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Space-time Symmetry
of Transverse Electromagnetic Plane Waves

by Aloysio Janner

Instituut voor Theoretische Fysica, Katholieke Universiteit, Nijmegen, Nederland

and Edgar Ascher

Battelle Institute, Advanced Studies Center, Carouge-Geneva, Switzerland

(23. XII. 69)

Synopsis. A way of determining the relativistic symmetry group of an electromagnetic field
tensor that admits a Fourier expansion is summarized in a set of rules where the concepts of
spectrum and of spectral group are introduced.

This approach is applied to the case of linearly, circularly and elliptically polarized transverse
electromagnetic (TEM) waves. The group of the symmetry translations (called primitive trans-
lations), the point group and a set of associated non-primitive translations are explicitly given in
each of the above three cases. From these groups one easily derives the symmetry group in space
and time of a TEM wave, which is a non-symmorphic subgroup of the Poincaré group, i.e. a non-
split extension of the group of primitive translations by the point group. The limit of infinite wave
length is discussed and the results are shown to be consistent with previous ones relative to the
symmetry of uniform electromagnetic fields.

1. Introduction

In the frame of a general programme in which physical phenomena are con-
sidered from the point of view of their symmetry in space and time, it is evident that
electromagnetism is worthy of special attention. It is not at all surprising that
electromagnetic fields in empty space have relativistic symmetries, as has already
been shown in the case of uniform fields [1].

This paper represents the next step: the investigation of the symmetry group of a
transverse electromagnetic plane wave (TEM). The relativistic symmetry group of a
uniform field is the semi-direct product of the group 7 of all space-time translations
by the point group of the field (the homogeneous symmetry group), the latter being
considered as subgroup of the group of automorphisms of the abelian group 7. This
is no longer so for a TEM wave, whose symmetry group is not symmorphic.
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Clearly, only a proper subgroup of T leaves the field invariant. The elements of
this subgroup are called primitive translations, a terminology derived from that of
crystallographic space groups. Note however that there are continuous primitive
translations also.

Other translations than the primitive ones occur in the symmetry group G, but
only together with non-trivial homogeneous transformations (here Lorentz trans-
formations) and are called, therefore, non-primitive translations. The non-symmorphic
character of G appears in the fact that these non-primitive translations cannot be
transformed away (as a whole) by any change in the coordinate system [2]. This
means that the symmetry group of a TEM wave is not simply the semi-direct product
of a group of space-time translations by a group of Lorentz transformations.

2. Symmetry Conditions and General Definitions

In the Minkowski space, an orthonormal basis ¢, (x = 0, 1, 2, 3), is chosen, with
metric tensor g, , where — gy = gy, = gop = g33 = Ll and g, 5 = 0 for a0 * f.

The Poincaré group 10(3,1) is the semi-direct product of the group T of all
translations in space and time and the Lorentz group O(3,1) (considered as subgroup
of the group of automorphisms of the abelian group 7). The elements of 10(3,1) can
thus be written as (¢, L) where the translational part ¢ is an element of T, the homo-
geneous part L is an element of O(3,1) and the multiplication law is given by:

(t2r Lz) (tl» Ll) - (tz a5 Lz t1: Lz Ll) . (2-1)

Under the action of an element g = (£, L) of I0(3,1) an electromagnetic field tensor
F#F(x) transforms into another F*#(x) according to [3]:

F*P(x) = (gop F*) (x) = g[F *P(g~1 2)] (2.2)
where, as already discussed in a previous paper [1]:
§LF**(0)] = Ly L) F*(x) (2.3
with:
; L if Ly>0,
L% = # . ‘; (2.4)
— Ly if Ly<0,
and
glx) =@ Lyx=Lx -+ . (2.5)

The condition for g to be a symmetry, i.e. to leave the field invariant, is naturally:
F*f(x) = F*P(x) and can be expressed by the relation:

F# (Lx+#) = Lt Ly FP(x) . (2.6)

The relativistic symmetry group G of the electromagnetic field F*#(x) is the
largest subgroup of 10(3, 1) which, according to (2.6), leaves the field tensor invariant.
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The set of all homogeneous parts of the elements of G is a subgroup of O(3,1),
called the point group K of the field in question:

K={L|V({ L)eG}. (2.7)

The subgroup U of G consisting of translations only (U %/ 7' 0 G) is normal in G.
The proof uses the fact that 7" is normal in 10(3,1) [4]. For any g€ G:

eUgl=g(TNG gl=gTgl0gGgl=TNG=U. (2.8)

The elements of U are called primitive translations. The factor group G/U is iso-
morphic to the point group K. Note that for non-symmorphic G, the group G/U is not
isomorphic to a subgroup of G. In fact the translational part ¢ of an element of G is
not, in general, a primitive translation. If ¢ ¢ U, then ¢ can be written as:

t=a+ull), aeU. (2.9)

The translation #(L) is called a non-primitive translation associated to L. The
fundamental property of non-primitive translations is [2]:

u(Ly Ly) =u(L,) + L, u(Ly) (mod V), L,and L,eK, (2.10)

so that it is sufficient to derive the non-primitive translations associated to a set of
generators of K.

Let us from now on restrict our attention to fields that have a Fourier expansion:

F8(x) = 3T F*P() &, (2.11)
ke§
and let us call spectrum of the field F*f(x) the set § of all vectors % occurring in the

expansion (i.e. such that the corresponding Fourier coefficient F *b(k) does not
vanish). Two fields are equal, if and only if they have the same spectrum and the same
Fourier coefficients. It follows that:

KS§=§, (2.12)
a short-hand notation for expressing that if ke § and L € K, then L k€ §.

Furthermore:

ka=0(mod2nx), VkeS,VaelU. (2.13)
This last property is also a characterization of all the translations that are primitive:

U=1{aeT|ka=0(mod2m),VkeS}. | (2.14)
Finally:

L Ly F*P(k) = FP'(L k) 000, (2.15)

Here L 1s any element of K and #(L) is a non-primitive translation associated to L.

Using matrix notation, the relation (2.15) can also be written in the very convenient
form:

i I:(k) _ ﬁ(L k) L* gkl (2.15a)

where L* is the adjoint matrix of L, i.e. its transposed inverse.
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It is useful to introduce the spectral group S defined as the largest subgroup of
O(3,1) leaving the spectrum § invariant:

S={LeOB3,1)|LkeS, VkeS}. (2.16)

In particular, when § reduces to a single element %, the group S is also the little group

relative to 10(3,1), T and the representation A(%). (See e.g. Ref. [5], pp. 230 and 328.)
A way of finding the relativistic symmetry group G of a given electromagnetic

field can be formulated in the following set of rules:

(i) Determine the Fourier coefficients and the spectrum § of the field.

(i1) Using (2.14) find the group U of primitive translations.

(ii) Find the spectral group S by means of (2.16).

(iv) Find the point group K and a set of non- primitive translations #(K) by looking
for elements L of S that satisfy (2.15) for suitable chosen translations u(L).
Note that, according to (2.10), if two elements of S satisfy (2.15), then so does their
product. It is therefore convenient to find out first which generators of S belong to K
and which not. One only needs to consider further those products which begin and end

with generators of S not belonging to K.

(v) Finally, the group G is the set of all elements of 10(3,1) that are given by:
(@a+u(l),L),Vae U,V LeK and u(L) € u(K) . (2.17)

3. Spectral Group and Primitive Translations

The orthonormal basis considered above can be chosen in such a way that, in
Gaussian units, a TEM wave with null vector % is given by:

Eg(x) = A cos(hx), E,(x)= B sin(hx)

H,(x) = A cos(hx), Hgy(x) = — B sin(hx) : (3.1)
where the contravariant components of % are:
2
h— Tﬂ (1,0,1,0), (3.2)

so that the wave propagates in the e,-direction.
The corresponding field tensor is:

F*f(x) = A% cos(hx) + B** sin (hx) (3.3)
where: |
00 01 01 00
00 00 —-10-10
A% — 4 “h _ .
00 01} B B 01 060 (34)
—10-10 00 00O

If |A| += | B|, the wave is elliptically polarized, and circularly polarizedif |4 | = | B|;
right-hand polarized if A and B have the same sign, otherwise left-hand polarized.
If B (or A) is zero, then the wave is linearly polarized.
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The Fourier components of the field are:

e

1 - 1
Fo0G) = ) (A0 — i B and F*(— i) = (A0 1 i B), 5.5

so that the spectrum simply consists of two elements:
S={h, —h}. (3.6)

The group of primitive translations U”* does not depend on the wave polarization and
follows immediately from (2.14) and (3.2):

Uh={a=(o,u,0+ 24,7 |Vo,uveRandVze 2}, (3.7)
so that
U~ R3 @ 7.

The little group, £(2), of the vector £ (future null) of 10(3,1) and T (see e.g. Ref. [5],
p. 329) is a subgroup of the spectral group S of (3.6), and is generated by ,, the
mirror perpendicular to the x-axis (along e,), by R, (), any rotation of angle 6 around

the y-axis (along e,) and by the Lorentz transformations L(g) and L(g) (for any real o
and p) given by:

4 1 1 A . 1 1 A

1+2020—20'2 0 1+2~g20———2—92 0

o 1 —o 0 _ 0 10 0
e N R

EG o 1—72—0 0 »279 0 1~——é—g 0

0 00 1) 0 0 —p 1

Thus £(2), as well known, is isomorphic to the two-dimensional Euclidean group.
(Note however that in Ref. [5] only the proper orthochronous inhomogeneous Lorentz
group is considered, so that, there, the mirror s, does not appear: but then of course
the little group of a null vector is isomorphic not to the Euclidean group, but only to
its connected component of the unity.) As £(2) is of index two in S, for generating
the group S it is sufficient to add to the above set of generators of £(2) the total
(space-time) inversion 1’, which transforms % into — 4.
One then has:

S={1,m, R,0), L(o), L(o) | V0,0, 0€ R} . (3.9)

4. Linearly Polarized Plane Wave

One obtains a linearly polarized plane wave by assuming in (3.3) that B*# = 0.
Applying rule (iv) of Section 2, one verifies that the generators m,, L(o) and L(g) of S
satisfy (2.15) for any real value of ¢ and p, with vanishing associated non-primitive
translations. These elements belong therefore to the generators of the point group K}
of a linearly polarized plane wave with wave-vector 4. The total inversion 1’ is also an
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element of K7 but has an associated non-primitive translation that with the present
choice of the origin has to satisfy the condition:

hu(1) =7 (mod 2 7) . (4.1)

A possible solution is #(1") = (0, 0, 1/2 4, 0), all other solutions differ from this one by
primitive translations only, and represent equivalent choices.

Equation (4.1) thus takes into account that non-primitive translations are defined
only modulo the primitive ones. According to the general theory [2] another source of
arbitrariness is due to the possible changes of origin. Equations (2.11) and (2.15) show
that a change of origin ¥ — x + f induces a change #(L) — u(L) = w(L) + f — L f;
the two systems, #(K) and #(K), are however equivalent.

It is now sufficient to investigate the behaviour of the rotations around the
y-axis. One obtains from (2.15) the condition sin@ = 0, which for 6 = 0 gives the
identity and for 6 = n another generator of Kf‘ namely 2,, associated with a same
non-primitive translation as the total inversion:

u(2,) = ( 0,0, ; A, o) : (4.2)

It is convenient to consider instead of 2, the generator 7, = 1’2, (a mirror perpen-
dicular to the y-axis, along ¢,, followed by time inversion) because according to (2.10)
and (4.2) the non-primitive translation associated to it is zero.

Conclusion: we have found that the point group K/ is generated by:

K} = {T',m, m, L(0), L(g) | Vo,0€ R} (4.3)
and that the set:

u(m,) = u(m,) = u(L(o)) = u(L(p)) =0, u(l)= (O, 0, ; A, 0) (4.4)

defines a system of non-primitive translations for the symmetry group G} of a
linearly polarized TEM wave with null vector 4. One verifies that this system «(K})
1s not equivalent to the trivial one. Therefore Gf is a non-symmorphic subgroup of the
Poincaré group. This means that the point group K/ is not isomorphic to a subgroup
of G*, or, in other words, that G? is a non split extension of U” by K/h (2, 4].

There are elements of G} which depend only on the direction of the null vector 4,
but not on the wave length A. This is in particular the case for the elements of K},
whose associated non-primitive translations are equivalent to zero and thus also are
(homogeneous) elements of G

In the limit of A — oo, i.e. of & — 0, F *#(x) becomes the uniform field tensor 4%,
whose symmetry group G, (4% = 1) has already been determined [1]. We recall that
G, (a® = 1) is the semi-direct product of the group 7 of all translations with the point
group K, (a®=1).

Comparison shows (see in particular (5.24) of Ref. [1]) that indeed all A-inde-
pendent symmetry elements of G} also belong to G, (a% = 1). In particular the only
elements of K} not belonging to K, (a2 = 1) are those whose associated non-primitive
translations are not equivalent to zero. These latter become meaningless in the limit
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of an infinite wave length, and in fact the corresponding homogeneous parts are no
more elements of K=", One has:

UrcutCcT, K/"'=K (@=1)CK}!, G °CG (a®=1). (4.5)

5. Circularly Polarized Plane Wave

It 1s now supposed that in (3.1) A = B. The TEM wave is then right-hand
circularly polarized and the Fourier coefficients (3.5) become:

0—7 01 0i 01
~ A i 0 40 - A —i0o —io0
&ﬁ e G(.Bb__‘ R ]
R = 0—i o1 ] FM=73 0¢ 01 ] (5:1)

-1 0-10 —10-10

Again rule (iv) of Section 2 is applied. One finds that L(s) and L(p) satisfy (2.15) for
any real value of ¢ and g and zero non-primitive translations.

Furthermore R, (0) also belongs, for any value of 6, to the point group K of a
circularly polarized plane wave with wave vector 4. If the rotation angle is defined by:

10 0 0
0 cosfl 0O sinf
= 2
0 —sinf 0 cosf
the associated non-primitive translation is
64
wR,®) = (0.0, 5> 0) (5.3)
2w
whereas in the case of a left-hand circularly polarized wave (4 = — B) one has:
' /S
u(R, ) = (0,0, 52,0} (5.3b)
2n

The remaining generators of S, namely 1’, and m,, do not satisfy (2.15). One has there-
fore to investigate the other elements of the group generated by 1" and m,, in fact only
their product 2/ (which is a rotation of angle 7 around the x-axis, followed by time
inversion). This last element belongs to K% and is associated to:

1
u(2,) = (O, 0, 3 A, 0) ; (5.4)
The result is that the point group K%, is generated by:

K% = {2, R,(0), L(0), L(g) | V 0,0,0€ R} . (5.5)

A corresponding system of non-primitive translations is:

u(L(0)) = u(L(g)) = 0,

@)= (0.0, 5 20). wiron (0.0, 22 o) 59
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(the plus sign applies if the wave is right-hand polarized, the minus sign if it is left-
hand polarized). In this case too the symmetry group G is non-symmorphic, i.e. a
non-trivial extension of U* by K" .

In the limit of an infinite wave length, one again gets a uniform field, and con-
siderations like those made at the end of the previous Section lead to similar conclusions.

6. Elliptically Polarized Plane Wave

In this case, |4 | + | B|. The Fourier components of the field are:

0-:1B 0A 0: B 0A4

~ i 1 B 0 :BO - 1| —2:B 0—-:B0
Foc,ﬂ h) = Tl e e . Nl
"= 0—iB o4 | FM=, 0ig 04 |OY

4 0—-A0 —A4 0 —A40

Calculation of the generators of the point group K} and of the corresponding system
of non-primitive translations is straightforward, so that we simply give the result:

e ,Lio) | Vo, 0e R}, (6.2)
u(L(o)) = u(L( ) =0

- 4, o) . (6.3)

/

o= -

u(2,) = u(2,) = (O 0, -
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