P = [ -
ol / e (A+1 r)
R
X WO(r) Y5 (1) (BP0 % r) A} o(#) — K% o(#, 7)} (3.7¢)
with
gzl(”) :Zk"ak(L) r* {""(Ll)(Z %7) Aili,k(%) = KlL’,k(”’ "}, (3.7d)
W Ajll [l— kLA (2
I) = (_)Ft+Lt1 Jedq
it = e Gl )
e o —RLA\ (LEL
ngg( )(0100), (3.7¢)

AL = [ar g jtinn .,  Go) =2V S, 3.7)

0
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K} 4o, 7) = ;{h}}’(ixr)'/dr @5 (r) BP (G r) — h(f)(ixr)/dﬂpl( ) W xr)} (3.7g)

¥ ¥

The summations contained in (3.7) are restricted by the following selection rules:

|l“‘k| L<l+k |y = 72|</'l 71+72: -kl <L <L+ Ek,
i+ k+ L =even, ly+ L+ A—Fk=even. (3.8)

While the integral ™ R} # contains the whole nuclear interaction, (“/R}>4 is determined
by the Coulomb interactions only. The quantity K7 ,(x, #) is due to penetration effects
and is negligible at low energies, while the formfactor A} ,(x) is determined by the
finite-range interaction between the neutron and the cluster C.

The integrals (3.7b) and (3.7¢) can be calculated explicitely in this form only for
the special case 4 = 0 [10, 18]. For the general case it is necessary to introduce the
partial wave decomposition for W *(r) and ¥®(r). Thus

4n . iay.(n)
T(-i—)(r) == 5 Ly ; . lf' . x1i(ki’ 7’) Yl::)m,b(kz) Yli,mi(r) ]
A 4 A
(-) * ) = —1 o) B * ;
v ( 4+1 r) krv IJZ,,” e (kf’ A+1 r) Vi mlke) Yy, (1), (39)
where
o) =arg Ml +1+1im) (3.10)

is the usual Coulomb phaseshift and #; and 7, are defined by

 ZcZpem® ZoZrémf
A A TN )

(3.11)

Next we choose the so-called ‘incident-beam-coordinate system’, in which the z-axis
is defined by the direction of k; and the y-axis by k; X k;.
After integrating over the angles one obtains

o jep e DAY (MNP R W T
d.Q (61 '+‘ A)2 h2 E kz 71 1 72 2 i~

| 2

; =l g5 ilog (n)+oy (nf)) L lfl " . ’
X ‘% lft Ple Y, . (8, 0) (ODO OM " Ql 7 (1 720 2 %) (3.120)

with
R

Ok G b = G, — | 100 g (5= 7) )

L zJ‘ 112 T 1y 3 Ef X1, A A+1 g1,

0

o0

fge A\ Lo (©) (©) I, 1
+ (%_% O) k ;_af/dr i, (7) %, A n 7! WP@nr ) A7 o{%) — K3 o (2,7)} (3.12D)
R
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and

- A

1 is the scattering angle in the center-of-mass-system, and My, (“)y, are the radial
wavefunctions inside and outside the nucleus.

b)  Pure coulomb distortion

For energies, which are well below the Coulomb barrier, the expression (3.12)
simplifies considerably. Since the classical turning point of the projectile is in this case
at a large distance from the target nucleus, the integral containing the wavefunctions
My (r) can be neglected. Furthermore it is quite legitimate to change the lower
integration limit in the other integral to zero. The radial wavefunctions (“)y, are now
given by regular Coulomb wavefunctions

on [ TE+1+1in)]
(€) = F (Ey) = ¢~ (®/2)n |
><(2k1*)l+1e_ik"1}?1(l+1—in;Zl—}—Z;Zikr). (3.13)

Hence we get from (3.12):

—5 Z(hh ) A, 73y M, %) (3.14a)

where we have used the following definitions:

_ al@a—1)AA+1) k J? Mo
%2 = 1677; (a + A)2 Mk-; j/? ( 7.1l1 szleg) %1_;{2"“” 14l]_,0("‘)1 ] (3'14b)
G, 5y My 20) = D) | Fy (8 my, mys ) 2, (3.14¢)
M
with
ALu »%:Hﬂ”)* iZ'Z i fg l_f,,u s
(A (B T3 (3.14d)
000/ \Opu—u YA
and
oo
1 -
T35 = —— | B (k;7) MG % 7) F (R, ) dr - (3.14e)
W kR /
0

The quantity »? determines the strength of the reaction, while its angular dependence
1s given by G,(9, n;, 1;, #).

24
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4. Calculation of the Coulomb Integrals

In this chapter we want to give explicit analytic expressions for the radial
integrals given in (3.14). We define:

1 _ -
T?,;?} T kR, f E, (k) B(0 2 7) E, (ky ) dr
’ 3 fO
_ 3 (A + n)! . (4.1a)
ol —n)lnl (2xn )
with
o0
M;—b% = L E (k; 7) c E (k.v) dr (4.1Db)
lz‘,l;‘ — kz' ]_Ef L\ pu+1 lf( Lf . A

0
This integral is quite similar to the radial integrals occuring in the theory of Coulomb
excitation [13, 19, 20] and can therefore be handled with the methods developed
there. Throughout this section we make use of the formulas given in the appendix
of [20].

Using an integral representation for the . Jq-function in (3.13) and changing the
order of integration we obtain a function, which is identical with the integral repre-
sentation of one of the so-called Appell-functions [20, ITE. 93]. This function £ is a
generalized hypergeometric function in two variables [21-22], and is defined in the
neighbourhood of ¥ = y = 0 by a series expansion.

For (4.1b) we get [23, 24]:

i .
i (A + n)! |7+ 1+ im,) |
APy e 1Y ol U Ry ¥ oy 1y
(4 1+ i my) |

g2ty (k; — Ef + 7 x)n-2 (x)l,y- (— y)lf Jtl—n+2)

21,4+ 1)!
><F2(li+lf—n+2, li+1+ini,lf+1—i77f;215+2,2lf+2;x,y), (4.2a)
with

2k —2Fk
X ‘R y = i S— (4.2b)
The function F, converges only, if
%]+ [yl <1. (4.3)

Since this is not the case, analytic continuations of the F,-functions must be used.
Such continuations lead to Appell-functions of the argument 1/x and 1/y. Two
especially simple analytic continuations can be found immediately. If # = 0 and
l;=1,=1[, we get [20, IIE. 96]:

ap-rn_ LI+ )| [C+1+im)) — )l(ki—i‘éf—m)m
S 21+ 1)! A (P S

Xy (U+1—dm, i+ 1—1n;21+2;%) (44a)
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with
4 k; Ef

Y ST (4.4b)

E=n—1;, Xo = — -

For the so-called ‘maximal matrixelements’ (the name comes from the theory of
Coulomb excitation), with I, = I, 4- n, we get [20, IIE. 98, 99]

|

T'l+1+in)

M2=h% = =2 | (Ef )l (2 Ry =2
Ti+n+1+in) |\ k :

l4mn,l

L' (n+1i&)] . _
X{ (271—1)' If‘a(_zn—}*l,l“i-]—-—znf,l_kl_{_inf,
bk in kR
— 1 —1 N 1 v, S T LE T . i IR
" + 1€ —-n+1+1§; S s )
+2R€H3”5iég;ﬁi””§FU+"+1—imﬂ7ﬁn#¢9
Zki ]_'(l_{_l_z,qf)

><Fz(—n+1+i§,l+n+1wm,.,l+1+i77f;

hi—Fp—in kBt
IS QY SRS TN T iy %-f+”ﬁ”}. (4.5)

2k 2k

If n =0, equation (4.5) reduces to (4.4). The first F,-function in (4.5) is a
polynomial, since the first parameter is a negative integer. Especially for n =1
we get:

(4.6)

Ri—kr—in  hi— Rk +in _nf_iéf—mki——(l-}-l)x
28 ’ 2k, B ki &

Also in this case, the second F,-function in (4.5) can be transformed into a Fj-
function [20, IIE. 97], which converges more rapidly than the original function F;,
18
: . . ., ki —R—d ki — R+ 1
IE(@E,H—2—zn,-,l+1+znf;2+z§,z§;-’ P, st %)
2k, 2k,

®+@+¢WH%( 2k, )ﬁ
(2 &y)2iH2 ki+ kp—in

x ((k; + Ef)z + xz)l—i’y Fl(——l—l-inf, —(+141%),2,2+1&;

(k; — Ry)? + 2 @—@—@ﬂ (4.7)
(ki+73f)2+x2’ki—{—ﬁf+i% . .

For the calculation of the other maximal matrixelements we use the symmetry relation

Mz;,rz‘f_l’n (M, my) = Ml;?i_l’w (15 M:) - (4.8)
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If ; + [, + n, we do not get simple analytic continuations of the Fy-function. It is
possible to obtain an explicit expression by using equation (IIE. 103) of [20], but the
result is lengthy and the numerical calculation of it is rather tedious. Other possibilities
for an analytic continuation are the relations derived by Olsson and Hahne [25-27].
We prefer, however, to calculate the general matrixelement by means of recursion
relations. The existence of such recursion formulas is a consequence of the simple
recursion properties of contiguous hypergeometric functions and of the Coulomb
wavefunction. The use of the two well known recursion relations for the Coulomb
wavefunction

dF,(k (2 + 12 e
i+ 1) _k!(dy’) - (7@7) + ,7) E(kr)— L+ 1+ in|Fy(k7)
dF,(k . :
l#:|l_{_zn| ~s(Er) — (kr+n)Fl(kr) (4.9)

leads immediately to the following result:
%, Cj qu’ifl “+ 7, C), Ml:fl‘}f” — X Ct CMphe g O g MR

1 R 0 Lty
1 e 1 1 1 - —n—1,x
— | % lf+ 1 —%) q+x2‘lj — X3 'l:i— X, (l_f +%)Q) Mli’lf )
1 :
= T (0 (G —m) + %L, — 23 (I; + 1) — %, (I + 2 + 1)) szztfz’x (4.10a)
where we have used the definitions:
k _ l ]
L i - -~ P Ci, = Lt Sl (4.10b)
k;m; kf Nr ’ N, 0+ )

and where the x; are arbitrary constants, satisfying the condition
%+ %+ %53+ 2, =0. ' (4.11)

Giving these factors appropriate values we obtain the wanted recursion relations.
Starting with the maximal matrixelements M, >* and M %% we obtain

1 )
Ml";lf‘l kfﬂf E, 0 {Rim: ( C{ 1qu+1 I+1— C;,l )+M1+zl (4.12)
I

All matrixelements necessary for the calculation of (4.1) (with /;, [, and 4 arbitrary)
can now be obtained by repeated application of the recursion relations (see section 11.a)

i Clo @I+2p+1) 1.
Ml+p+11 1 C; p-1+-1 (P n n) I+p, ll+1 e

Ci, @l+p+1-—m) . (zz+2p+ 1)
Cg,p-ﬂ (P +n) sl L Chppq P+ )

l+1—n 1 A1 413
((Z+¢)(l+p+1) ”(”_Hl)) et (#.132)
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—H—a, ki i —n-—1,x% i —n—1,x
Miis, = 2014+ 14 p— n {Cé’l 4 Mlﬂ”lljfl + Clpia Mt+p+11’,1
1 — 1
_ ) _ . VN MLl 4.13b
@(l+1 ’4%_L%p+1) ”%’} (#:13b)

and with the symmetry relation (4.8).

A further simplification of the numerical procedure can be obtained by using
recursion relations for the maximal matrixelements.

Using the fact that three contiguous ,F;-functions are always linearly dependent,
we get with (4.4)

2y M55+ 2 Mo M 0 (4.14a)

I—1,1—1 =
with

31=l’l+1+i"7i||l+1+¢77f|,

Zy = —(2.1+ 1) {l(l+ 1) (l—xi)ernf},

0

=0+ 1) I+ [+, (4.14D)

and where x, is given by (4.4b).
An analogous relation exists between four F;-functions, i.e.

Fi(o+n, B+ n,, 13’ + ng, ¥ + ng; %, V)

0 0
— (e 9) + Bls ) o+ Cy) 5 ) Bl BB 209) (.13

where the #, are arbitrary negative or positive integers and 4, B and C are rational
functions in x and y [18]. For example

Fa+1,8+1,5+1,y+2; %)
yiy+1) [1 x—1 0 1 y—1 0 i
— L _ e e s p ol ot JB G B BE gy g al) 4.16
o By o T gy ] Bl BB im0
Following [22] one obtains

Ay Cop — 4, Cyy

T X - X
R(I—1) Mz-:.-lawl:i,zﬁ:l"‘ : OZR(Z) M5

By Coq i1 B Gy i
R (l +1) z+/11+11’,l+1 o m M1+/1+12’,1+2 = (-, (4.17a)

where the following abbreviations were used:

r r | R\
R(+n)— ~|i‘+_"(;;1)2|.,1l;(f;_” L L T (k_f) . (4.17D)

z

we=A+1l+1in;, B=Il+in, B =l—din, y=21+22, (4.17¢)
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2k k,
x = i B— Y = 2_ . S (4.17d)
= T S
x—y % (1 — x)
1 ’ — 1 1-—
sg:-—( i B a1 il )), sp= P Y @17e)
x \x—%y 1—x x (x—9) (1 —2x)

Six v 6, 8) = Siv, % 0, B), (4.171)
y+2n)(y+2n+1) x—1

M, = )
y—a—n{a+n)(f+n x—y
N(x, 5 B, B) = M, (v, %, 6, ), (+.17g)
Bo=M,, Cixy; B 0) =By, % 0,0, (4.17h)
A, =M, M, S+ N, N, S}, (4.171)
oM, oM ;
By =N, O—yO‘f“ M, “070 + (Ny My + My Ny) S5+ My My 53+ Ny N,y S5, (4.17))
04 04
Ay, =M, 0; + N, ()—yl +M,B, S+ N,C, 8, (4.17k)
0B, 0B, . ; y
B; =M, Sy + N, oy + (N, B, + M, C)) S;+ M, B, S;+ N, C, S}, (4.17])
Gy =1Cy =6y, (4.17m)

For the further calculation one has to use:

M N M
iy B N, o, U5, (4.18)
0x B'+n x—vy 0y x—y

5. The Treatment of the Nuclear Interaction

At energies which are in the neighbourhood or above the Coulomb barrier we
have to take into account the influence of the nuclear distortion. In the entrace and
exit channel we choose the wavefunctions

My (r) = A, u,(7) for r < R,
(C)xl(r) L (cosd, F,(k7) + sind, G,(k 7)) for r > R, (5.1)

where G,(r) denotes the irregular Coulomb function and the #,(r) are eigenfunctions
of an optical potential. Both, a square well as well as a Wood-Saxon potential were
considered. These potentials determine the phase shifts §,. In the case of a complex
square well 4, and 6, are given by:

5 €080, Fy(k7) + sind, G,(k7)

A, = e 2 5.2
1= R R) (522)
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and
1R R) — R Rj,—(R F(k R Rj,(k R) Fi(k R
ai _ —aI'Ctan ( T.l(~ ) lf R ?.l l(ia R)) l(k ) + k 7'l(~ ) f( ) , (S.Zb)
(7:(k R) — k Rj,—1(k R)) G,(k R) + k Rj)(k R) Gy(k R)
where the 7,(k 7) are Bessel functions with
> _1/.. 2m* L
k—|/k2+ 2= [P+, (5.3)

In the case of a Wood-Saxon potential one can calculate the first few partial waves
by numerical integration while the higher partial waves can be obtained with the
formulas for pure Coulomb distortion.

6. Coulomb Stripping

One of the most important one-nucleon transfer reaction is the deuteron stripping
reaction. The basic formulas for this process can be derived as a special case of
equation (3.12). We assume that the deuteron is in a pure s-state and that the proton-
neutron interaction can be described by a Hulthén interaction of the form

e H7
Vip = Voem ~Vop o (6.1a)
with
Vo= 2 a o/ Mlel :
1= 7P (o + 2 o) and o = —55 = 0.2317 F1. (6.1b)

41 1s the range of the nuclear force. Goldfarb [28] has shown that the d-state of the
deuteron can be simulated if one chooses u = 5,39 a.
The wavefunction corresponding to (6.1) is given by:

2 2 %k

£, V o (o + u)z( a+p) e (1t esr). 6.2)
7 7

Substituting (6.1) and (6.2) in (3.12), using /; = 0 and writing (/,, m,) for (Z,, m,),

we get

do — l‘ 1L—1. 7 Fa (o .(n)+0; (n) 2 lfln li b
e ¥ YL ety g g
T mn1l'l/ / lf’m”( ) 000 0Om, —m,

R
1 A e—h"f’ n
1 dy ™ ™, [_ 7! ( ~~~~~ — Yanr~?
kiR, {f 4 x%‘(r) \"4 1 i R i

0

p—

‘ A
+ (N)Kzn(%, s Oﬁ)) + f dr (C)%zi(”) (C)%zf (ArJr 1 7’)
R

X (hgi)(z x7) — OK, (%, u, «)) , (6.3a)

Ly
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with
s — 2 ] "+ m)!
ab=2ﬁw( = ) AN JR LR
=6 (ot 4 p)? — 22 (, — k)! n! (m — n)! (2 %)

The correction terms WK, (%, u, «) and ©K,, (%, u, «) which are due to penetration
effects are relatively small compared to the leading term. This can be seen if one
looks at the explicit expression:

g—'(a“f’.u)" In

MK, (. 1. «) = T bl s 6.4a
l»n,(% M! 0) ¥ 3210 s ¥ ( )
with
In I § §—n (k—m)'
bln _ _\k n Al Ck Ck :
) k‘j‘;( : R —k)’n-()mz-:o P (ks
R e A
(o + )2 — 2 at p atp
and
6“(“'+’ﬂ)7’ l1_11
OK, (v, p, o) = 0, p, o) ¢l 7 (6.4¢)
xr §=0
with
I
—\n +
0u(06, p, ) = (3 {ax"£1—(~P+%%+(1+(—V*ﬂ}- (6.4d)

The parameter y2 in (6.3a) is given by

- —10)AA+1) ko J?

ggp A@ DAL B
@+ dF k3

where the formfactor B(x) due to the finite-range neutron-proton interaction is

VZ2a (e +u) 2o+t p)

(0;,,1, B(#) N)? | (6.5)

n

B — (2 st ol W 5 0w BL I i« SPY 6.6

b = et = L (6.6

If the energy of the incident deuteron is well below the Coulomb barrier we can write:
do [ |

E - T?: Xz Gln('ﬁ: 771': n,f: %) = _2. x2 2 |En:mn(ﬂ’ Ni> ?Yf’ %) }2 ? (67)

where we have used the definitions (3.14c) and (3.14d).

7. The Semiquantal- and Semiclassical Approximations

If we restrict ourselves to energies well below the Coulomb barrier we are allowed
to replace the radial wavefunctions describing the scattering process by their WKB-
approximation. If we do this, we get for (4.1), using the results of [20],

z’n ~ 1—

+ 00
— ‘,7,7, i(&esinhw+Ew) 7.(1) (r 1
N T 4 kR, R ‘/‘3 nY (i g (1 + & coshw))

— 00

(coshw + & + 7 }/e® — 1 sinhw)* 1
>< o N 3 \p— - B d = B I ) ) 6 ) 2 7-]
(e coshw + 1)#~1 © =57 k% 3, ul&; €, 08, 0) (7.1)

[



Vol. 43, 1970 Nucleon Transfer Reactions below the Coulombbarrier 377

with
o
I, (6 & 0, o) = f (i o (1 + & cosha)) o (1 + € cosha)

0

&7 1 sinh
ye? — 1 sinhw ) do . (7.2)

X COS (E’ e sinhw + & w + p arctan -
¢ + coshw

Hereby we have introduced the dimensionless parameter ¢ which is defined by

Q:xagzxi, (7.3)

x107

24

Figure 2
The radial integrals I ,(f, &, 6§, g) with 4 = 2
as a function of &. The &-values used for the inte-
grals are indicated in the figure. The curves la-
belled by @, b and ¢ were calculated with u =
—2, 0, +2 respectively. The g-value used for the
curves is g = 3. 6§ = 0.

where g, is half the distance of closest approach in a head-on-collision.
Furthermore we have

§ =&+ 0= (k; — k) a, (7.4a)
with '
L L. (7.4b)
a—n k '

where # is the mass of the transferred particle.

; O —
p=1—1 —and SZEVWZ‘*‘ZU‘*I)‘ (7.5)
Finally #, # and / are suitable averages of (1;, 9,), (¢;, k) and (;, /;), respectively. For

the calculations presented in this paper arithmetic averages were used throughout.
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In the case of (4, p)-reactions where & ~ — & equation (7.1) is almost equal to the
approximation given by Lemmer [29]. While this approximation agrees quite well
with the exact calculation for backward scattering angles, the approximation (7.1)
is the better one at small scattering angles.

Substituting (7.1) in (3.14) we get the so called semiquantal approximation.

A further simplification can be obtained by the so called semiclassical treatment,
a method well known from the theory of Coulomb excitation [13].

In the semiclassical approximation equation (3.14d) goes over into

~ (_\B n : o)
]:)g,,u(ﬁl 7]2" lr]fl 7‘5) - ( ) 2 k2 % San,ﬁ/Z eXp {z (2 ?7 (log ( Sin’i9'/2 ) 1)
7 T 1 n 7w #m+O
+_2-~)} SV (50 0) Dn (G 5 T3 ) Bm@ 080, (16)

as will be shown in the appendix.
The integral I, (9, &, 6, o) in (7.6) is given by (7.2) but now the quantity & is
defined by

e = sin~! ?— : (7.7)
2

With this definition it is clear that I, (9, §, 6§, o) depends now on the scattering angle.
Using the unitarity-relations for the D-functions we get for the differential cross-
section:

do do
ey Sl T
ag ( aQ )R P(), (7.8)
where
do 1 o
| = gt — 7.9
(dQ )R 2 a? sin 5 (7.9a)

is the Rutherford cross-section and

2(7172 ) (D & 6E, o) (7.9b)

gives the probability that a transfer reaction will occur, and where we made further-
more use of the definitions:

af@—1) A (A+1) k ]}2 M I 2 f(o) 2
with
flo) = e Kyle) (7.10b)
and
B,(®, &, &, 0 2 ( o) L (9,8 68 0) 2. (7.11)
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We have normalized the function B,(d, &, &, g) such that
Bylor, 0,0, g) =1 . (7.12)

Thus the quantity 42 is a measure for the strength of the reaction while its angular
dependence is determined by the function B,(d, &, 6¢, o).

In Figure 2 we have represented the integral I, (&, &, 0§, o) for A = 2 and p =
—2,0, +2 as a function of 4, £ and ¢ with §& = 0.

w

B,(6,%.5.3)

Figure 3
The function B;(d, &, 6§, g) with A = 0 as a function of &. The different curves correspond to the
o-values 2, 3 and to the &-values 0, 0.4 and 0.8. 6§ = 0.

Figure 4
Same as in Figure 3, but with 4 = 1.

The integrals are strongly backward peaked and their absolute value decreases
rapidly as & increases. Figures 3—-5 show the function B,(#, &, 6§, ¢) for A=0,1, 2
and for different values of p and £ as a function of & with 6 = 0. These functions have
the same qualitative behaviour as the integrals in Figure 2. Since the values of p and &
are quite similar for different reactions, the functions B,(d, &, 6§, o) given in Figures
3-5, can be extrapolated for a large variety of reactions.

At this point it is interesting to consider the accuracy of the semiclassical
approximation. Comparing the parameters defined by equations (3.14b) and (3.14c)
with those defined by (7.10a) and (7.11) we find:

V4 mkx

T ) 7.13
X 7o) X (7.13a)
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and

(7.13b)

G, 0y, mp ) ( ad ) (f (@) ) B9 £, 0%, 0)

a0 k% 4x

2

o
o
[2%]
—
@D
—n
<
O
Y
=
“O
~r

Figure 5
Same as in Figure 3, but with 4 = 2.

60 120 180

We may now define a relative error between the exact calculation and the semi-
classical approximation by

EA('&, ')'], E, 55, Q) — Gﬂ(’ﬁ’ 77:‘: 77f’ %) - Gzc(,ﬁ” E’ 65’ @A, (7'14)

G, Nis g %)

where G3°(9, &, 0&, p) stands for the r.h.s. of equation (7.13b).

In Figure 6 we have represented this function E, (&, », , 8¢, o) for different values
of ¢ and ¥ as a function of 1/5% It is evident that the relative error goes with 1/x?
to zero if 5 goes to infinity. Hereby we have chosen 4 = 1 and & = & = 0.5. A further
calculation shows that A as well as £ and & have only a small influence on the error
function.

In general we may write

E;(8,m, & 08, 0) = D c,(9, &, 6&, 0) ™ (7.15)

where the coefficients ¢, (&, &, 0§, p) can be extrapolated from Figure 6. Therefore we
have approximately:

dO’ ~ dU 62(?9: Er 65’9)
lio). = (aa ) (= 7577) -
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00

Qs

o0

0054

Figure 6
The relative error E(#, 0, £, &, 9) between the exact calculation and the semiclassical approxi-
mation is shown as a function of 1/52. The curves were computed with A = 1 and different values
of # and g as indicated in the figure. The dashed curves for 1/n? < 0.004 are extrapolations of the
computed curves. The &- and &’-value used is & = & = 0.5.

8. Total Cross Sections

In order to investigate the energy dependence of the theory it is interesting to
calculate the total cross-section. With the definition

do
O = fE aQ (8.1)

we get with (3.12)

af@a—1)A4(4+1) kf ]‘,_(M | )2
(@ + A)? By Ji ) B IR

1

c"toif = 16 711

Eili‘li ff Z‘f £t (01; (ni) oy, (ny))
ki

D)y

2]

li lf)' ll, 9
& (OOO) (OM M) Qll,lf (?]:72: l; x): .

In the case of pure Coulomb distortion we have to use the radial integrals given by
(3.14e) and in the semiquantal approximation by (7.1).
In the semiclassical approximation we get with (7.6)—(7.11):

(8.2)

Grop = @2 X 2(“ ‘ ) H(E, 6%, o) 8.3)
with
H(E, 88, 0) = = f ;‘:3((:’9//22)) B9, &, 8, 0) @9 (8.4)
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Hy ,5%.9)

6§=0

16p S0 Ho(§,8%.9)
6§ =0

0 02 04 06 08 10 0 02 04 06 08 0

Figure 7
The function H,(§, 6&, p) is shown for 4 = 0 as a function of & The different g-values used are
indicated in the figure and d& = 0.

Figure 8
Same as in Figure 7, but with 4 = 1.

Some of these functions H,(&, &, o) are given in Figure 7-9 for different values of
A, & and p with 8¢ = 0.

In the case of A = 0 we can calculate the A ,-function explicitly. Following [23, 29]
we write:

Iy o(D, &, 0, o) = exp (— o — & arctan ";) K;:(eyo®+£?). (8.5)
Using the integral formula of Lommel [30]
fC (k 2) dz—z_z{Cg(kz)(1~M2 )+C’2(kz)} (8.6)
# R k2 22 # ’ '

where C, is any kind of a cylinder function, we get

2 7 8—25 arctan (&"/o)
2
Ki(e)

£ ‘ o 12 e ER
X {(1 = W) Ki(Vo? + &%) + K (Vo + & 2)} : (8.7)

Hq(§, 0§, ¢) =
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§=20

Hy(4.88.9)

Figure 9
Same as in Figure 7, but with 4 = 2.

9. Polarisation Effects in Deuteron Stripping Reactions

The theory presented in chapter 6 is of course also capable to predict the polarisa-
tion of the outgoing proton in a (d, p)-stripping reaction. All measurable quantities
in a nuclear reaction can be expressed in terms of the density matrix

Oim, vm = Fi'm Fiut (9-1)
where in our case F}>) is given by equation (2.8), or in terms of the statistical tensor
0o 1) =2 () Am, U — ' | RG> 0, 1 - 9-2)

The differential cross-section is proportional to g, ,, while the vector polarisation is
proportional to g, ,. Assuming the incident deuterons and the target nuclei to be
randomly oriented and assuming that the orientation of the residual nuclei is not
measured one finds [31, 32]:

*
4 (7,; . ln) ;l/(ln + m) (ln —m + 1) Im (Fln,m_l En,m)
3 (27,+1) DN E, . Fl 2 ’

m

P, (9) = (9-3)

where we have used the definition (3.14d).
Equation (9.3) is only valid for the case of pure Coulomb distortion. At higher
energies nuclear spin-orbit interactions must be taken into account.



384 D. Trautmann and K. Alder H.P A.

10. Transfer Reactions in the Diffraction Model

In this chapter we want to discuss the relationship between the results obtained
in chapter 3 and 4 and the diffraction model developed by Dar and extended by
Frahn and Sharaf and by Suzuki [5-9]. In this model one starts from the general
DWBA expression whereby the distorted waves are determined by their asymptotic
behaviour. The absorbing effect of the nuclear interaction is taken into account by
means of parameters a, which are given by

.0
fly == (1 +17 Olﬁ) g(l) (10.1a)
with
b — 1\ 71
g;==(1+—exp Y ) (10.1b)

where [ are the orbital momenta of the in and outgoing particle and A and 7 are
arbitrary constants fitted by the experiment.
In the entrance and exit channel /; is given by

i, Xif pm—— & 2m;y
and
Ry=7y (AW 4+ ), R, — 7, (A + n)'B + (a — n)13) (10.2b)

where 7, 1s a further arbitrary constant.

Hereby we have modified the original ansatz given by Dar [5] in such a way to
include also reactions where x; , << 0.

In the case of a one-nucleon transfer reaction we start with equation (3.14) and
get, using (10.1):

do —_ 7 7 A\2 ;
_E_ e ZZZ(%I_E O) G?’ﬁ ('19‘, ?’]i, nf»‘ x) (10.38.)

A

with
Ggi// (ﬂ’ Ni» Nr» ) = 222

4

Zilrl; z‘;; zj 101,03+, (n7)
b

b L\ (ke & ”
X Ylf,.u (@, 0) (O (;O) (O/j_“ 1“) (a’li dlf)m Ti-z:xli

2

(10.3b)

In the case of a multinucleon transfer reaction we have to multiply every function
G419, n;, m, %) with a structure factor &, which depends on the special reaction
considered. The formulas for these factors for various reactions can be found in [33].
Instead of using approximations of (10.3), based on the localization of G¢¥/(8,;,7,, #)
in orbital momentum space, we may directly calculate this expression using the
results of chapter 4.



Vol. 43, 1970 Nucleon Transfer Reactions below the Coulombbarrier 385

“2Ca(t,p)*“Ca

E, =121 MeV
L=0

Figure 10
The differential cross-section of the reaction
42Ca (¢, p)¥Ca for a bombarding energy of E;
= 12.1 McV is shown as a function of ©#. The
curve was calculated with the diffraction mo-
del (equation(10.3)) and the experimental va-
lues are taken from [34].

20 80 5 120 160
CM.

In Figure 10 we have represented as a typical example the reaction 42Caf(¢, p)*Ca
[34] at a bombarding energy of 12,1 MeV. While the fit given by 7, = 1.05fm, 4 = 0.25
and 7 = 0.8 is quite similar to the one given by Frahn and Sharaf, the spectroscopic

factors extracted from the two models differ by a factor 1.5.
Calculations of other reactions are in preparation.

11. Numerical Results and Discussion

a) Calculation of the Coulomb integrals

Here we give a brief survey of the numerical procedure leading to the radial
integrals (4.1) necessary for calculating (3.12).

Point of departure are the maximal matrixelements with A =0 and 4= 1.
Starting with equations (4.6) and (4.7) we first calculate My &% M;1* and M 37,
Mg 3*, M3 >* and subsequently by using equations (4.18), (4.21) and (4.11) the other
maximal matrixelements with 4 = 0,1. From equation (4.15) we obtain M;;;% and
M54 Putting in (4.16b) n = Oand p = 1, 2, 3, ... we obtain all the matrix-elements
M}, satisfying the triangular condition [/; — J;| <A </, + ;. Next we deter-
mine all integrals M;* by using equation (4.16a) with p = » = 0, and all matrix-
elements M;;% ; , by putting in equation (4.16b) n = 1andp =1, 2,3, ... . Together
with equation (4.11) we obtain by repeated application of equation (4.16) all those
matrixelements which are necessary for the integral Tf“;f},.

b)  Calculation of the reaction amplitude

A difficulty arises in the determination of the reaction amplitude (3.14d) because
for large values of 5 a large number of angular momenta contribute to the sum and the

25
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convergence is very bad. The convergence can be improved by means of a method
which is frequently used in electron scattering [35] and Coulomb excitation calcula-
tions [36]. The reaction amplitude (3.14d) is of the form

F, (& n;,n;, ) “lecz,y Y, .8, 0). (11.1)

It 1s now useful to define a new coefficient cglL so that we can write for the reaction
amplitude:

E,M(ﬁ» His> Mys %) =

<9 ch (11.2)

— COS

where the new coefficients c{! i, are connected with the ¢, , by a simple recursion
formula.

By repeated application of this formula (e.g. & times, with & ~ 3-5) the number
of angular momenta necessary for the computation of F, (@, n;, n,, %) can be
reduced considerably (in our case by a factor of about 1/3) and the convergence
becomes very good. The recursion relation for the coefficients is given by

(k) R (04w (¢ — u) e olE—1)
he ( ( >)

7 2l Bl—1 -
- ( C+14+m@+1—p) )”2 e—1) (11.3)
(21+3)21+1) e |

c) Comparison with experiments

«) Heavy ion transfer reactions

As a typical example of a one-nucleon transfer reaction we have chosen the well
studied N (13N, 13N) 15N-reaction [37] with (/;, ;) = (1, 1/2) and (I, 7,) = (1, 1/2).
In Figure 11 we have compared the exact calculation Wlth pure Coulomb distortion
with the two corresponding approximations discussed in chapter 7. The three curves
were calculated with equations (3.14), (7.1) and (7.8), respectively. The exact curve
is quite similar to the one derived in a somewhat different way by Buttle and Gold-
farb [10]. We have taken into account the identity of the two N in the entrance
channel by the method outlined in [10]. From the exact calculation and the experi-
mental data the spectroscopic factor (0;; 6;,)% = 0.217 was obtained. The semi-
quantal and semiclassical calculation were performed using the same spectroscopic
factor. It is evident from Figure 11 that the semiquantal and to a somewhat lesser
degree the semiclassical calculations approximate the exact theory rather well.
Figure 12 demonstrates the influence of the nuclear distortion. Combining equations
(3.12) and (3.7¢) one finds immediately

g—MV

) = o (14 1) = Abata) K0 - KL (14

nr nr
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Figure 11

Angular distribution of the reaction M¥N(14N, BN)I®N at E;y = 6.62 MeV. The exact curve,
calculated with equation (3.12) by neglecting the nuclear distortion is compared with the semi-
quantal and the semiclassical approximation. The experimental values are those of [37].

Figure 12
Angular distribution of the reaction “N (N, 18N)BN at Ecy; = 7 MeV and Egy = 8 MeV. The
influence of the nuclear distortion is shown. The full line gives the calculation for pure Coulomb
distortion, while the dashed curves include the effect due to nuclear distortion. The experimental
values are taken from [37].

It is easy to see that for the present case the correction terms Kj ;(x) and K3 (x) can
be neglected. With the help of a recursion relation for the spherical Bessel functions
and using the fact that 4] ((x) is in a good approximation proportional to » [10] one
obtains

—Nxy 1 *
‘ 113 z) . (11.5)

i) = S ALl (r+ ==

By means of equation (11.5) the lowest 3-5 (depending on energy) partial waves of
(3.12) were calculated. The higher partial waves were obtained using the formulas for
pure Coulomb distortion. For simplicity the distorting optical potential was chosen to
be a complex square well with V' = —50 MeV, W = —30 MeV and R = 7.2 fm for
both the entrance and the exit channel. Furthermore we have calculated the nuclear
distortion with the help of the diffraction model (equation 10.3) with 7, = 1.95,
A = 1.6 and 7 = 0. Figure 13 shows the total cross-section calculated by means of
equation (8.2).



388 D. Trautmann and K. Alder H.P. A.

p) Deuteron stripping reactions

Figures 14-16 show some examples of deuteron stripping calculations. Figure 14
illustrates the validity of the semiquantal and semiclassical approximation in the case
of the 209Bi(d, $)?'°Bi reaction [38].

It can be seen that these approximations are not quite satisfactory. This is due
to the fact that the value of §& is much greater than for heavy ion transfer reactions.

In Figure 15 we have repeated the calculations for the reaction 3¥Ba(d, $)'**Ba
[39], for different bombarding energies and (-values. One sees that at low energies all
three curves which were calculated with the same spectroscopic factor represent the
angular dependence quite well, while their absolute values differ considerable. At
higher energies nuclear distortion effects become important. This can be seen from
Figure 16 in which the dashed curve represents a calculation for one of the /, =1
transitions in 1%Ba in which a square well with V', = —80 MeV, W, = —56 MeV,
V,=—48MeV, W, = —52MeV and R = 7.4 fm as well as the diffraction model with
ro =18, 4 =1.1 and v = 0 was used to simulate nuclear distortion. Thus nuclear
distortion has the effect of reducing the differential cross-section at backward angles.

mby
sr
P exact
~——- semiquantal
2 ——— semiclassical
4 ZOQBi(de)ﬂOBi
LE
i
1 -
_____ w;mout nuclear interaction
}63 1 | 1 1 I 0
4 6 8 10

CM.- ENERGY (MeV)

Figure 13
The total cross-section is calculated for the reaction N (14N, 13N)15N for pure Coulomb distortion
(full line) and including nuclear distortion (dashed curve) as a function of the center of mass
energy. The experimental values are taken from [37].

Figure 14
Angular distribution of the reaction 209Bi(d, $)?19Bi at E-ps = 8.0 MeV and for /,-values /,, =0, 2,4,
The exact curve due to equation (3.12) is compared with its semiquantal and semiclassical
approximation, The nuclear distortion is neglected. The experimental values are taken from |38].
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Figure 15

The same as in Figure 14, but for the 13¥Ba(d, p)139Ba reaction at Egy; = 5, 6 and 7 MeV and with
I, = 3. The experimental values are those of [39].

Figure 16
The influence of the nuclear distortion is shown for the 13Ba(d, $)1*%Ba reaction at Egy = 5.5 and
Ecp = 6.5 MeV and with /, = 1. The full line corresponds to pure Coulomb distortion, while the
dashed lines were computed with nuclear distortion.

It is clear from Figure 16 that inclusion of nuclear distortion improves the agreement
with experiment considerably for energies close to the Coulomb barrier.

y) Polarisation calculations

To our knowledge there exist no polarisation experiments for deuteron stripping
reactions below the Coulomb barrier. In Figure 17 we show the predictions of our
theory for the 209Bi(d, $)?1°Bi reaction.

The influence of the transferred orbital angular momentum on the polarisation is
shown. The similar behaviour of the polarisation curve for different values of 7, at
backward angles is remarkable. The ascent of the curves is linear at ¢ ~ z and pro-
portional to the value of /,. It thus appears that in this region the polarisation is
proportional to the derivative of do/d(2. The dependence of the polarisation on the
transferred angular momentum 7, (i.e. 7, = /, 4 1/2) is given by the well known
expression

by
Pl,,+% - +1 P’ln——%‘ (11.6)

Hence if the polarisation below the Coulomb barrier can be measured the value of 7,
can be determined in an unambigious and model independent manner.
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Figure 17

The influence of the orbital angular momentum of the transferred neutron on the polarization is
shown. All three curves were calculated by means of equation (9.4) without any nuclear distortion

for the 209Bi(d, p)?19Bi reaction. The center of mass energy was assumed to be 8 MeV and the
l,-values taken were [, =1, 2, 3.
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Appendix

Here we give the derivation of the semiclassical formula (7.6). Starting point is
equation (3.14d)

~

F, (8,7 mp, %) = 4 3 [ B2 deutm oy ity
bk

LIAN (LI, A
z f 3 f 1’%
. (O 0 0) (OM = M) Ylf,.u (9, 0) Tl«;, L (A.1)

in which we insert the following expressions for the 3-j-symbols, the Coulomb phase
shift and the spherical harmonics, applicable if /;, [, > 4, 1:

Lol A () e
(m,- W{lf/*") - T D!};,lrlf (0,5,0), gopp = — ==, (A.2)
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i

Y, (@, 0) ~ e d ( (z + %) d——+ ) (A.3)

and

1
o) =Imlogl(l+1+1in) ~ (l - 2) arctan !

I+1
1
+ 2 log((F+ 1)+ 7%) =+ 0 (—n—) - (A4)

We have used the definition of Edmonds [40] for the D-functions. We substitute in
(A.1) the radial integral by its WKB-approximation (7.1). Using average values for
the physical quantities appearing in (A.1) we obtain:

1 - 1 o 1 7T 7
By (@ iy, %) = — El e R ((l + -é«) D — T — W 2_)

7 5 Ysind

X d) _ (Z) a , . (Z) exp {z (21 + 1 — m) arctan 1

1
+ 5 log ((F + 1)2 + 2 — 2 77)} iy e € &, o) . (A.5)

This expression can be evaluated by the method of steepest descent [41], whereby
the sum

f=2A0) B0, (A.6)
7
is approximated by
~ L2 i B(h)
S Aly) ) -y e ™™, (A.7)
i f
The quantity f in this last expression is given by
1 42B(l
g L _Q_‘ (A.8)
2 dl ‘l =1,
and [, is determined by
dB
i -y A9
T (A.9)

In our case equation (A.9) leads to
9
lp + 1 = 5 cotan ik (A.10)

Using (A.7) and (A.10) we get from equation (A.5) after some trivial calculations the
desired result (7.6).
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