Zeitschrift: Helvetica Physica Acta

Band: 43 (1970)

Heft: 4

Artikel: On the asymptotic condition of scattering theory
Autor: Amrein, W.O. / Martin, Ph.A. / Misra, B.

DOl: https://doi.org/10.5169/seals-114174

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-114174
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© 1970 by Schweizerische Physikalische Gesellschaft
Société Suisse de Physique — Societa Fisica Svizzera
Nachdruck verboten — Tous droits réservés — Printed in Switzerland

On the Asymptotic Condition of Scattering Theory

by W. O. Amrein!), Ph. A. Martin and B. Misra?

Institute of Theoretical Physics, University of Geneva, Geneva, Switzerland

(6. II. 70)

Abstract. We propose a new formulation of the asymptotic condition of scattering theory
which applies to Coulomb interactions and other long range potentials and which generalizes the
usual asymptotic condition. It consists of the requirement that the constants of the free motion be
asymptotically stationary also under the real evolution. From this and two supplementary
conditions we prove the existence of wave operators and of a scattering operator. It is then shown
that the wave operators are strong operator limits as in standard scattering theory except that the
free evolution may have to be replaced by a modified propagator. Finally, Dollard’s method of
proving the asymptotic convergence for the Coulomb interaction is extended to a more general
class of potentials.

I. Introduction

In the quantum-mechanical description of a simple scattering process one deals
with two groups of unitary operators V,=exp(— ¢ H{) and U, =exp (—1 H,?).
They describe the total evolution and the free evolution of the scattering system in
question, and the difference V = H — H, of their infinitesimal generators is the
interaction which produces the scattering. The asymptotic condition imposes an essential
restriction between these two groups, namely that in the vemote past and in the distant
future the scattering states evolving with V, become free in some semse. The precise
meaning of the notion of ‘becoming free’ depends on the mathematical formulation
of this condition.

A widely used form of the asymptotic condition for potential scattering in Hilbert
space 1s due to Jauch [1]. It requires that the total evolution of any scattering state
converges strongly to the free evolution of some other state for { — — oo, and vice
versa that the free evolution of any vector of the Hilbert space H converges strongly
to the total evolution of some scattering state as { — — oo, and likewise for { — +- oo.
An equivalent statement is the following: The operators £2(f) = V;* U, converge
strongly on the entire Hilbert space for ¢ — 4 oc; their limits £, (called wave

1) Research supported by the Swiss National Science Foundation.
2) Present address: Department of Mathematics, University of Rochester, Rochester, N.Y.14627.
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operators) are isometries which satisfy Q% Q. =0Q* Q_ =17 and Q 0% = P_,
Q_ Q¥ = P_. Here I denotes the identity operator, and one usually requires that the
ranges P H and P_ W of £, respectively be the same and coincide also with the
subspace corresponding to the absolutely continuous part of the spectrum of H.
The wave operators are intertwining operators for the two groups V, and U,, i.e.

V, Q.= 0. U,

The asymptotic condition in Jauch’s version excludes important cases from non-
relativistic scattering theory, in particular the scattering by a Coulomb potential and
by other long range potentials. Its recent reformulation in a weaker topology by
Jauch, Misra and Gibson [2] extends the class of admissible interactions but does not
remedy the situation for the long range potentials. On the other hand, Dollard [3] and
Mulherin and Zinnes [4] investigated the asymptotic condition for the Coulomb
interaction. They established that, although the strong limits of V;* U, for ¢ —- 4+ o0
do not exist in this case, one may construct isometries whose properties are such that
their physical interpretation is the same as that of the wave operators for a short range
potential. They satisfy in particular the usual intertwining relation.

In the present paper, we propose a new formulation of the asymptotic condition
which will ensure the existence of wave operators for a more general class of potentials
than those treated in [1-4]. For this, we remark that the prepared initial states and
the detected final states in many scattering experiments are characterized by the
momenta, polarizations and other internal quantum numbers of the constituents of
the scattering system. Accordingly, one will obtain an adequate description of the
scattering process if these observables become stationary at large negative and large
positive times. In consideration of this we shall express the asymptotic condition by
wmposing convergence of the time evolution V¥ A V, of certain observables A rather than
convergence of the time evolution of states.

Mathematically we shall work with the von Neumann algebra 4, generated by
the set of observables which serve to specify the asymptotic free movement. This set
of observables which become asymptotically stationary may not be the same for all
types of interactions. However, to make sure that 4, can give a complete characteri-
zation of the initial and final states, one should require that it contains at least one
complete set of commuting observables. In this article we consider the case where 4,
consists of all bounded operators which commute with H,, i.e. we impose that all
constants of the free movement U, be also asymptotically constants of the real move-
ment V,. From this and some additional conditions on V* A, V, we deduce the
existence of wave operators and of an isometric S-operator which is determined up to
multiplication by unitary operators from the center of 4,. The wave operators are
shown to satisfy a generalized intertwining relation.

Section II contains the precise mathematical statement of the foregoing assertions
for simple scattering systems. In Section ITI we prove that the wave operators £2.. are
expressible as strong operator limits in much the same way as in standard scattering
theory: The asymptotic condition in our form is satisfied if and only if there exist two
families {7} of operators which are function of H, and asymptotically isometric and
such that the strong limits of V* T} as ¢ — -+ oo respectively exist (for the details,
cf. Theorem 2). The wave operators . are then identical with these strong limits.
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It follows from this that, with our choice of A4,, the theory includes the non-relativistic
scattering by all short range potentials. For the Coulomb interaction, Dollard [3]
constructed explicitly two such families {73} and proved the strong convergence of
V* T, which shows that our form of the asymptotic condition is satisfied also for
Coulomb potentials. On the other hand, our results permit to situate Dollard’s method
in the framework of a general theory.

In Section IV we investigate the consequences of time reversal invariance and of
spherical symmetry, and in Section V we establish that our theory is applicable also
to potentials of the form V(r) = »=F with 3/4 < f < 1. The convergence proof is
carried through by a slight modification of the techniques employed by Dollard [3].
Finally, we should add that our formulation of the asymptotic condition can also be
extended to multichannel processes. This will be the topic of a later report.

II. The Asymptotic Condition for Single-channel Scattering Systems

Let H, be the operator of the total kinetic energy of the participating particles,
expressed in terms of their masses and their momenta in the usual way. The spectrum
of H, is assumed to be absolutely continuous. Furthermore we assume that H,
determines the unperturbed evolution of all vectors of the underlying Hilbert space ,
i.e. that the scattering system consists of only one channel. For non-relativistic
potential scattering, H, is simply the Schrédinger operator —A/2 m in the center-of-
mass system.

Let A4, be the commutant of H,:

i40 - {Ho}’ (1)

1.e. the set of all bounded operators on H{ which commute with all spectral projections
of H,. One remarks that the commutant 4, of 4, is abelian and identical with the
center Z, of 4,3):

ZO = «’46 - {Ho}” (2)

i.e. the algebra 4 consists of all essentially bounded measurable functions of H,.
Let E be a projection operator in 4,. Then we denote by A4, the reduction of 4,
to the subspace E H: A,, consists of all operators of the form E A E with 4 in A,.
This reduction A4, is again a von Neumann algebra. Its commutant (A4,,)" in the
subspace E H is identical with (4;)z. We shall henceforth denote it simply by A;_.
From these definitions it follows that ’45.@ is again abelian and identical with the
center of Ay, ([5], Section 1.2.1).

We shall also need the notion of a complete set of commuting observables. A set X of
commuting observables is said to be complete if the von Neumann algebra B = 2"
generated by them is maximal abelian [6], i.e. if

B—B. (3)

3) For the terminology and definitions concerning von Neumann algebras we refer to the book
by Dixmier [5]. The center of a von Neumann algebra ,4 is defined as the set of all those
operators in 4 which commute with all operators of 4.
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The requirement that 4, contains at least one maximal abelian subalgebra is fulfilled:
In fact, every complete set of commuting observables containing H, generates a
maximal abelian subalgebra of 4,.

Let {V,}, — 0o <t <C + o0, be the strongly continuous group of unitary operators
on # which describes the total evolution of the scattering system. The free behaviour
of a state will be described by means of the observables of A4,. We shall consider only
pure states. Such a state is said to become asymptotically free at t — 4 oo if for all 4
in A4, the operators V* A IV, become stationary on this state in the strong operator
topology as { — -+ oco. We then impose essentially the following three conditions on a
scattering system:

(1) There should exist in H a set of vectors which are suitable for the description
of the scattering process, i.e. a set of vectors which become asymptotically free for
both { - — oo and ¢ — + oco. These vectors will span a subspace P Y which we shall
call the subspace of scattering states and which should be invariant under the
group {V,}.

(2) The algebra 4, should furnish a complete characterization of the scattering
states in the limits £ —> - co. This means that there must exist a complete set of
commuting observables in 4, such that their asymptotic limits form a complete set of
commuting observables on the scattering states.

(3) The set of scattering states should be sufficiently large so as to ensure that
the initial states may be prepared arbitrarily: given an arbitrary vector fin H there
must exist a scattering state g such that the expectation values of the observables of
A, in this state g converge to the corresponding expectation values in the initial state f
as ¢ — —oQ.

We shall now express the preceding three conditions in mathematical terms:

(A1) There exists a projection operator P such that

@] [P, ¥l=0, (4)
(b) for every operator 4 in A, there exist two operators 4. such that
swt_l)irinoth*AVthAi (5)
and (c)
[P, A4} =0. (6)
Let us denote by uy the two mappings defined by equation (5):
psld) = Az =s— lm VFAV,P. (7)

The requirement that P commute with their images ui(4,), equation (6), means
essentially that u. preserve self-adjointness of observables (cf. the proof of Propo-
sition 1 below). We do not assume that P be identical with F, the spectral projection
of H onto the absolutely continuous part of its spectrum. Equations (4) and (6) and
many later assertions about P are trivially true if P = F.

(A2) There exists a maximal abelian von Neumann algebra B in 4, whose
asymptotic images u.(B) generate maximal abelian subalgebras of the algebra
of all bounded operators on P .



Vol. 43, 1970 On the Asymptotic Condition of Scattering Theory 317

(A3) For every vector fin H there exists a vector g in P H such that for all 4
in A4,: ‘

lim (V,g, A4 V,g)=(f4f).

f—>— 00

By successively applying these three conditions we shall deduce the existence of
wave operators and of an isometric S-operator. S may be non-unitary, which follows
from the fact that (A3) is not symmetric in the sign of the time ¢. However this last
possibility is excluded if the scattering system is time reversal invariant (cf. Section IV).
It will also be shown that (A2) does not distinguish any particular maximal abelian
subalgebra of A,; i.e. if the property (A2) is true for one maximal abelian subalgebra
of 4,, then it is true for every maximal abelian subalgebra of A,.

In the sequel we shall frequently omit the indices + and the designation { - 4 oo
for the limits. Wherever this occurs, it is understood that all statements hold true for
the + sign in the limit £ — + oo as well as for the — sign in the limit # - — co. On the
other hand, in an equation or a statement where the double sign appears several
times, we mean that the equation or the statement are valid separately for the upper
and for the lower signs. We shall also use the notation

Al =VF*AV,.

Before we proceed to discuss the properties of the mappings u., we introduce
another von Neumann algebra 4, which will be needed for the following proposition.
Let 4 be the commutant of the total Hamiltonian H, i.e. 4 = {H}'. Then Ap is its
restriction to the subspace P Y of the scattering states, i.e.

Ap— P{HY P . (8)

We may now assert:

Proposition1: Let (A1) be satisfied. Then the mappings w4 defined by equation (7)
are homomorphisms from 4, onto a von Neumann algebra u(A4,) C Ap. Moreover
there exist two maximal projection operators E. in the center of A4, such that the
restrictions of w4 and u- to A, and A, respectively are injective.

The maximality of E is understood in the following sense: if E’ is any projection
operator in 4 such that the homomorphism yu restricted to A4, is injective, then
E' < E.

Proof:

(i) u(4) is bounded for all A € A,, since for any fe U

| A) | = lim [V AV, Pf| <lim [A] [V, PF| <[ A] |f] -
From equation (4) and the multiplication law of the group V, one deduces for all real 7

AV,,, P=u(d).

V¥u(A)V,=V*s—limV*¥AV,PV,=s—Lim V} -

t+1

Hence u(A) commutes with all the spectral projections of H, i.e. u(4,) C A. Since
u(A4) P = u(A4), one gets from equation (6) that

Pu(d) P = P p(4) = p(4) P = p(4) 9)
which proves that u(A4,) C Ap.



318 W. O. Amrein, Ph. A. Martin and B. Misra H. P A.

(i1) It is clear that g is linear. Using (9) one finds

|[A() Bt) P — u(A) u(B)] f|| =
= | A®) [BE) P — w(B)] f + [A() ( )] u(B) f|| <
<[4 [ (Bt) P — u(B)) | + || (A@) P — u(4)) u(B) f] -
Hence, if 4, B € Ay:
w(A) u(B) = s — lim A(t) B(t) P =s — lim (4 B) (t) P = u(A B) (10)

which shows that u preserves the product.
It follows from (9) that

ulAd)=s—lim P A(t) P. (11)

Therefore the adjoint sequence (P A(f) P)* = P A*(f) P converges weakly to wu(A4)*.
On the other hand, since A* belongs also to A,, P A*(f) P converges strongly and
hence weakly to u(4*). It follows from the uniqueness of the weak limit that u(4)* =
w(A*), i.e. uis also adjoint preserving and therefore a homomorphism.

(iii) These algebraic properties of u show that u(A4,) is a *-algebra. To proceed
with the proof one has to examine the topological properties of u(A4,).

The absolute continuity of the spectrum of H, ensures that there is no projection
operator with finite-dimensional range in the center of A4,. Furthermore the under-
lying Hilbert space is separable. According to a result by Feldman and Fell ([7],
Theorem 1 and Corollary on page 241), these two conditions imply that the homo-
morphisms w. are ultraweakly continuous?).

Let 7 be the kernel of u, i.e. the set of all 4 € A4, for which u(4) = 0. Wis a two-
sided ideal of A4,, and since u is ultraweakly continuous, H is ultraweakly closed.
This implies that there exists one and only one projection operator @ in 4; such that
N is the set of all those A € A4, that satisfy A = 4 Q ([5], Section 1.3.4, Corollary 3).
Define £ = I — (. Then ’40E NN = {0}, i.e. p is injective on AOE. The maximality
of E is a consequence of the uniqueness of () and of the fact that all projection operators
in 4, commute with one another.

(iv) One may now prove that ui(4,) are von Neumann algebras. First, since u
is an isomorphism between Ay, and u(A,,) = u(A,), it follows that the restriction of u
to A, is norm preserving ([5], Section I.1.5, Proposition 8). Let us denote by Ay
and p(A4,)* the unit spheres of 4, and u(A4,) respectively, i.e. the set of those operators
in A4, and u(A,) respectively having norm 1. Then u(A4g,) = u(A,)*. Furthermore the
unit sphere of a von Neumann algebra is compact in the weak topology. Since u is
ultraweakly continuous, its restriction to 4, is also weakly continuous. It follows
that u(A4,)!, the image of A;,, is weakly compact, and hence weakly closed. This in
turn means that u(4,) is a von Neumann algebra ([5], Section 1.3.4, Corollary 2). l

Proposition 1 exhibits the properties of a scattering system which satisfies (A1).
The requirement (A2) represents an additional condition on some maximal abelian

1) For the definition and the properties of the various topologies on von Neumann algebras we
refer to [5], Section I.3.1. In [7] the ultraweak topology is called o-weak.
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subalgebra of 4,. To see the mathematical significance of (A2), it is useful to consider
first the consequences of (A1) for maximal abelian subalgebras of A4,.

For this, let E be the projection operator in 4] determined by Proposition 1, and
let B be a maximal abelian subalgebra of 4,, i.e. B = B C A,.

This implies that By = Bg C Ay, which may also be written as

Using the fact that g is an isomorphism from 4, onto u(4,), one easily deduces that
the relation (12) is preserved by u, i.e.

1(B)p O p(Ao) = u(B) (13)

where the commutant is restricted to bounded operators acting on the subspace P Y.
Equation (13) means that u(B) is maximal abelian in u(A4,) ([5], Section 1.7.1,
Proposition 13).

(A 2) requires that there exists a particular maximal abelian subalgebra B, of A4,
such that u(B,) is maximal abelian in the algebra of all bounded operators on P ¥,
i.e. satisfying

#(Bo)p = t(Bo) C pulA) - (14)
It is obvious that (14) is a stronger statement than (13).

Proposition 2: Let (A1) and (A2) be satisfied. Then there exist two partial
isometries £2;, on H such that for all 4 in A,

po(4)=0,_40% (15)
and

Q.0—0 0*=P, (16)

220, =F, R0 =k . (17)

2, are determined up to multiplication from the right by a unitary function of H, E .

Proof: (14) implies for the commutants of the involved algebras that

#lAo)p C 1(Bo)p = p(By) - (18)
Combining (18) and (14), one obtains
Ao p C p(Ay) - (19)

(18) implies in particular that u(4,)}, is abelian.

Since the commutant of 4,, is also abelian, and since g is an isomorphism
between the von Neumann algebras 4, and u(A), it follows that g is spatial ([5],
Section I11.3.1, Corollary 1). This means that there exists a unitary operator £ from
E  onto P W such that p(d) = 2 4 Q* for all A € A4,,. We extend £ to a partial
isometry on ¥ by setting £ f = O for all vectors f in the orthogonal complement of
E H{. Furthermore, if 4 belongs to the kernel of y, then £ 4 E =0, and hence
QAR*=Q0QFEAE Q% =0, which proves equation (15) for all 4 € A,.



320 W. O. Amrein, Ph. A. Martin and B. Misra H. P. A.

Let £, be another partial isometry satisfying (15)—(17). Then for all 4 € A4,
() =G A L% = L) A LI

This implies together with (17) that
EAQ*OQ =00 AE

which shows that U, = Q* £, belongs to the center of A4,., and Q, = Q U,. The
unitarity of U, on the subspace E { is an easy consequence of (16) and (17). This
proves the last assertion of the proposition. |

We shall now verify that (A2) does not distinguish any particular maximal
abelian subalgebra of A4,. For this, let B be any such subalgebra of 4,. According to
(13), u#(B) is maximal abelian in u(4,). #(B) must therefore contain the center of u(4,)
([5], Section 1.1.7). If (A2) is satisfied, the center of u(A4,) coincides with u(A4,)
(cf. equation (19)). Therefore

t(Ag)p C u(B) .

This means for the commutants that

#(B)p & u(Ao)p = ulAo) - (20)
Combining (20) and (13) one finds

#(B)p = u(B)

which shows that u(B) is also maximal abelian on P Y. This result could also easily
be deduced from the fact that the isomorphism g is spatial.

According to Proposition 2, the requirements (A1) and (A2) guarantee the
existence of wave operators. An important property of the wave operators in standard
scattering theory is the infertwining relation V, 2, = 2, U, for all £ This means
essentially that f(H) 2, = Q4 f(H,) for bounded functions f. In the following
proposition we establish a similar relation as a consequence of (A1) and (A2).

Proposition 3: For every essentially bounded measurable®) function f on the
spectrum of H P = P H P there exist two essentially bounded measurable functions
g+ on the spectrum of Hy £y and H, E_ respectively such that

f(HP)Q,=0, g, (H, Ey). (21)
Proof: From Proposition 1 we know that u(4,) C 4,. Using also (19), this implies

Ap C u(Ag)p C plAy) - (22)

Consequently A lies in the range of u. Denote by uy the restriction of u to A, .
g is an isomorphism between 4, and u(4,). Hence its restriction to the center 4,
of Ay, is an isomorphism from A4, onto the center u(A4,)p of its range. Therefore (22)
leads to

e (Ap) C pz ((Ag)p) = Agy - (23)

%) For more details about the spectral representation and the functional calculus we refer to [8]
and [9]. C{. also the proof of Theorem 2 in Section ITI below.
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Now the set of all essentially bounded measurable functions of H P coincides with
the center A, of A, and the set of all essentially bounded measurable functions of
H, E with Ay,. Therefore, according to (23), given any essentially bounded measurable
function f on the spectrum of H P, there exists such a function g on the spectrum of
H, E such that

pp (f(H P)) = g(H, E) (24)

or
J(H P) = ulg(H, ) = Q2 g(H, E) 2% (25)

The assertion of the proposition follows by multiplying (25) from the right by Q. [

The functions f and g4 in (21) are not necessarily identical, and neither are g
and g_. However, it is obvious from (24) that the relation between f and g, is deter-
mined solely by the isomorphisms u., i.e. it does not depend on the unfixed unitary
function of Hy E4 in the wave operators.

We shall now introduce two important families of operators in the center of A,.
They are obtained by choosing a particular family of functions f, in equation (24),
namely f,(H P) =exp (—+ H Pt) P=V, P. This defines for every real { two operators
Wik in A,  and 4, respectively:

Wi =up,(V,P) =21V, Qs (26)
Each of the families {W,"} and {W; } forms a group in ¢:
Wiso, =%V, , PQ=2%V, PV, Q=2*V, QO*V, Q=W W,_.

Furthermore they are strongly continuous in ¢ and satisfy Wi E. = Wi, and the
operators W are unitary on the subspace E # or E_ I respectively.
Let K+ be the infinitesimal generators of the groups {W;} respectively, i.e.

Wi — exp (—i K*t) E4 (27)

K= are self-adjoint operators defined on E, ¥ respectively. It follows from equation
(26) that their spectra coincide with that of H P.

The groups {W} may be considered as the asymptotic free evolutions of the
scattering system at large positive and negative times respectively. One arrives at this
interpretation by rewriting equation (26) as

V.P=u(WE)=s— lim V}W=V,P (28)

t— 400

which is equivalent to

lim |7, g~ W V,g| ~0 (29

t— 4+ oo
for every scattering state g in P  and every 7. The convergence in (29) may or may
not be uniform in 7, a property which will be of importance in the discussion of the
different types of scattering systems at the end of Section IIL. In equation (29),
V.. g represents the scattering state g at the time ¢ + 7, whereas in W7 V, g the total

T

evolution V, is replaced by the asymptotic free evolution W;" in the time interval

21
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(¢, ¢ + 7). Equation (29) asserts that these two states differ in norm by an arbitrarily
small number if ¢ is sufficiently large. In other words, in any given time interval of
length 7 the asymptotic free evolution W; approximates the real evolution V, with an
arbitrarily prescribed accuracy if only the given time interval lies sufficiently far in
the future, and likewise for W,  and ¢ — — co. One may therefore say that V, is
asymptotically comparable to W= on any finite interval of time in the distant future
or the remote past respectively.

We shall indicate in Section III the asymptotic free evolutions W;* corresponding
to different classes of interactions. For short range potentials W = U, = exp (— ¢ H, ),
and the limit in (29) is uniform in 7 ([10], Section 3). In more general cases W;* may
differ from U,, in which event there will be a renormalization of the free energy.
It could even occur that W;" and W, are not identical if the scattering system is not
time reversal invariant.

If W, = U, E, the von Neumann algebra {K}" generated by K on E # may
differ from the center A4, = {H, E}" of Ay, It follows from (26) and (23) that

' (Ap) = {K}" C Ay, . (30)

In those cases where the inclusion in this relation is an equality, the converse of
Proposition 3 is true:

Proposition 4. Assume that {K—}" = {H, E_}" on E_}{. Then for every essentially
bounded measurable function g on the spectrum of H, E_ there exists an essentially
bounded measurable function f_ on the spectrum of H P such that

f-(H P)Q_= Q_g(H, E). (31)
Furthermore
p—(Ao) = Ap - (32)

A similar statement holds for the + sign.

Proof: (30) combined with the assumption of the Proposition gives
plAy) = Ap | (33)

which implies (31). Using (33) and the fact that u(A4g,) = u(Ay)p (cf. the remark

leading to equation (23)), it follows that 4p = u(A,)p, and hence for the commutants

that 4, = u(A,)p. Since both 4, and u(A,) are von Neumann algebras acting on P,

this implies (32). i
It is now possible to define a scattering operator S by the usual prescription

S 0. (34)

Its properties are enunciated in the following theorem. In particular we shall derive
from the postulate (A3) that S is an isometric operator on H.

Theorem 1: The requirements (A1), (A2) and (A 3) are sufficient for the existence
of wave operators (2, having the properties of Proposition 2 with E_ = I and of an
isometric S-operator which is determined up to multiplication by unitary functions
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of H, from the left or from the right and which preserves the asymptotic free energy,
viz.

K+S=SK-. (35)

Proof: (1) According to Proposition 2, (A1) and (A 2) ensure the existence of wave
operators. It remains to show that (A3) implies £_ = I. For this, it suffices to establish
that the kernel M- of y— consists of the zero operator only (cf. part (iii) of the proof
of Proposition 1). For this, let A € B_. If 4 + 0, there exists a vector f € H such that
(f, A f) = 0. By (A3) there exists g ¢ P H{ such that

(fAf)= (e md)g + 0

which contradicts the aésumption that u(4) = 0. Hence 4 = 0.
(ii) The S-operator was defined in equation (34). Its isometric property follows
from the corresponding properties of £, equations (16) and (17). One finds

S¥S=1, SS*—E,. (36)

The indeterminateness of S which is expressed in the theorem is a consequence of the
indeterminateness of 2. From (26) one deduces

WrS=W, Q"0 =Q* V,Q —Q*Q W, — SW;.

This implies (35) by the usual arguments (cf. [15], pp. 530/531). l

The statement that S preserves the asymptotic free energy may be reexpressed
by considering the matrix elements of S. Let f,,€ H# be an incoming state whose
asymptotic free energy lies in an interval 7 (i.e. the support of fin the spectral
representation of K- is the interval I_.) Let f,,, € E. H be an outgoing state whose
support in the spectral representation of K+ is the interval /.. Whenever /_ and I
are disjoint, then (f,,,, S f;,) = 0. Hence there are no transitions between states of
different asymptotic free energy. This follows easily from equation (35) (cf. also [11],
pp- 330/331).

The properties of the S-operator which we obtained as a consequence of (A1),
(A2) and (A3) are slightly more general than what one usually requires of this
operator: S may be only isometric and need not commute with the kinetic energy
operator H,. We shall see later that for time reversal invariant scattering systems S
1s unitary and K+ = K- = K. According to equation (35), S then commutes with the
asymptotic free energy K (i.e. with the renormalized free energy.) Moreover, in most
cases the hypothesis of Proposition 4 will be true, i.e. K and H, will generate the same
von Neumann algebra. Then S will commute also with 4, and in particular with H,.

III. An Equivalent Formulation of the Asymptotic Condition

In the usual formulation of the asymptotic condition [1], the wave operators £,
are defined as the strong limits of V¥ U, = exp (1 H f) exp (—¢ Hyt) as ¢t — -+ oco.
These limits exist if the potential has a sufficiently short range. In this section we
wish to show that the wave operators which we obtained in our more general formu-
lation of the asymptotic condition may still be constructed as strong limits of the form

Q=s—-1limVF¢T,.
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Here {T}} denotes a family of operators which are functions of H, but which may
differ from U, = exp (—7 H,¢) as well as from the asymptotic free evolution W, =
0% V, Q. These operators 7, do not in general form a group and may be only asymp-
totically isometric. They are determined by the asymptotic behaviour of V, at large
times and incorporate the residual effects at large distances from the scattering center
due to the long range of the interaction (e.g. the logarithmic phase distortion for the
Coulomb interaction [3].) They are those functions of H, that govern the asymptotic
behaviour of a state f which has the property of approaching some scattering state g
in the usual sense, i.e. for which lim |V, g — T, f|| = 0.

By means of such a family {7,} of operators one obtains a formulation of the
asymptotic condition which is equivalent to that of the preceding section and at the
same time similar to that of standard scattering theory. For the sake of simplifying
the notation, we shall assume that both projection operators E. obtained in Proposi-
tion 2 are the identity operator. By slight and obvious modifications, one may adapt
all statements and proofs to the more general case where Ey =+ [I.

Theovem 2: Let 4, be the von Neumann algebra defined by equation (1) and
{V,}, —o0 <t < + o0, a group of unitary operators. Suppose that (A1), (A2) and
(A3) are satisfied and that E4 = I, and let £, be the corresponding wave operators.
Then there exist two families {7}, — oo <<t << 00, of closed linear operators acting
on # with the following properties:

(a) The operators of each family have a common domain D* which is dense in Y
and invariant under 4, and on which they commute with A,.

(b) The families {77} are asymptotically isometric on D* as ¢ — 4+ oo, i.e.

z_ljfrnoo | T;" k| =||#| forall he D* (37a)
and

t_l)imoo | 7 k|| =||k|| forall ke D-. (37b)

(c) The strong limits of V¥ T, as t — 4 oo exist on D+
(d) s— t—leleoo V¥T h=0:h for all ke D+ (38a)
and

s — t_l}imoo V¥T, h=0_h forall e D . (38b)

Conversely, suppose that there exist two families {7/} of linear operators
satisfying (a), (b) and (c). Then the strong limits of V¥ T# as ¢ — + oo define two
isometries £2, . Assume in addition that the ranges of these two isometries are identical
and reduce the group {V,}. Then (A1), (A2) and (A3) are satisfied with E; = I, and
£, are the wave operators determined by (A1), (A2) and (A3) (up to multiplication
by a unitary function of H, from the right.)

We may add that, in the terminology of von Neumann algebras, the operators
Ti= are affiliated with the center 4, of the von Neumann algebra 4,.

Proof of Theovem 2: The proof is the same for the two limits ¢ — + oo. We shall
therefore again omit the double index —+.
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(I) Let (A1), (A2) and (A3) be satisfied, and let £ be one of the wave operators
given by Theorem 1.
(1) Define for all real ¢

Y,=V,Q. (39)

It follows from the unitarity of V,, from [P, V,] = 0 and from the isometry of £ that
Y, is isometric:

YFY, =1, Y, Y*=1P. (40)
Moreover, if g€ H and f = Q* g:
|VEAV,P-QAQ¥g|=|(AV,2-V,QA)f|=|[4, YIf]. (41)

If 4 € A4,, condition (A1) states that the left-hand member of (41) converges to zero.
Since the range of £* is the entire Hilbert space H, this implies that

s—lm[A4,Y,] =0 forall 4€eA,. (42)

(ii) One may write the given Hilbert space as a direct integral over the spectrum
of H, [8]:

@
U =f74,\ 7 (43)

Since H, has absolutely continuous spectrum, the measure in this direct integral
decomposition is equivalent to the Lebesgue measure on the spectrum o(H,) of H,.
For every Aeo(H,), ¥, is a Hilbert space which describes the degeneracy of the
spectral point 2. We denote by (g(4), f(4)), the scalar product between two vectors
g(4), f(4) € #, and by || f(4) ||, the norm in H,. An element f of H is given by a family
of vectors {f(A)}, /(4) € H,, satisfying the following conditions: || f(4)|, is measurable
and square-integrable, and for any g € H, the function (g(4), f(4)), is measurable, and

(6:f) = [ dale), f@)

The operators of A4, are decomposable in the representation (43) of H, i.e. if
A € A4,, then

@
Ai[AAda

where 4, actsin ¥, , and the norms | 4, |, are essentially bounded. A4 is that subset
of operators of 4, which can be diagonalised ([5], Section I1.2): if B € A4, then

@D
BﬁfB(A) 1,da (44)

where I, is the identity operator in ¥, and B(A) an essentially bounded measurable
function on ¢(H,).



326 W. O. Amrein, Ph. A. Martin and B. Misra H. P. A,

(i) We shall now construct a particular operator C in A4,. For this, we remark
that there exists a vector e in J{ which is cyclic for 4,, i.e. such that the set {4, e} is
dense in ¥ ([5], Section 1.1.4, Def. 3 and Prop. 5, Section 1.2.1, Corollary to Prop. 3).
This vector ¢ has the property that || e(1) |, = 0 for almost all A € ¢(H,). We define C,
as the projection operator onto the vector ¢(4) in #, and C as the direct integral of C,:

if f = {f(1)} € }, then

(e(4), f(2)a }
Cf=3——Fmcs— el . 45
= e
Clearly C belongs to A4, and is a projection operator on . In particular
Ce=c¢e, (46)
C Y e={&) e); (47)

with the coefficients

(o), (Y, 0) (@),
@3

These coefficients &,(4) define for each ¢ a measurable function on ¢(H,), since both the
numerator and the denominator of (48) are measurable and the denominator vanishes
at most on a set of measure zero.

Consider the domain D,

&,(2) (48)

D, = {fe #: [ 160 1 [D]3 dA < oo (49)
and the operator 7', defined on D, as follows
1,f= {55(2')][(2)} x JE Dt . (50)

It follows from Theorem 6.4 of [12] that D, is dense in H and 7, is a closed linear
operator in H{ with domain D,.

(iv) It remains to show that this family {7",} of operators has the properties
(a)—(d) of the Theorem. For this, let D be the dense set {4, ¢}. The vectors # in D
have the form

h=Ae={A,eA)} with A€ A, . (51)
Clearly D is invariant under 4,. Furthermore, for 2 € D one gets from (47):

Tih={&0) AyeD)} = {4, &) e()} = A C Y, e. (52)
Since |Y,| = 1 and | C| =1, it follows that

[ Tor] <A TCTIY el =[A]]e] - (53)

Hence H T, k” is uniformly bounded in ¢ for any ke D, i.e. DC D, for all £ It is
evident from the above construction that [A4,, 7°,] = 0 on D. This proves (a).
Next, applying successively (39), (51), (46) and (52), we get for he D

[@=VyT)h|=[(Y, = T)h| =Y, ACe—-ACY,e]

which converges to zero according to (42). This proves (c) and (d).
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Finally, for A e D,

(T Ty 1) — (b)) = (T, — Y b Yy )+ (T, b (T, — Y) B)| <
< (T~ ¥ H] (1Y, h] + | T, 4]) (54)

Since || Y, 2| and | T} | are uniformly bounded in £, the last member of this inequality
converges to zero. This proves (b).

(IT) To prove the converse, let 4 € D. According to assumption (c), there exists
g = s — lim V¥ T, h. Using (b), one then obtains

|&|*=lm (V¥ T, b, VF T, h) = Uim(Z, b, T, h) = | 2|2

This shows that the linear operator £ defined by g = £ % for i € D is isometric on D.
Therefore it may be extended in a unique way by continuity to an isometric operator
on all of . This extension will also be denoted by £, and we define again Y, =V, 2
as in (39).

We shall now show that Y, commutes asymptotically with A4,. For this, let f be
an arbitrary vector in H. Given e > 0 and 4 € 4,, there exists a vector & € D such
that |f— A < &/(4 | A[). Then

1Y, A1/] < 1Y 4B + 2] 4] |~ B <[ (¥, AVA] + 5 55)
Since by assumption (a) 7, commutes with 4, on D, one has

|(Yed =AY R =[[(Yi=T) Ah—A(Y, = T) k| <

<[ (Y= T)Ar| + 4] (Y, — T) 4. (56)

Since D is invariant under 4,, A% lies also in D. Hypothesis (c) then implies that the
right-hand side of (56) can be made smaller than ¢/2 if only ¢ is sufficiently large.
Inserting this in (55), one finds that

s—1im[Y,, A] =0 for all 4 € A,. (57)

To complete the proof, it is necessary to distinguish between the two limits
t - +oo. Let P denote the projection operator onto the common range of ..
Using the identity (41), one deduces from (57) that

s— lim VFAV,P=Q.402% for all 4 € A4,. (58)

t—+ o0

By hypothesis [P, V,] = 0, and it is obvious from (58) that [P, u.(4)] = 0. This
proves that (A1) is satisfied. (A2) is an immediate consequence of the fact that the
isomorphisms uy: A — Q. A Q* are spatial.

Finally, let fe H# and define g = Q_ f. For 4 € A,, (58) implies

(,4f)=(6R-40Q%¢) = lim (g, VI AV,g)

f—>— o0

which proves (A3).
One concludes from Theorem 2 that only the asymptotic properties of {7}} are of
importance. For finite times, 7, could be changed arbitrarily. However, from the
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construction of {7,} given in the proof it does not follow that the convergence of
V¥ T, could be extended from D to all of . This convergence will be true on all of H
in those cases where it is possible to find a family {7} belonging to 4/, i.e. a family of
bounded operators 7,. Furthermore, since the wave operators are determined only up
to multiplication by a unitary function of H, (from the right), it is also clear that the
families {7;} exhibit the same indeterminateness asymptotically.

We have seen that our formulation of the asymptotic condition involves (for each
of the limits ¢ — 4 o0) four families of operators depending on time as a parameter,
namely the total evolution V, and three families which are function of the kinetic
energy operator H,: The unperturbed (or free) evolution U, = exp (—¢ H,{), the
asymptotic (or renormalized) free evolution W, = exp (—¢ K #) and the operators 7,
constructed in Theorem 2. These last three families may all be different from one
another. U, was used for defining the algebra of observables A4,. W, and T, were
determined only after introducing the interaction. We shall now establish some simple
additional properties of the operators 7, and give the connection between 7, and W,.
To conclude this section, we shall then indicate the different possibilities for the
asymptotic behaviour of a scattering system which arise when two or all of the families
{U,}, {W,} and {T,} are the same. Throughout the remainder of this section we assume
(A1), (A2) and (A3) to be satisfied.

The difference between 7, and W, is effectively described by W, = Wk T,
defined on D. This modification of W, is necessary in order to obtain strong conver-
gence of V¥ T,, as it may happen that neither of the strong limits of V}* U, and
V¥ W, exists. In Corollary 2 we shall establish that there is no modification (i.e.
W, = I for all 1) if and only if the family {7} forms a group in ¢. In the general case
where W, + I, these modifications are restricted to a particular class of operators:
for any & e D, the family {W, h} of vectors is feebly oscillating ([13], page 505), i.c.
for any real 7

lim | (WE, — WE) k| =0, (59)

t—+ o0
From the definition of T/f/', and the group property of W,, this assertion (59) 1s seen
to be equivalent to the following statement:

Corollary 1: For any real number 7 one has

im | (T, — W+ TH)h| =0  forall he D* (60a)
t— + o0

im |(T7,— W, I,7) k| =0  forall heD-. (60b)
t—>— 00

Proof: Let he Dand 2 h =s — lim V} T, h. Then
—VE W Lh|| = (VL — Q) B

W, V,Q— V5 W, V,V¥T) h|

t+t

W, VY@K <@ -VET) Al (6D

” (Tt-H H o H t+4r t—f—r
+ (2 — V;"+T W V. h+ V¥,
<[V Ty — Qb + | (V.

The first and the third term in the last member of this inequality converge to zero by
Theorem 2. The second term converges to zero as a consequence of equation (29). I
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One may remark that the property of feeble oscillation of {T/TA/; h} for he D
allows an immediate rederivation of the intertwining relation, equation (26). In fact,
if (60) is true, one obtains for he D

V,Qh=V,(s—imV*T,h) =s —lim V¥ T, h
4
—s—UmV¥T, h=s—UimV¥T,W,h=QW,h.
t i

This shows that V, 2 = Q W_on D. Since only bounded operators are involved in
this identity, it holds true on all of .

Corollary 2: Suppose that the operators T leave their common domain D=
invariant. Then 7t form a group in # on D= if and only if T3 C Wi,

Proof: The ‘if’ partis trivial. For the ‘only if’ part, one uses successively Corollary1,
the group property of {7} and the fact that {7,} commutes with {W,} on D, and
obtains for € D and any real 7

Now W, h e D according to (a) of Theorem 2, and T, 2 € D by hypothesis. Applying
the isometric property of {7,} on D (cf. (b) of Theorem 2), one deduces from (62) that
for any real 7 and A€ D

(T, — W) h] —0.

Therefore T, = W, on D. Since W, is bounded, it is an extension of 7, onto all of 3. [

We showed in Section II, equation (29), that the total evolution V, is asymptoti-
cally comparable to the asymptotic free evolution W, on any finite time interval.
According to Corollary 1, this property of V, is shared by the operators 7,. Moreover,
one may classify the different types of scattering systems according to whether the
assertion of equation (29), namely that s — lim V, , P = W=* V, P, holds uniformly

t—+4o00
in 7 or not. We shall now verify that this convergence is uniform in 7 if and only if

one possible choice for the family {7,} of Theorem 2 is the operators {W,}:

Proposition 5: In equation (29), the strong convergence as ¢ — +ooof V,,, P to
W V, Pis uniform in 7 > 0 if and only if the operators V* Wt converge strongly on
H for £ — + oo, and similarly for the limit ¢ — — oo (with 7 < 0).

Proof:

(i) Suppose that the convergence in (29) for ¢ — + oo is uniform in 7 > 0. Let £
be one of the possible wave operators for ¢ — + oo (Prop. 2), and let {T;'} be the
corresponding family of operators such that 2, =s — tlim VF T, on some dense

—>+-00

domain D. From the inequality (61) it follows that the convergence in (60a) is uniform
in 7 > 0. This in turn implies uniform convergence as ¢ — + oo in (59):

lim |[(Wi,— Wf)h| =0  uniformlyin 7 >0.

{t— 4+ oo e

Consequently the operators W;" form a strong Cauchy sequence on D. Denote by X
its limit. Since {W;"} is asymptotically isometric on D (property (b) of Theorem 2),
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X may be extended to an isometric operator on H. Since {VT/;“L} commutes with 4, on
D, this extension belongs to the center of 4,. Therefore it commutes with its adjoint,
which means that it is unitary.

Let now 4 D. Then

|(VEWF — QL X* || <|(VEW; —VETH X% k|
VT X*— Qu X¥) B = (X — W) |+ |(VF TS — Q) X*h|.

In the last member of this inequality, the first term converges to zero as ¢ — + oo by
the definition of X and the second term by Theorem 2. This shows the strong conver-
gence of V¥ W," on D. Since these operators are unitary, the convergence holds on all
of H. '

(ii) Conversely, suppose that V}* W, converges strongly on ¥ as ¢ — + oc.

According to the converse of Theorem 2, s — : 1i1:|1_’l VEW;} =, Since V,and W} are
— 400

unitary, it follows thats — lim (W;")* V, P = Q%* . Hence {(W;)* V, P} forms a strong

t— 00

Cauchy sequence in H: Given ¢ > 0 and g € P ¥, there exists a number 7 such that
WOV — (W) V) g| <e ifs,t>=T. (63)

Givent >0 and ¢ > T, set s = ¢+ 7. Then s > T. Therefore (63) implies together
with the multiplication law of the group {W; } that

| (Vige = WE Vi g| <e t>T.

This shows that the convergence of (29) is uniform in v > 0. l

One may now divide the asymptotic behaviour of admissible scattering systems
into four classes according to whether the convergence in equation (29) is uniform in 7
or not and whether there is a renormalization of the free energy or not:

Case 1: The strong limit of V¥ U, exists. This is the asymptotic condition of
standard scattering theory which is satisfied for the short range potentials. One has in
particular W, = U, = T,.

If the strong limit of V¥ U, does not exist, i.e. if U, & T,, we obtain one of the
following three situations:

Case2: W, = U, = T,. This case will be investigated in more detail in Section IV
with Hy = —A/2 m. It includes in particular the scattering by a Coulomb potential
(cf. Dollard [3]) and by potentials of the form V(r) = »# with 3/4 < <1 (cf.
Section V). More generally, if (A1), (A2) and (A 3) are satisfied for a local interaction
V(%) which tends to zero as |&| — oo, the scattering system will belong to this class.

Case 3: W, # U, but the strong limit of V¥ W, exists (i.e. W, = T7,). In this case
the asymptotic free energy operator K is different from the kinetic energy operator
H,. One obtains a simple model for this renormalization of the free energy if the
interaction is a sum ¥V = V, + V; in such a way that Vj is a function of H; and V;
satisfies the usual asymptotic condition with respect to the modified unperturbed
operator K = Hy+ V,. Then W,=exp (—¢ (Hy+ V) ¢) and 2 =s — lim V}* W,.
A trivial example is furnished by a constant interaction I = « I. In this case W, =
exp (—zaf) U,, and hence Q. = I and S = I.
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Case 4: W, = U, and neither of the strong limits of V}* U, and V}* W, exists, i.e.
the families {U,}, {W,} and {7}} are pairwise different from each other. This is the
most general case. The corresponding interactions combine the features of the
interactions belonging to Case 2 and those belonging to Case 3.

IV. Consequences of Symmetry

In this part we examine some properties of scattering systems which are invariant
under time reversal or under rotations of three-dimensional space. In the latter case
we shall obtain sufficient conditions for (A2) and (A3) to hold.

We first treat time reversal invariance. We say that the scattering system is
time veversal invariant if there exists on H an antiunitary operator 6 which leaves the
subspace P H of scattering states invariant and which commutes with H,and with H.
We shall use none of the other properties of the time reversal operator, i.e. we only
need to require that for any complex numbers «,, «, and for f;, f, in ¥

0 (o, f1 + %2 f2) =°'~;k 9f1+°‘; 61, (64)

01, 0f2) = (f2, /1) (65)
and that

2, Hy] == [0, Hl =18, 8l=0, (66)

This suffices to establish the following assertion:

Proposition 6: Suppose that the conditions (A1), (A2) and (A3) are satisfied in
the limit # — — o0, and let £2_. be one of the corresponding wave operators. Suppose
in addition that the scattering system is time reversal invariant with P = 2 Q%*.
Then (A1), (A2) and (A3) are satisfied also in the limit ¢ — + oo, the S-operator is
unitary, and W;}* = W,”. Moreover, the two families of operators {7;*} of Theorem 2
may be chosen in such a way that they possess a common dense domain D which is
invariant under 0 and such that 7;" = (T)* on D.

Proof: (1) We first apply the hypothesis of time reversal invariance to deduce that
0-1 B O = B* for Be A, or Ap. (67)

The method for deriving (67) from (66) is similar for B € 4, and for B € Ap, so that
we shall give it only for the former case.

We shall construct a unitary operator U in A4, and a conjugation J which com-
mutes with H, such that 6 = U J (J is an antiunitary operator such that j%=I).
We again use the direct integral representation (43) of H with respect to H,. For
every A in the spectrum of H, let J, be an arbitrary conjugation in H,. (A particular
J 2 may be constructed by choosing an orthonormal basis of vectors in H, and defining
J » as that antilinear operator which leaves this basis invariant.) We then define J on
Hby ] /= (/W)

Next, let B belong to the center of 4,. In the spectral representation of H,,
it is given by an essentially bounded measurable function B() on o(H,), equation (44).
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To its adjoint B* corresponds the complex-conjugate function B*(4). Hence, for any
feH

T Bf={JxB@) A} =A{B*A) ]AfA)}=B*]f. (68)
From (68) it follows that J commutes with all self-adjoint operators in 4/ and with H,,.
Now U =0 J is unitary and belongs to 4,. Hence 61 B = JU'BU J =
J B J = B*, which proves (67) for B € A,.

(i1) We now use the hypothesis that (A1), (A2) and (A 3) are satisfied for  — — oc.
Given a wave operator £2_, there exists { 7;” } having the properties (a)—(d) of Theorem 2
in the limit { — — oco. Its explicit construction as given in the proof of Theorem 2,
equations (48) and (50), was based on the choice of an arbitrary cyclic vector e for 4.
We shall now fix upon cyclic vectors of a particular form:

Let £(4) be a real-valued function on ¢(H,) which is different from zero almost
everywhere and square-integrable over ¢(H,) with respect to the Lebesgue measure.
Further, for every A € a(H,), let j(A) be a unit vector in H, which is invariant under
the conjugation J,. Then e = {¢(4) j(4)} is a cyclic vector for A4y, and J e =e. Let
D = {A, ¢} be the common dense domain of the family {7}, and denote by &,(4) the
corresponding function (48) obtained by setting Y, =V, 2_in (48). Let he D, i.e.
h = A e for some A € A,. Then

O0h=0Ae=0A601U Je=0A40"1Uce. (69)

Since [0, Hy] = 0, the correspondence A — 60 A 61 is an automorphism of A,.
Hence 0 A 61 U € A4,, and (69) implies that 6 # € D. This shows the invariance of D
under 0.

(iif) We now define a family {7, } with the same common domain D as above by
T;7 = (T)*. This definition makes sense, since it follows from Theorem 6.4 of
Ref. [12] that (7, )* exists, has the same domain D, as T; and is given by

(T)*f={&" D) fA)} feD,. (70)

We shall verify that this family {7,"} satisfies the hypothesis of the converse of
Theorem 2 in the limit ¢ — 4+ oo, which then implies that (A1), (A2) and (A3) are
satisfied for # — + oo.

First, since D is the same for {7;'} and for {Z;}, condition (a) of Theorem 2 is
trivially true for {7,"}. Next, one sees from (50) and (70) that | 7, 4| = || (T;)* &
for & € D. Since the left-hand member of this equality converges to || as ¢ — — o0,
it follows that | 7,7 h| — | 2| as ¢ — + co. Hence the family {7} satisfies (b) of
Theorem 2.

It follows from (67) that

2 V,i= 1. (71)
By reasoning similarly as in (1), one may also deduce that
62T, O0h= (T, )*h for heD. (72)

Hence, for he D
s— lim VT h=s— lim V*(T,)*h=061s—lim VYT, 0h.

t— 4+ co t— — oo f—— 00
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Since § 4 € D, the last limit exists by the construction of {7;~}. This defines £, and
proves that {7;"} satisfies also the requirement (c) of Theorem 2, and that 2, =
61 £_ 0. Since [6, P] = 0, one has 2, Q* = P. Therefore the ranges of £ and of £
are the same, and all the hypothesis of the converse of Theorem 2 are true.

(iv) The unitarity of S follows from Q% Q. = I. Using (26), (66), (71) and (67),
one has also

Wh=Q*17,0,=010*0V,010_6
=610V, 0 0=0"W,0=W,. §

We now consider rotational invariance. A scattering system is said to be invariant
under rotations if there exists in H a representation U(R) of the group 0(3) of rotations
of three-dimensional Euclidean space in such a way that U(R) leaves the subspace
P H of scattering states invariant and commutes with H, and with H, i.e.

[U(R), Hy] = [U(R), H] = [U(R), P] = 0. (73)

We denote by L, (+ = 1, 2, 3) the infinitesimal generators of the rotations about the
3

1-th coordinate axis and define 1.2 = ZL? It will be assumed that {H,, L?, L} form
=1

a complete set of commuting observables. (This means that we consider only particles
with spin zero.)

Let F denote the projection operator onto the subspace corresponding to the
absolutely continuous part of the spectrum of H, and let R? and R, be the resolvent
operators associated with the groups {U,} and {V,} respectively. One may then assert
the following consequences of rotational invariance: 7

Proposition 7: Suppose that (A1) is satisfied with P <{ F and that the scattering
system 1is invariant under rotations.

(a) If the von Neumann algebra generated by {H P, L2, Ly} is maximal abelian
in P and if (R, — RY) P is compact for at least one non-real z, then (A2) is true.

(b) If in addition P = F and the absolutely continuous part of the spectrum of H
1s the same as the spectrum of H,, then (A3) is true.

(c) If the hypothesis of (a) are satisfied and (A3) is true, then S is unitary and
W, =W =exp(—1 H,t).

The content of this proposition is analogous to results obtained by Lavine [14].
Part (b) is equivalent to the affirmation that the homomorphisms u, defined by (A1)
are invertible, which corresponds to Theorem 2.9 of [14], and part (a) ensures the
existence of wave operators (cf. Theorem 3.9 of [14]).

Proof: (i) Let the hypothesis of (a) be true. Since the spectrum of H is absolutely
continuous on P #, V', P converges weakly to zero by the Riemann-Lebesgue lemma.
Let & (Imé& + 0) be such that (R¢ — R,) P is compact. Since a compact operator
transforms each weakly convergent sequence of vectors into a strongly convergent
sequence, (R, — R}) V, P converges strongly to zero. Hence, for any fe H

lim | (V¥ RV, P — Rg P) f| =lim | (R~ RY V, Pf| = 0.

This shows that u(R¢) = R, P.
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Denote by Q,,, (¢!=0,1,2,..., |m| <[) the projection operators onto the
common eigenvectors of L2 and L, and let B be the maximal abelian von Neumann
algebra generated by {H,, L?, L,}.

The rotational invariance, equation (73), implies that u(Q,,) = Q,,, P. Hence

{R¢ P, Q1 P} Cu(B) - (74)
The restriction of u to B is ultraweakly continuous (cf. the proof of Prop. 1, part (iii)),

and hence u(B) is a von Neumann algebra. Using also the fact that {H}p = {R;}p
([15], Theorem II1.6.5), it follows from (74) that

{H, L%, L}, = {R, P, Q,,, P}s C u(B)p = u(B). (75)
Since {H, L2, L,}p is maximal abelian in P Y by hypothesis and u(B) is abelian,
equation (75) implies that {H, L2, L}, = u(B). Therefore u(B) is maximal abelian
in P H{, which shows that (A2) is satisfied and proves (a).

(ii) According to Proposition 2, the hypothesis of (a) imply the existence of wave

operators £2 satisfying Q* Q = E. We showed above that there exists a non-real
number & such that

R RIO* = R, P. (76)
For all non-real z, define I, = 2 R} Q*. The operators R} satisfy the resolvent
equation

RY— R% = (2—2) R R% for non-real z 2 . (77)
Using [R?, E] = 0, one may deduce from (77) that the operators I, satisfy this same
equation in the subspace P Y. As I’ ¢ = R; P according to (76), this implies that there
exists a unique linear transformation 7 on P H{ whose resolvent exists and coincides
with I, for non-real z (cf. Theorem 4.10 of [12]). Since [y = R, P, if follows that
T = H P, and hence I', = R, P for all non-real z. Hence equation (76) holds true for
all non-real &.

Let F, and Ej be the spectral families of the operators H and H, E . respectively.

By the usual construction of the spectral family of a self-adjoint operator from its
resolvent (cf. for instance [16], Section 65), it follows from equation (76) that

Therefore, for every essentially bounded measurable function f on ¢(H P), the
hypothesis of (a) imply that

Quf(Hy Ex) QF = f(HP) . (78)
Therefore o(H, E.) = o(H P) = o(H, E-). Since E € A4,, they are spectral projections
of H,. Hence £, = E_.

(iii) Under the additional hypothesis of (b), the spectrum of H, E . coincides with
that of H,, which implies E. = I. Hence (A3) is true (cf. the last paragraph of the
proof of Theorem 2). This proves (b).

(iv) If the hypothesis of (a) and (A 3) are true, one has E_ = I (cf. the proof of
Theorem 1). Then also E; = I from the last remark of (ii), and hence S S* = S* S = I.
Setting in (78) f(1) = exp (—¢ 4 ¢), one obtains

Q.UQ*=V,P (79)
which shows that W} = W, = U, and proves (c). I
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~ In order to establish that a given scattering system satisfies (A1), (A2) and (A 3),
it is useful to apply the converse of Theorem 2. For this, one will have to exhibit two
families of operators { 7"} satisfying (a), (b) and (c) of Theorem 2 and verify that the
ranges P, of the corresponding wave operators reduce V, and are identical. This
scheme was realized for the non-relativistic scattering by a Coulomb potential by
Dollard [3], who also proved the completeness of the wave operators (i.e. that the
ranges of £2., coincide with the projection operator F onto the subspace determined
by the absolutely continuous part of the spectrum of H). In Section V we shall work
out this same program for a more general class of potentials in non-relativistic
scattering theory. Before doing this, we give sufficient conditions for P, = P_to hold
and for the completeness of the wave operators.

Proposition 8: Suppose that the scattering system is invariant under rotations
and that there exist two families {7;-} of operators satisfying (a), (b) and (c) of
Theorem 2. Denote by P.. the projection operators onto the ranges of £4 and by Q,,,
those onto the common eigenvectors of L2 and L,, and suppose P, << F. If the von
Neumann algebra generated by {H F, L2, L,} is maximal abelian in F ¥ and if
(R, — RY) F is compact for at least one non-real z, then P, reduce V,, and P, = P_.
If in addition the absolutely continuous part of the spectrum of H is the same as the
spectrum of H, and the spectrum of H, (,,, is independent of the values of / and m,
then the wave operators are complete, i.e. P = P_= F.

Proof: (1) The hypothesis of invariance under rotations implies that 7 as well
as V, commute with all rotations, and hence so do 2. = s — lim V} T and Py =

@ ,
Q. 0% . One may write # = 3 '0Q,,, ¥, and every subspace Q,,, # reduces H,, H, F,
im

Q; and P.. If 4 is any of these operators, we denote by (4),,, its restriction to the
subspace Q,,, .

Using the hypothesis that (R, — RY) F is compact for at least one non-real z and
that P, < F, one may deduce in the same way as in the preceding proof that

Q. U,Q* =V, Pe=P,V,P.. (80)

It follows from (80) that [V,, P4] = 0. Since Q,,, commutes with all the operators
occuring in (80), this equation holds true in every subspace (,, ¥ individually. For
every pair {/, m} the spectra of (H,),,,, (H P4),,, and (H P_),,, are therefore identical.

From the hypothesis that {H, L2, L;}; be maximal abelian in F }, it follows
that (H F),,, generates a maximal abelian algebra in Q,, F H{. This means that the
spectrum of (H F),,, is simple ([9], Section 3). Since (P.),, < (F),,, the operator
(H F),,, 1s reduced by the subspace (P.),, H. These properties of (H F),,, imply that
(P+);,, are spectral projections of (H F),,, ([12], Theorem 7.16). Since o((H P4);,,) =
o((H P-),,), one has (Py),, = (P-),,and ergo P, = P_ (cf. also Theorem 3.3 of [17]).
This proves the first part of the proposition.

(i) Under the additional hypothesis that o((H,),,,) is independent of the values
of / and m, i.e. o((H,),,,) = o(H,) for all pairs {/, m}, one has o((H P.),,) = o(H,) for
all pairs {/, m}. If in addition ¢(H F) = o(H,), this implies that o((H P.),,) = o(H F).
Since o((H P4),,) Co((H F),,) Co(H F), this implies ¢((H P4),,) = o((H F);,,)-
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Since (P.),,, are spectral projections of (H F)
Po=F,

To conclude this part, we apply some results of Rejto [18] and of Weidmann [19]
to indicate a class of interactions in non-relativistic potential scattering which fulfil
the hypothesis of (a) and (b) of Proposition 7 and some of the hypothesis of Proposi-
tion 8. Let Hy = —A/2 m be the Schriodinger operator and H = H, + V where V' =
V(7) is a spherically symmetric real potential defined in Euclidean three-space which
has the following properties:

There exist three real numbers C > 0, R > 0 and s < 3/2 such that

(P1) fory < R: »|V(r)| <C,
(P2) forr =z R: |[V()|<C, lim V@ =0

and V(r) = V,(r) + V,(r) where V,(») is of bounded variation and V,(r) belongs to
LY(R, o).

For such potentials it follows from Theorem V.5.4 of [15] that H is essentially
self-adjoint with domain Dy = Dy,. Furthermore these potentials satisfy the
conditions of Theorem 2.1 of [18] and of Corollary 6.3 of [19]. The conclusions of these
two theorems will now be applied to verify the hypothesis of our Propositions 7 and 8
(apart from the asymptotic convergence).

Theorem 2.1 of [18] states that I/ R?_; is compact. Since R, — R} = — R, V R}
and R, is bounded, it follows that (R, — R}) P is compact for any projection operator
P on Y (in particular for P = F). Theorem 2.1 of [18] asserts also that the essential
spectrum of H is the same as that of H, and coincides with the interval [0, o).
Corollary 6.3 of [19] affirms that the spectrum of H (as well as that of H) is absolutely
continuous on (0, co). Combining these last two statements, one sees that the spectrum
of H, as well as the absolutely continuous part of the spectrum of H coincide with the
interval [0, oo).

Finally, the operator (H),,, is unitarily equivalent to the differential operator
—d?dr® + 1 (I + 1) 2 4+ V() acting in L2(0, oo) (cf. [19], Section 6). If V() satisfies
the conditions (P1) and (P2), then the spectrum of this differential operator is simple
on the interval (0, oo) ([19], Theorem 5.1 and Corollary 6.3). Hence the von Neumann
algebra generated by (H F),,, on Q,,, F }# is maximal abelian. From this it follows
that the von Neumann algebra {H, L2, L}z is maximal abelian in F . Furthermore,
for P < F and Pe {H, L2, L,};, the reduced algebra {H, L?, L,}p is also maximal
abelian. This shows that the above-mentioned potentials satisfy the hypothesis of (a)
and (b) of Proposition 7.

one has (P4),,, = (F),, and ergo

Im» m

V. Long-range Potentials

In this section we establish the existence of a class of long-range potentials which
decrease more slowly than the Coulomb potential at large distances from the scattering
center and which satisfy the asymptotic condition (A1)-(A3). The main result is the
following:

Proposition9: Let Hy = —A/2m and H = Hy+ v x~#, where y is real, 3/4 << <1
and x = (xf + x2 + x3)12. Then (A1), (A2) and (A3) are satisfied with P = F.
Moreover W;r = W, = U,.
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Proof: To show that (A1), (A2) and (A3) are satisfied, we shall verify that the
hypothesis of the converse of Theorem 2 are true. For this, it suffices to construct a
family {T;"} satisfying (a), (b) and (c) of Theorem 2 in the limit £ — + oo and such
that P, < F. Since the potentials considered in the Proposition satisfy the conditions
(P1) and (P2) at the end of Section IV, it then follows from Proposition 8 that
P, = F and hence [P, V,] = 0. The converse of Theorem 2 then implies that the
statements of (A1), (A2) and (A3) are true in the limit # — + oo. Furthermore, if we
choose for 6 the operator of complex conjugation of the wave functions, the scattering
system is time reversal invariant. According to Proposition 6 the statements of (A1),
(A2) and (A3) are then verified also in the limit # — — oo with P_ = P, = F.

We now define for every ¢ > 0 a self-adjoint operator which is a function of H,,
namely

Hyt) = Hyt +ywmP (1 — B)-1 (2m Hy) P £1-F (81)
and we set
T, =T, = exp (—i Hy(t)) . (82)

Since 7', is unitary and belongs to 4, the conditions (a) and (b) of Theorem 2 are
trivially verified. The asymptotic convergence (condition (c) of Theorem 2) will be
established through a sequence of lemmas the proofs of which are collected in the
Appendix.

The underlying Hilbert space may be represented as H{ = L2(R?). We shall write
/(®) for the function in L2(R?) corresponding to a vector f in the #-representation and

f(#) for its Fourier transform. We also define a dense set C in 9 as follows: f belongs

~

to Cif f(») €S (the set of all infinitely differentiable functions of rapid decrease) and
vanishes in some neighbourhood of the origin. (The same set C of test functions was
used by Dollard [3].) C is invariant under H(#) and T,. For fin C, we define f, =

U f=U}T,f, or explicitly in the ®-representation:

fi#) = exp (=1 p»~"£%) f () (83)
where %= |#|, «=1—f and u=9ymf (1 — B)~1. According to Corollary 1 of
Theorem 2, this family {f,} should be feebly oscillating. This is indeed the case:

Lemma 1: Let fe C. Then the family {f,} of vectors defined by equation (83)
1s feebly oscillating.

Since U, is unitary, the convergence in Lemma 1 can be extended to all of ¥,

-~

ie. lim |(U,,—U)f

{— +00
of # with W7 = U,. Assuming the asymptotic convergence, this implies the inter-

twining relation V, 2, = Q, U, (cf. the remark after Corollary 1 in Section III).
The intertwining relation implies that [Py, V] = [2+ 2%, V,] =0 and also that
P, < F, since the spectrum of H, is absolutely continuous. The property W; = W;-
(= U,) follows from time reversal invariance.

It is useful to associate with each fin C another sequence of vectors I/, whose
¥-representation is defined as

= 0 for all vectors fin H. Hence equation (60a) is true on all

Rl = [ @yexp isen) [exe (5 2) -1 500 84

22
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The following lemma gives some estimates concerning these functions for large times ¢:
Lemma 2: Let n > 1 — . Then

(@) |F,(%)] < Cye™P1 + o(t7F) (85)
(b) [ F.| < Cotrrt + o(t™F) (86)
where C; and C, are constants and K is an arbitrary positive number.

We shall now give the convergence proof for VV* T,. It is based on the following
standard result ([15], Section X, Theorem 3.7):

Lemma 3: Let {2(¢)} be a family of operators and f a vector in H such that the
derivatives 0/0t(£2(¢) f) exist and are strongly continuous in £ In order that the
sequence {Q2(¢) f} converge strongly as ¢ — + oo, it suffices that the integral

o0

0 I
/‘raQ(t)f“dt

(%
to

exist for some finite value of ¢,.

We shall verify the hypothesis of this lemma for £(¢) = V¥ 7, and fin C. Since
V,and T, are unitary, the convergence of £2(¢) can then be extended to all of 3, and the
requirement (c) of Theorem 2 will be satisfied with D = H.

For fin C one has

0
H_o‘!tﬁ VT, f

=[P =t 2m H) ") T f) (87)

We now introduce the explicit representation of the free evolution U, = exp(—17 H,{)
as an integral operator acting on the functions 4(x) in L%(R3):

3/2 ; _ 2
Wm0 =(5oy) [aven (" h.

-~

Applying this representation to the function f,(x) = (U,/f) (%), we decompose T, f
into a sum of two vectors

T,/=U,Uf=U,f,=f" + f? (88)
where
fm(x)m(ﬁ_zz% N exp (2N [asy exp(— 252 1) (89)
R e Ay y exp : S
m\3? i m x2 imx.y
@) = IRt Y - o o
/() (Znit) eXp( 2t )f yeXp( P )
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Introducing the Fourier transform ﬁ(%) of f,(x), and in view of the definition (84),
one may express these two functions as

3/2 ; 2
T imx2\~ (m« 01
1w = (55) exe ()7 (S o1
3/2 ) 2
PO ma (ﬁi‘ 92
@) (2m‘t) eXp( 2t ) A 62)
We define also the vector g in C by
g = (2mHy) 2 f | (93)
and consider the decomposition of 7', g defined by equations (88)—(90):
Tig=g"+8"- (99
It follows immediately from (91) and (93) that
mx\ P
e = (") . (99

Introducing (88) and (94) into (87), one finds that the contributions from f/! and g{
cancel as a consequence of (95), and one is left with

I 0 l _ _ 21 s 2 — 2
VTS =y R ) <y LA g ()

We now give estimates for the two norms of the last member of (96) by applying
Lemma 2. For the first term, we use the explicit form (92) for f/%:

3/2 ; 271/2
= () [ [ B (55 ©7)
2nt t

For fixed and large ¢, we divide the integration over R? into two parts: an integral
over the sphere S, = {# | x < /°} and an integral over the exterior of this sphere,
where d is some positive constant. In the integral over S,, we make the substitution
y; = t7° x, and then apply the inequality (85). Since x~2/ is integrable at & = 0 for
f << 1, this gives

821 271/2 8/2
. d3x 5~ iF nE ‘ ) ez g-pe
2wt | : t ] 9 o

L.xgtd

[ ]/Z
X A3y y~ | F(m 271 y) ]2] < (const.) FO-NEZ=FO+TZ-1 — (9g)
Ly<1

For x > %, we use x~ % << £7%#% and the inequality (86):

m 32 m o\ |22 m \%2
I 3y x 2 F [ < ¢~ ho ______)
( 27t ) ’ /d o ! ( ¢ ) ] = 2mt
)

x>t
[ mx\|2 1/2 1 \3/2 . s
_a( t“) ] ::(") £ | F,| < (const.) #7-#1. (99)

d3
x[/ " =
R?
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It is not difficult to verify that, if 3/4 << <1, onecan findp >1—fand d > 0
such that the two contributions (98) and (99) are integrable at ¢ = oo (e.g. n = 0.26
and é = 0.74).

For the second term in the right-hand member of (96), one finds from (92)

y P 8 | g = o mf i 5(22;) [/d%‘ ( | ) ]1/2

g
st 12 (100)

where G, is obtained from g by the definition (84). Using again (86), one sees that this
contribution is smaller than (const.) #27-1-# with # > 1 — f, a function which is
again integrable at f = + oo for 3/4 < f <C 1. This completes the proof of the propo-
sition.

To conclude this Section, we may add that the convergence proof is essentially
the same if the potential is of the form V() =y x~# + V/,(#), where V(%) is square-
integrable and real, and 3/4 << § << 1. The operators 7;% will still be defined by (81)
and (82), and the only modification in the proof consists of two additional contributions
in the last member of (96), namely |V, [V and |V, f{#|. By means of convenient
estimates one may verify that these quantities are also integrable at £ = oco. If V(%)
is also spherically symmetric and satisfies the conditions (P1) and (P2) at the end of
Section IV, one concludes that the wave operators are also complete (i.e. 2. Q% = F).

The value f = 3/4 does not appear as a limit which is inherent in (A]) (A3),
and we presume that the statement of Proposition 9 could be extended to values
i < 3/4 by means of more refined estimates®).

VI. Concluding Remarks

In conclusion we add a few comments upon the possibility of an energy re-
normalization and upon the indeterminateness of the S-operator as expressed in
Theorem 1.

We are inclined to thinking that local potentials which go to zero as |#| — oo
do not give rise to an energy renormalization?) and that the only examples of such a
renormalization are of the type which we considered under Case 3 at the end of
Section III. In models of interactions between quantized fields, the energy re-
normalization is usually accompanied by an amplitude renormalization, and this
latter seems incompatible with the existence of strong limits such as they were
formulated in the present paper (for an investigation of asymptotic limits in a simple
field-theoretic model, cf. [21]).

The indeterminateness of the S-operator arises from the fact that we considered
the asymptotic behaviour of a limited number of observables only. Our theory gives
an equivalence class of S-operators. The members of this class differ by a multipli-

) Prof. L. Faddeev has communicated to us that Buslaev and Matveev have proved asymptotic
convergence by different techniques for all 0 < # < 1 and that their results will be published
in the new Soviet journal ‘Theoretical and Mathematical Physics’.

7) Such interactions exhibit no diagonal singularities in the sense of Van Hove [20].
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cative unitary function of H, (cf. Theorem 1), and two different S-operators are
equivalent in the sense that they predict identical results for the measurements of the
observables of 4,. If one imposed asymptotic convergence for a smaller algebra than
Ay, one would arrive at a correspondingly larger class of S-operators. One may assure
oneself that there does not exist any larger von Neumann algebra containing 4, for
which the form (A1)-(A3) of the asymptotic condition is physically meaningful and
mathematically possible. The choice of 4, therefore gives the best possible deter-
mination of S. For short range potentials and also for the interactions of Case 3 of
Section III there exists a distinguished S-operator, namely the one obtained from
QL =5-— t lim V}* Wi (one remembers that the operators Wi are uniquely determi-

—+00

ned by the asymptotic condition).

A quantity which is measured in scattering experiments is the probability of
finding the scattered particle in a cone C whose apex coincides with the position of the
scattering center. (In the sequel the scattering center is assumed to be at the origin
of coordinates.) For the non-relativistic scattering by any short range potential and by
Coulomb potentials, it was shown by Dollard [22] that this probability P(f, C) for the
initial state f is given by

P, C) = [ 1(S]) () 2 (101)

&

where (Sf) (%) is the Fourier transform of the wave function corresponding to the
final state S f. Following the lines of [22], it is not difficult to verify that this formula
is correct also for the potentials considered in Proposition 9. It is clear from (101) that
this probability P(f, C) is also independent of the choice of S from the equivalence
class found in Theorem 1.
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Appendix

In this appendix we collect the proofs of the technical lemmas used in Section V.
Proof of Lewma 1: Let fe C and T > 0. It follows from (83) that

~ ~

|G = U2 = [ @ exp (=5 5Pt +9)% — 9] = 112 | 2

Using the binomial expansion of (¢ + 7)* for £ > 7 and o < 1, one sees that the
integrand converges pointwise to zero as ¢ — -+ co. On the other hand it is bounded

~

above by the integrable function 2 |f(x) |2. By the Lebesgue dominated convergence
theorem, the integral converges to zero. B
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In the proof of Lemma 2 we shall need some estimates for the functions F,(«)
defined in equation (83). We first state and prove these estimates:

Let fbein C and x = (%2 + x2 + 22)12,

(a) there exists a number M < oo such that for all ¥ and ¢

i) | < M. (102)

(b) for every positive integer N, there exists a constant My such that for £ > 0
and x = 0

)] < 22 (My 22N 4 o(22M)) (103)
Proof:

(a)

1) = @) | [ exp (i - 5) exp (i 5" 1%) flo)

~

< (2a) R [d | flu) | = M < oo.

J

(b) One obtains by integrating by parts
— x2 f,(x) = (2 n)3/2fd3x exp (¢ - &) A, [exp (—7 2 P 1% ﬂ%):[ .
The Laplacian of the square bracket gives a sum of three terms

[ () + £ (o) + [O)] exp (=i P 1)
The powers of ¢ arise from the derivatives of the exponential term, and the functions
f9%), 7 =1, 2,3, belong to C. Therefore, for x + 0, f,(x) is of the form

fol®) = a2 (2 f0() + £ fP(x) + fP(x) ]

Applying the same formula to the functions f(x), one obtains another factor x—2
and new powers of £. Carrying through this operation N times, one finds for x + 0

fi(®) = x‘”é’ﬂ'“ﬂ”’(x)

with fWe C, =1, 2,... 2 N. The inequality (103) now results from the fact that
12*N is the leading power and that all of the f/)(%) are uniformly bounded in & and in ¢
according to (102). l

Proof of Lemma 2: Let fbein Cand n > 1 — .
(a) One has from (84)

F)| < f By

For fixed # > 0, we integrate in (104) separately over the sphere S,= {y |y <1}
and over the exterior of this sphere. To the first integral we apply Schwartz’s in-

exp (52~ 1) 1491 (104)
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equality and get

o)y 3
fdsyexp(_ztﬁ)—lim(yng[ fdy

y<th < im

imy? 2 71/2
exp (“52) =1 ] Il

But | f,| = I'U . f| = | f|- Using the fact that for y <

1 ; 2 | 9
1 e i”iy— ez, L e ﬁiy_ < _7_%_ tgﬂ—1 105
P ( 2¢ R TR (105)
one gets
) 1/2
[ o (22%) <1 o < b o [/ o]
y < | v Zm

In the integral over the exterior of the sphere S,, we use the fact that
lexp (¢ m y%[21) — 1| < 2 and apply (103) with N sufficiently large:

f dﬁyexp(-’% ‘m )| < 2 My % 4 of** )] f Pyy~

y >N y >t

Setting y; = 7 v; in the integral of the right-hand member, one sees that this integral
behaves as t#~2¥ The dominating power in the right-hand member is therefore
prreNe=n Since . —n=1-— B — 5 < 0and N is arbitrary, the integral over the
exterior of S, converges to zero for ¢ — oo faster than ¢~ for any positive number K.

by 1] - | / o exp (1) - i o]

We divide the integration over R® into two parts in the same way as above. The
contribution from the exterior of the sphere S, again converges to zero faster than
any power of 1/¢ for £ — oo. For the integral over S, one finds by using (105)

= 2 2 1/2
l f dsxiexp(.zl‘txm)ml i [ / dx |f¢(x)|2]
¥ < | 2

2 1/2
Ift(x)lz} <
m L 0o 2n—1 291
<5 A= e =Gt

N'§
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