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Boundary Curves of the Double Spectral Functions
in the Mandelstam Representation?!)

by G. Rasche
Institut fiir Theoretische Physik der Universitdt Zurich

and W. S. Woolcock

Research School of Physical Sciences, The Australian National University, Canberra

(15. XI. 69)

Summary. The boundary curves of the double spectral functions in the Mandelstam represen-
tation for the invariant amplitudes of a two-particle -> two-particle collision process are evaluated
for a number of hadronic processes. Use is made only of elastic unitarity and of ‘extended’ unitarity
and a general formula is given which applies to any case where an anomalous threshold is absent.
It is shown that subtractions in the Mandelstam representation do not alter the boundary curves.

1. Introduction

It is well known that the double spectral functions in the Mandelstam representa-
tion for the invariant scattering amplitudes of a two-particle —two-particle collision
process do not begin to differ from zero at the square of the total mass of the two-
particle state, of lowest possible total mass, with the internal quantum numbers of the
appropriate channel. The region in which a double spectral function is non-zero is not
rectangular; in general, unitarity restricts it to a smaller region bounded by curves
asymptotic to the squares of the lowest masses just mentioned. These boundary
curves have been calculated for # st — 7 7 using elastic unitarity [1] and fora N -z N
using ‘extended’ unitarity as well [2]. In these cases the possibility of subtractions
being needed in the Mandelstam representation was not considered.

The boundary curves of the double spectral functions for N N — N N have been
calculated by using the obvious box diagram of fourth order [3]. From a practical
point of view, this is sufficient. However, we believe that it is desirable to see how
such boundary curves (and indeed those for any binary collision process) can be
obtained by using only elastic unitarity and ‘extended’ unitarity, without recourse to
diagrams. The purpose of this paper is to obtain in just this way a general formula for
boundary curves of double spectral functions which applies to any binary collision
when no anomalous threshold is present. We shall verify that boundary curves are
unaltered if subtractions are required in the Mandelstam representation and we shall
use our general formula to obtain boundary curves for several important hadronic

1) This work was supported in part by a grant from the Office of Aerospace Research (European
Office) US Air Force under Contract No. EOAR 64-62 and by the Schweizerische National-
fonds.
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processes. These boundary curves are often needed in the study of strong interaction
processes by means of partial wave dispersion relations, to determine when the
absorptive part on an unphysical cut can be calculated by means of a partial wave
expansion. The boundary curves also need to be known if one wishes to obtain the
double spectral functions from the absorptive parts of the scattering amplitude.
Exploratory work in this direction has been done, for example, by Martin [4].

Throughout the paper we do not consider the inclusion of spin or isospin. This
simplification will not affect the calculation of the boundary curves. We know [5] that
for binary collisions involving non-zero mass particles with spin it is possible to
obtain invariant amplitudes free from kinematic singularities, for which the Mandel-
stam representation may be expected to hold. The unitarity condition for each
amplitude of definite isospin will then be much more complicated than in the spinless
case, even for the simple case of (spin0O + spin!/, — spin0 + spinl/,). For this case,
the necessary algebra is given explicitly by Mandelstam [1]. What emerges, even for
the general case, 1s that in each term on the right side of the unitarity relation, there
is an integral to be evaluated of the type

[/ 10— [polynomial function of (n - n') and (1 - n)]

(ty—n-n) (,— - n) |

whereas in the spinless case without subtractions the polynomial function is just
unity. This means that the complexities introduced by spin can be handled exactly
like those which come from subtractions, which we shall consider in Section 3. As we
shall see, the boundary curves are not altered.

Though isospin is not included, we shall require it to be conserved. This means,
for example, that /1 is not possible as an intermediate state for the process w A —m A.
We shall use other conservation laws as well. Thus an intermediate (3 ) state is not
possible for the process @ 7t — 7 & because of G-parity conservation and 2 is not a
possible intermediate state for K N — K N because of strangeness conservation.

The plan of the paper is as follows. There are sufficient preliminaries concerning
the Mandelstam representation, fixed variable dispersion relations and unitarity for
it to be desirable to collect them together in Section 2. In Section 3 we consider the
process mt t — ; ;. Although this can be found in [1, 2], we consider in detail the
effect of subtractions in the fixed variable dispersion relations which are fed into the
unitarity relation.

In Section 4 we discuss what is meant by ‘extended’ unitarity and give a general
formula for the boundary curves. It is not difficult to explain what ‘extended’
unitarity is; it is much more difficult to give the conditions under which it may be
expected to hold true. These are precisely the conditions for the absence of anomalous
thresholds. We are not going to discuss anomalous thresholds in this paper; this
requires detailed analysis of fourth order ‘box’ diagrams [6], or delicate arguments
involving analytic continuation (an outline of this method of approach is given by
Barut [7]). We shall derive our general formula in Section 4 on the assumption that
no anomalous thresholds are present. This will hold true for the special processes to be
discussed in Section 5, namely, s N »a N, # K »a K, nAd-—>nAd, KN KN
and N N — N N. An appendix shows how to evaluate, using real variable methods
only, the basic integral involved in calculating the boundary curves.
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2. Mandelstam representation. Unitarity

Consider the four spinless particles A, B, C, D with antiparticles 4, B, C, D.
To avoid annoying subscripts, without producing any confusion, we shall also denote
the masses of these particles by 4, B, C, D. In the special processes of Section 5 we
shall also use the same letter for the particle and its mass, except for the pion, whose
mass will be denoted by u. We label the processes below as follows:

1. AB—CD,
2. AC -~ DB,
3. AE»I?C.

To avoid the very slight complication of identical particles in the initial or final state

of any of these processes, we assume that 4, B, C and D are all different.
For process 1, let the four-momenta of the particles in some inertial frame be
P4, P, Pc, Pp and define the invariants

— (IbA 3 25}3)2 = (?c + ?D)2 ’
b = _(IbA - Ibc)2 = *(PD - I""B)2 ’
- (pA - ?51))2 == (ch - PB)z .

Then (s; + ¢ + uy) = (A2 + B2+ C2+ D?) =2, say. The process may also be
characterised by its total energy W, and scattering angle 6, in the centre-of-momentum
system (CMS). 6, is the angle between p, and p. which satisfies 0 < 0, <=. If ¢,
1s the magnitude of the three-momentum of either 4 or B and g; is the magnitude of
the three-momentum of either C or D in the CMS, then

W=y A+ @+ VB g =+ g + Y D* + g2,

s, = W2,
2 :A2+C2—2‘/Z‘2+qf]/C2+q?2+2q1g{c0391
1 1 1
= 52‘“?51_ Pl (A% — B*) (C* — D*) s{" + 2 ¢, g; cosOy, (1)

# = A4+ D? — 2 ]/A2 + ¢ ]/D2 + ¢, —24q, g cosf,
1

1 1
— T sty (A= BY) (€= DY 57— 24 4] cosb; @

The physical process corresponds to s; > max{(4 + B)?, (C + D)%}, |cosf;| <1
In the same way we may define kinematical invariants for the other processes
as follows. For process 2,

Sg = — (pg+ P8)> = — (P35 + Pp)?,
ly = ( 751)) (Ib - PE)Z )

134
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for process 3,

S3 = — (pa+ Pp)* = — (b5 + Pc)*,

g, = — g — PP = — e — 25)*,

g = —(py— pc)* = — (b5 — #p)* -
As before, (s, + £ + #y) = (83 + f3 + uy) = 2. We may define quantities W, 0, ¢, ¢
for each process and write equations exactly like (1), (2) with 1 replaced by 2 or 3.

With plane wave states normalised so that <p’|p>=46® (p’' — p) we define
the Lorentz invariant scattering amplitude 7i(s,, ¢;) in terms of the S-operator by

{PcPp| (S ‘PA Pr>
. 1
= —1(27)72% (pc + pp — P4 — PB) 4 (Eg Eg Ec Ep)712 Ti(sy, ty) - (3)

Exactly similar definitions may be given of T,(s,, £,) and Ty(s;, #3).
If n;, n; are unit vectors in the directions of p,, p. respectively in the CMS,
then the differential cross-section for scattering into the differential of solid angle

dQn; 1S

do q, | Ty(s1, ty(sy, ny - 1)) }2

~ e = = 4
dQy; 71 64 7% 5 )

For the other channels, simply replace 1 by 2 or 3.

Suppose that for process 1 a two-particle intermediate state (EF) is possible. Then,
dropping the subscript 1, the contribution of this state to Im T 5, cp(s, t(s, n - n'))
in the unitarity relation is

(EF)
Im TG o p(s, (s, n - n)

JEF
- — 3??W_ﬂdg— Tty ppls ts,n -n) Typ ppls,n-n). (5)
If the states (AB) and ( are different, then time-reversal invariance is needed
to write
1 [ / * ’
24 (Typcpls, tls, n-n)) — TE, 4 p5(s, s, n - n'))]

=ImTyp cpls, ts, n-n')).

¢pr 15 the magnitude of the three-momentum of either E or F in the CMS, corre-
sponding to total energy W = s'2, and n is an arbitrary unit vector. The integration
is thus over the whole surface of the unit sphere.

Writing subscripts again we see that we have introduced three invariant ampli-
tudes 7(s;,¢;) for 2+ =1, 2,3 and given in equation (4) the relation between these
amplitudes and experimental differential cross-sections. We now formulate the
Mandelstam hypothesis by postulating an analytic function F(z, 2, 23) of three
complex variables z;, 2,, 25, Which is defined (and regular) except when any one of the
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z; 1s real and satisfies 2, < z; << oo and except for isolated simple poles which will
appear below. The first assumption about F is that it has the representation

F(Z1’22’23) = }{(/1» Z2: Z)
1

3 N-—
22 (m)™" D* F(Z,, Zy, Zg) (2, — Z;)"
i=1m=0
N—1 N-1
3 X m! n\y DY D? F(Z,, Zy, Zy) (2 — Z)™ (3 — Z))
- (12,(5%2 3i;n= L=t
3 n; o N
+2 % (2 Zi)N Ry
i=1 m=1 (sz_ Zz) (zz_z:m)
b (2 Y d do;
L )f
= o4 (0; — 2) (0, — Z,)
i

{17) T
- (12,23, 31)
/f do; do; g4(0;, o)) - | 6)
(0; — 2) (0; — %) (0, — Z)N (0; — Z)¥

In (6), (7 7 k) is always a cyclic permutation of (1, 2, 3). N is a non-negative integer;
if N = 0 only the pole terms and the three double integral terms appear. The functions
fimlo;) and g;,(0;) (¢=1,2,3 and m=0,1,..., (N — 1)) and the three double
spectral functions g,(0;, 0;) are assumed real-valued. The real numbers z;,, are the
squares of the masses of single particles with the same internal quantum numbers as
the initial and final states of process 7; the residues R, ,, at these simple poles of F are
assumed real. The real numbers 2; are the squares of the total masses of the two-
particle states, of lowest possible total mass, with the same internal quantum numbers
as the initial and final states of process 7. For all hadronic processes, (2] + 25 + 23) > 2
and it is convenient to take the coordinates of the subtraction point as

1 1
Z;=—2+ ,A,Z_,,, ~—~Z’
3 3 4
With the further assumptions that F and its partial derivatives which appear in
equation (6) are all real at (Z,, Z,, Z,), it follows that F has the reflection property .

F(zf"z;» zf) = F*(zllz2: Z3) .

Our subtracted form of the Mandelstam representation in (6) agrees with that of
Cheung [8], except for his omission of the third term involving the mixed partial
derivatives of F; this term is clearly necessary.
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The second assumption about F is that the physical invariant amplitudes
Ty(s;, t;(s;, cosB,)) are the boundary values of F according to the following exact

2 71

prescription:

Ty(sy, ty(sq, costy)) = lgré F(sy + &, (s, cosby), uy(sy, cosby)) ,
Im{>0
T5(s2, ta(s,, costy)) = h_{% F(y(sq, cosBy), s + £, £5(ss, c0s0y))
Imi>0
T5(sq, 25(s3, cosly)) = lim  F(ty(s5, cosBy), ug(ss, cosby), s3 + {) . (7)

{—0
Imi>0

For this prescription to be meaningful, we must require that
max {f,(s;, cos0y) | (s;, 0;) physical}

be less than the square of the mass of the state, of lowest possible total mass, with the

same internal quantum numbers as AC, together with five similar conditions which
can readily be written down. These conditions are satisfied for the hadronic processes
of interest to us.

We have assumed that the limits in (7) exist; for this it is sufficient to assume
that the functions f,,,, g;,, and the double spectral functions satisfy Lipschitz condi-
tions. In the work of this section and the next we shall carry out a number of such
mathematical procedures and we shall assume that conditions are imposed which
justify them. For example, the assumption that the integrals in (6) are absolutely
convergent allows the use of Fubini's theorem to invert the order of integration in
several places. But we shall not write out a set of conditions in full detail as it would
be tedious and of little value.

For s, real and 2| <s; < oo, define the function 7i(s;, 25, z3) by the limiting
process

Ti(sy, 2y, 25) = ‘leu F(sy + 25, 23) | (8)
Img>0
and similarly for the functions T,(z;, s,, 25) and T3(z;, 2,, s3). We shall write the limit
on the right side of (8) as F(s;+, z,, 23) and the limit from below as F(s; —, 25, 25).
Whenever one of the variables approaches a cut, we shall use this notation. Define
further

]7 - . |
Ay(sy, 23, 25) = 24 [F(sy +, 22, 23) — F(s1 —, 23, 23)]
N-1
:2”1771(31) (22 — Zo)™ + g1m(s1) (25 — Z3)™]
m—=0

L =4 f __ 4030051, 03
(05 — 25) (0y — Zz)‘N

Similar definitions may be given for A,(z,, S5, 23) and A;(z;, 25, Ss)-
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After a substantial amount of manipulation one can deduce from the Mandelstam

representation (6) three fixed variable dispersion relations, of which we write one:
IN—2

Flzy, 29, 2 — 21 — 25) = Z b,(21) (22 — Zo)™
m =0

(22 e )EN-—I R

My
+ 3 Y sy
=

Rap — Zo)* Tt (2 — Zz;;)
s (1 2N-1 2, + 75 — Lo— 2 Z2N-—-1 R
+2 ( ) ( 1 2 1 2) 3p

(fp— Z2¥0 (T —m— )

L e 2 / Gy Aol Oy 2 — 2 —Gy)
T (09 — 2,) (09 — 22)23\—1

5
-

L EVT Em s - 2 - 4

TT

oo

x/ dog Ag(z1, X — 03 — 21, 04)
(03 + 21 + 25 — &) (03 — Za)QN—I

(10)
s
The functions ¢,,(z;) have a cut along the real axis from X to + oo, and ¢,(z,) includes

the pole terms in (6) for 7 = 1. Now take z; onto the cut [2], oo) from above to obtain
2N-—

Ty(51, 29, & — 5y — 2,) = Z ¢m $; +) (24 — Zy)™ + (pole terms)

1 (%5 _Z))\_lf dﬂ'zAz(sl“hG'z’E_f 51_0'2)7
(03 — 2) (05 — Z)*V 7!

CDT T it 2 - 2T

Yf ( d0‘3A3(81—l*—l,2”‘31”03,0'3) (11)

O'3+ Sl —E_ Z2 - 2) (03 i Z3)2N~1

Zy
Equation (11) is valid except when z,is real and X, <z, << 00, — co <2, < (X — 25 —s),
2y =12, (p=1,2,... ,my) or 2y = (X — 5, — 23,) (p = 1,2, ..., ng). Finally, taking z,
veal, 2, = x,, and using (11), we have :
2N -2

Im Ti(sq, %5, 2 — 51 — %) Z Im ¢, (s; + — Zy)™

o8]

L b= 2 / Aoy 04(51, 0)
(

7T dz — Xy) (0g — Zz..).-ZN—l

P
~g

(— 1)2N_h1 (1 + % — Zy — AR

T

v [ - dog 03(03, 1)
,/(0'3+31+x2—2)( “Z)2N_1.

(12)
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Here we have assumed that x, is not a singular point of 7; and we have used the
relations

Im Ay (sy +, 03, &' — 81 — 03) = 05(51, 09),
Im Ay (s +, & — 51 — 03, 03) = 0s(03, $1);
these follow from the definitions of A, and A, which are analogous to equation (9).

It is equations (11) and (12), together with the unitarity relation (5), which we shall
use in order to obtain the boundaries of the double spectral functions.

3. The Process 7t 71 = 71 7t. Subtractions

We assume that 4 = C and B = D and that all four particles have the same mass
u. We work exclusively in channel 1 and omit the subscript 1 for convenience. For the
process 7 7w — st the only possible intermediate state for 4 u? <<s << 16 u? is the
state (A B). Writing T for T,5_, 45, the elastic unitarity relation is, from (5),

Im T(s, i(s, n-n"))
_ 7 .//d,gg T#(s, t(n' - n)) T(s, t(n - n)) . (13)

If the particles 4 and B are identical, the factor 32 is replaced by 64. The kinematic
relations are

= 2}/@ +: g%, 5 = W32,
ts,n-n)=—-2¢*(1—-n.n"),
u(s,n-n')=-—-2¢1+n.n').

Inserting equations (11) and (12), in their wunsubtracted form, into (13), we have

o0 o0

1 f  doyoy(s, 0y oz 1 f o3 0403, 9)

7 (09 +2¢*—2¢g*n -n’) ar (03 +2@2+2¢n-n')

4 p?
= agQ; /dG"A*S*’Uz"‘M'S*%)
B 32532W n,, (o, +2¢*—2¢*>n'-n)

/'dasA*s+ 4 u? —3—03,03)
+
(03+2¢*+2¢*n" - n)

2

]fdag o(s +, 0'2,4,u——s ay)
4 s +2¢°—2¢*n- )

1 d”A +,4pu2—s— o,
7 (o3
4 u®

ant -0 e +2q n-n)
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The right side of (14) is the sum of four integrals. We assume that repeated integrals
may be written as double integrals and that the order of integration can be inverted
to give, for the first of the four terms on the right side, the expression

1*254— . ffdo dO'g'A* s 4, 0',,4# —S—O'Z)
by A

4#5 4 pu

X Ay(s 4,05, 4 u® —s — 4 z ,
- (t,—n-n') (7 —n-n

where 7, = 1 + 04/2 ¢%, 7, = 1 4 0}/2 ¢?, so that 7, > 1, 7; > 1. This brings us to the
Standard 1ntegra1

_mﬂ " . ,Tq>1TO>]-$ (15)
(r,—n n)

the integration being over the whole surface of the unit sphere.
The integral I is shown in the Appendix to be

oo

. du
Feallor | wem i} ‘ et
(w—n-n) [ — ) — (52— 1) ()% — 1)

1,

where

o = TLT! + (T4 — 1)1 (702 — 1)1k,

Now put
29°u = (03 + 2 ¢°)
and express 7;, 7, in terms of ¢}, o/ to give

[ee)

] )(02+292~2q2n-n)[g(s,ffz,dé,ffé)]”?

where

gls, 0y, 0}, 0b) = (s — 4 u?)

X (05 4+ 05> + 0% — 20,05 — 20,08 — 20,00) — 40,00},

' " ’ i OJ O'” r o GI U) v
f(s, 03, 05) = (02 + 03) + 2(;23 T [“2‘72 (2 T 2 g ) (2 L 2¢ )] |

The first of the four terms on the right side of (14) has now been expressed in the form

ot ffdazdcr AF(s +, 05, 4y — 5 — o)) Aqls +, 04, 42 — s — o)
4t 4

/ day

J (ox+2¢—2¢2n.-n)[gls, 05,05, 0,)]"2

ils, 03, 03)

X
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Now for fixed g}, (resp. ¢3) it is clear that (s, o}, o) is a monotonic increasing function
of o, (resp. o;). Thus the smallest value of ¢, appearing in the above integral is

8 ut 2 12 16 42 s
s)=82+--——+42(2+ )f -
A ¢ ) 54

Thus, reversing the order of integration, we obtain finally the integral

1 do, F (s, 0y)
7 ) (o,+2¢—2¢n-n)’
#(s)
with
-1
.F(S, 0'2) = 8 %-MF 81!2
y doy doy Af (s +, 05, 4p> — s —oy) Ay (s+, 05, 4p* — s —0y)
[g(5, 0, 03, o) 112 ’
D(s, a,)
where

D(s, 0y) = {(03, 03) | [ (s, 03, 03) < 03} .

The evaluation of the other three integrals on the right side of (14) proceeds in
exactly the same way. One replaces n by — n, or n’ by — n’, or both. The result is then

o0 [e'e]

- Aoy 93(3 0y) n _ do's 02(03, S) -
0o+ 2¢*—2¢2n-n) (03+2¢*+2¢°n-n’)
4 p? e
do, Fq(s, o M -
T—"f 2 ( 2 +[ 3 ) , (16)
(02+2q——2qn n G3+2q2+29n n’)
é(s) $(s)
where
—1
Fy(s, ay) :§}i2's'ﬁ'
X f/dfdn A s+ 54 —s =8 Ay s+, n 402 —s—1)
D(s, 0,)

LAY A s — 69 Ay s+, 4p — 5 — 7))
(865, 00, &, )]

3

—1

8 m 512

f/dédn[/l* (54, & 4p2—5— &) Ay (s +, 42— s — 7, 7)
(s, 03)
,*“___f?:if st 4pf—s— 68 A5+, 407 — s — )] (17)
(8(s, 03, &, )] ’

Fy(oy, 5) =
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and

D(s,0) = {(&,n) | f(s, & n) <a}.

Equation (16) will hold for 4,u, s < 16 42, and for —1 < (n-n') < 1. Butitis
clear that each side of (16) defmes an analytic function of z = n - n’ which is regular
except for the obvious cuts on the real axis. From the principle of analytic continuation
(see, for example, (9.4.3) of Dieudonné [9]) it follows that these functions are equal at
all regular points z. Then a slight extension of a theorem in Widder [10] (see Theorem
5b, Chapter VIII) shows that, almost everywhere (and thus everywhere under the
mild assumption of continuity of the p’s and F’s),

03(51, So) = Fyls1,85) , sy =42, 05(S3, $1) = Falss, s1), sg = 4pu®, (18)
in each case for 4 ,u < 's; < 16 u2. But since, by (17), Fy(s3, s;) (resp. Fg(sy, 8g)) 18

zero for s; < ¢h(sy) (resp. s, << ¢(sy)), we have obtained the boundary curves of
0s(S3, §;) and 93(31, sy) for 4 p? << s; < 16 u?, namely
16 p? 64 u*
S (Or §5) = — /ijg' =16 u? + - “ 5 (19)
(5, — 4 u?) (53 — 4 p?)

The other boundaries for = w — 7 are obvious; all three processes are identical.

Our second job in this section is to demonstrate that substitution of the subtracted
relations (11) and (12) (that is, with N > 1) into (13) does not alter the boundary
curves (19). We show, too, that the relations given by equations (17), (18) are not
changed. Write m = (2 N — 1). It is convenient to shift the subtraction point in each
integral in (11). Noting that

(a0 + )™ o Mt (o + p)poam—t—1
m '____H/Z (B + p)bt1gm—r
B+ B—y B (B—) ~o (B+ )P+t B
and puttinga =2¢*>n-n’, f = (6, + 2¢%), y = —2 ¢ — 4 u?/3, we have

m—1
T(s,t(s,n-n)) = 3 yp,(s) (n-n')?
2g)m (n.-n)m f dog Ay (54, 05, 4 u? — 5 — 0y)
(o +2¢*—2¢°n-n') (6, + 2 g%

4
00

i (—292>m(n-n'>mf doy Ay (s +, 4 4* — s — 03, )
7 Gy + 2@ +2¢*n-n') (o, + 2 g3)m

4 u?
The modified version of equation (12) is clear. These modified equations are then to be

substituted into (13). On the right side there are four double integrals of which the
first is

12%4 swffd""d"“* (s+,05, 4 pu®—s—o5) Ay (s +,05, 42 — s — a3)

4pu? 4put

AQ(T - n'ym (71 - )
xﬂ(wé—ﬁ-n’)( —n-n)rmaln’




190 G. Rasche and W. S. Woolcock H.P. A.

Instead of the standard integral (15) we have a subtracted form which we evaluate
as follows.
Note first that

Then there are various terms to consider:

(1) The standard integral 7 of equation (15), which we subtract again to give
11672 )" (n-n)"

daz
>< S _ [
/ (G3+2¢2—2¢*n-n') (0, + 2 g™ [gls, 03, 03, 05)]"2
(s, 04, 03)
W] dO’
+ 1673 Y (2¢)F (n - / ? o
M;;( 24 62+2q )4+ [g(s, 05, 0%, 05) ]

(11) Terms of the form

d_Q—n n )#
=il " ﬂ - ,p»-:;(),...,(mwl).

Taking n as polar axis and puttmg n.-n’ =ux,n-n=u, we have
1 2n
Iye= g ¥ l/a/’/u Ty — ()~ /dgﬁ [(1 — 212 (1 — u?)'2 coseh + x pl?
0

The binomial expansion gives a polynomial of degree p in cos¢; only even powers of

cos¢ contribute on integration, so that

1
(p/2)

I, =3 clp,q) P (1 — x2)9 1P f A (1 — ) =2z — ),
g=0 -

where (p/2) = p/2 for even p, (p — 1)/2 for odd ;b Thus 7, is a polynomial in x of degree

P whose coefficients are functions of 7; and 7). The same is true of the integral

dQz(n - n)t
/.' p—1 L0 — we Y
//szn n g Premlly o0 (IR )

(iii) Terms of the form
L, =wp gt 1//49 (n-n)? (n-n),

with p=0,1,...,(m—1), ¢=0,1,..., (m—1). Expand each power in a series of
Legendre polynomials and use the relation

[/dﬂ— (11 - ) p,.(ﬁ.n'):-(-zj—fl-) 8, Pn-n').

We see then that I, =0 for (p — ¢) odd, while I, , is a polynomial in (n - n’) of
degree min{p, ¢} for (p — g) even. The coefficients are clearly functions of 7}, 7}.
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The final result we have obtained is

/f d,.{)—_’_l n ) (n n) ___._..7_m ng S, 0'2’ O') n . nf)p

,—n-n') ( —n-: n)
+ 167 @32 g)™ (n - n')m

o0

do,
>< e e . - =
‘[(%+2¢—2¢n-wuﬁ+2ﬁmms%mmmmm
{(s, 0, 0%)
Now the integral in the second term is, apart from a factor,

o0

du
I(s, 05,05, n-n') = f o
T (0 —n-n') (u— uy)l? (10 — 12,) V2 04m

o

where

u , ;
=TT (- D (e 1y
1

Hence for u, large the integral behaves like #y™~'. It thus has exactly the correct
behaviour for the integral

[e.o] o0
I 14
/ fdaédag Af (54,05, 442 —s—o) A, (s+, 0, 4u?—s
4'#12 4 p?
to converge and for the order of integration to be reversed again. This means, too,

—0y) 1(s,05,05,n-10')

that the integral

oo 00

[ [doydoy 4% s+ 04 4t =5 — ) Ay (s +, 08 4 p> — s = o)

4pu® dut
(ng s, 63, 03) (1 - "’)p)

4

converges for —1 < (n - n') < 41, and thus that each of the integrals

o Sl o]

" I
do, da, AT (s +, 00, 4 u® — s — 03) Ay (s +, 05, 4 U? — s — 03) £,(5, 05, 03),
4u® 4u

withp=0,1, ..., (m — 1), is convergent.
Evaluation of each of the other three double integrals proceeds in the same way.
There are other terms on the right side of the unitarity relation, but they involve

integrals already considered. There are terms of the form

//dg—%() (@) @-n)?pg=01,..,(m—1).
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From (iii) above, these terms, when summed over p and g, give a polynomial in
(n - n') of degree (m — 1), whose coefficients are functions of s. Finally there are the
terms (omitting a factor)

oo

? (1 . m
TP?;(S)fda Ay (s +, 0}, 4 u2—s — o) fdQ_ (n-n)?(n ;f)m

(t, — n-n)T

4 2

-n')y" (n - n)?
doy, A¥ L dut—s — o, 5= e ,
’P()fo (s +,05,4u*—s 0//5!2 oo o

p=0,1,..., (m—1). Use of equation (20) gives terms already dealt with in (ii) and
(i1i) above. Each of the above terms is thus a polynomial in (n - n’) of degree p, whose
coefficients are functions of s.

This completes the discussion of the right side of the unitarityrelation and itisclear
that the expressions for g,(ss, s;) and g4(s;, s,) in terms of 4, and A, as given in (17)
and (18), are unchanged by the presence of subtractions in the Mandelstam representa-
tion. In particular, the boundary curves of p, and p, given in (19) are unaltered.

and

4. General Formula for Boundary Curves. Extended Unitarity

We turn now to obtaining a general formula for the boundary curves of the
double spectral functions in the Mandelstam representation for the processes 1, 2, 3
of Section 2. For this we look again at equation (5), namely,

Im szzb}f—)u)cz)(s: t(s, n - n"))

_ T Yer ﬂd[)— Eopps ts, -0 Ty ppls, t(s, n - n)) .

32 n2 512

All the scattering amplitudes appearing in this equation are accessible to actual
experimental measurement if and only if

s > max{(4d + B)% (C + D)%, (E + F)?%}
in this case we have the usual unitarity relation, which has a physical interpretation
in terms of probability conservation.

Suppose, however, that (£ + F) is less than at least one of the numbers (4 + B),
(C + D) and that

(E+ F)? <s <max{(4 + B)% (C+ D)%} .

Then at least one of the processes AB — EF, CD — EF is no longer physical.
However, equipped with the Mandelstam hypothesis, a formal extension of equation
(5) to this case can be written in the following way:

1
— [Fupcp) (s+, s, n-n'), u(s, n-n’)) — Fugep) (s—, s, n-n'),u(s, n. n'))|*"

27
g ‘ | o o
B 35%%?2“/]51!9; Fleppr (s +,Us, n-n'), u(s, n-n))

X Fappp (s 4. ts, n-n), uls,n - n)). (21)
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The function F 45¢p, is the analytic function which describes the process AB — CD
and its related processes; similarly for Fcppp and Fprp . All three functions have
2, < (E + F)2, and the notation (s 4) has the meaning ascribed to it in Section 2.
Each of the quantities appearing in (21) has a precise meaning, except for the fact
that g,5(s) and ¢; p(s) (which appear in the definitions of the #'s and #'s, by equations
(1), (2)) are ambiguous up to a sign; for example,

13— |8 & BPFE s — (4 — BT
2512

‘This ambiguity does not affect (21); changing the sign of ¢, (vesp. ¢¢p) on each side
of (21) is exactly equivalent to changing the sign of n (resp. n). The awkward notation
on the left side of (21) is intended to denote the contribution of the two-particle state
(EF) only to the quantity written there.

Equation (21) might be called an ‘extended’ unitarity relation. It only has a
meaning through the analyticity assumptions which give a meaning to the unphysical
quantities contained in it. There are some grounds for the hope that it is true when
anomalous thresholds are absent. An argument in support of it has been given by
Mandelstam [11] and it is certainly true that the use of ‘extended’ unitarity has been
fruitful in the study of the nucleon form factors and of pion-nucleon scattering by dis-
persion relation techniques (the original papers are those of Frazer and Fulco [12] and
Hamilton and Spearman [13]). We assume the validity of (21) from now on, and apply
it to obtaining the boundary curves of the double spectral functions. Thus (EF) will
be the two-particle state, of lowest total mass, with the same internal quantum
numbers as the states (4AB) and (CD). Then, for some range of values of s above
(E + F)? say (E + F)? <<s << M?, the only contribution to the left side of (21) will
be from the state (EF), so that we may drop the superscript (EF).

We may avoid troublesome but unimportant complications due to kinematics
below threshold if we use (21) as if s were greater than max{(4 + B)?% (C + D)%}
As we shall see, g,5(s) and g, p(s) disappear from the final results for the boundaries,
so the results we obtain are not affected by our having treated g,5(s) and g¢p(s) as
real and positive. Denote by M 4,z the total mass of the one- or two-particle state, of

qap(s) =

lowest total mass, with the same internal quantum numbers as the states (AE) and

(F E) The quantities Mz, M 47 and M -7 will have exactly similar meanings. Then
the right side of (21) leads to an integral

/]dQZ [MZE —typ pp(S, - —ﬁ)]'l [M%E - tCD—»EF(S» n’. H)}_l

1 1
“/f‘m‘ Mff}E - (A2+BZ+E2+F2)+§’5+§(A2“B2)

— FY) sl —2q,,qupn- n] [M%E — 5 (€24 D2y B2 )

1 i -4
+é~s+ (C* — — F) st —2q9cp qep "]

= (4 9459cp QEF ﬂdﬁ— T, — 1 ") (T —n' - n)t,

13
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where
> 1 .
Ty = 294y qrp) [M:u? ) (42 + B* 4 E® + F?)

1 1
- T s+ (A2 — B?) (E? — F?) s,
o, 5+ 5 ) )S]

5 1 .
= (24¢p qEF)_l [ME:E' - 2 (C®+ D2 4 E? + F?)

1 1
+ st (C2mD2)(E2—F2)s—1].

As in Section 3, we have the representation

dQy
(t —n-7) g—h"-ﬁ')

with
Uy = Ty Ty + (1,° — 1)1 (7,2 — 1)112,

The integral over » may be written as an integral over a new variable g,, with the
factor (o, — t4p_cp(s, m - n’)) in the denominator, and lower limit of integration

1
b(s) =2q4p9cp o + 2 (A% + B® + C* + D3
1 1

-, s — ) (A2 — B%) (C2 — D% 5!,

Now
4 qapqcp 9rr [To 7o + (132 — 1M (752 — 1)12]
il 1 1
= [Mi54 5 (A2 + B? 4+ E2? + F?) + —2—s+E(A2—B2) (E2 — Fz)s_l]
) 1 . 1 1 .
" [MEE — (C>+ D? + E? + F?) + rh -+ D) (C2 — D?) (E2 — F?) s*l}
+ (s Mip + Mip — Mip (4 + B + E* + F¥) + (4% — E?) (B' — F)
+ S—I{MiE(AE_ B.Z) (Ez__Fz) + (A.’. FQ*BQ EQ) (A‘Z_BZ___E2_|_F2)}]1/2
X [s Miz + Mtz — M2z (C® 4 D* + E* 4 F?) 4 (C* — E®) (D* — F?
5T Mg (CF = DY) (E* — F¥) + (C* F*— D* B?) (C*— D* — E* + FY})'"
and
44t =5—2(E*+ F?) 4+ (E®— F3)is1
After further manipulation, we arrive at the following expression for ¢(s)

#(s) = Mg + Mcg + [s — 2 (E® + F?) + (E® — F?)2 571 F(s) (22a)
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where

F(s) = 2 Mz MZ5+ M35 (E® + F* — C* — D¥ + Mz (E*+ F? — A*— B

+ 2 [E2 - ; (A2 + cz)] [Fz - ; (B + D2)] - ; (42 — C? (B? — D?)
+s-1(E2 — F?) [(A2 — B {Mgﬁ — ; (C2+ D 4 E2 + Fz)}
+ (C* — D?¥ {Mig = ; (A% + B% + E® +F2)}

2 9 i
—(E2— P {M;@ F Mg~ (A By Oy 1)2)}]

+ 571 (E? + F?) (42 — BY) (C*— D?)

+2[s Mz + Mig — M3z (4* + B + E* + F*) + (4° — E%) (B* — F)
45 (M s (A2 — B (B — B (AP — B EY (A~ B — B 4 PR
x [s Meg + Mbz — M35 (C*+ D* + E® + F*) + (C*— EY) (D* — F?)

+ s~ {M%z (C® — D?) (E® — F?) + (C? F® — D* E®)

x (C2— D? — E2 4+ I?2)Hlf2 . (22b)

Note that, as s — oo, ¢(s) — (Myz + M:5)2

Equation (22) is the general formula which we require. Replacing s by s,, é(s;) is
one of the two possible boundary curves of p4(s,, s5) for (E + F)? <s; << M2 The
other possible boundary can be obtained from (22) by making the replacements

Mg — Mz — (E* — I?%) (4 — BY) 577,

Miz — Miz — (E* — F%) (C* — D?) 57!,
or, alternatively, by the replacements

Myg — My, Mg — Mcz,

E<—F(orA«>Band C< D).

It is necessary to check in each individual case which of these two possible boundary
curves is the actual boundary by seeing which one gives the smaller value of ¢(s,).

Our general formula is also able to give the boundary curve of gu(s;, s;) for
(E + F)? < s; << M2 Again there are two possible boundary curves; one is obtained
from (22) by replacing M,z by M,7 and by interchanging A and B, the other by
replacing Mz by M7 and interchanging C and D. Again we must check in each case
which of these two possible curves is the actual boundary.

For each process there are four further boundary curves to be obtained. Again we
do not need to write any further formulae. It suffices to write s, or s, for s in (22), and
to replace 4, B, C, D by the particles which correspond to them in processes 2 or 3
(see Section 5). The particles £ and F will also alter, of course, according to the
process being considered and so will the various masses Mz, ... . It remains in the
final section to compute these boundary curves for a number of interesting hadronic
processes.
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5. Boundary Curves for Special Processes

In each case the process we shall write down will be treated as process 1.
aK —-aK

For process 1, we have

d=0C=E=5, B=ID=FP=£K,

Myg=Mg=2p, Myg=>Mz=(p+K).
We use u for the pion mass, but otherwise denote the particle and its mass by the
same symbol.

For the boundary of g4(s;, s,) we note that, for s, = (¢ + K)?, (¢ + K)?
— (K2 — pu»?s;' 24 u K > 4pu2 Hence the boundary curve of pg4(sq,s,), for
(u + K)? <s; << (3u+ K)? is given by inserting M,z and M.z above into (22).
On simplification this gives

Sg =16 4> + 64 u* [s; — 2 (u* + K*) + (K* — u®)*s717 0.

The two possible boundary curves of p,(s5, s,) are identical in this case; for (u + K)2
< 8; < (3 u + K)?, we have the boundary curve

= (3u+ KP4 16 u? (u + K)? [sy — (K + p)*]7 1.
For process 2, we may use (22) with the following identification of the particles:
A=B=E=F=-n, C=K, D=K;
further,
Mypg=Mys—=2u M=M= (p+ K).

The two possible boundary curves of g,(s,, s3) and of p4(s;, s,) are all the same; for
4 4% < s, < 16 u?, we have

sz (orsy) = G pu+ K)®+ 323 (u + K) (so — 4 p)~!

Process 3 gives curves identical to those of process 1, with s; replaced by s,. Thus, for
(e + K)% < s3 < (3 u + K)2, the boundary of 04(s5, $;) is

s1= (Bt K416 2 (1 + K)? [sg = (K + p)?)
while that of g,(s,, s3) 1s
=16 % 4 64 i 5 — 2 (u* + K)o+ (K — ) 53177

aN—-naN
Now, for process 1, we have
A=C=E=n B=D=F=N,
Mz = Mg =2p, Myp=Mez=N.
For the boundary of p4(s,, s,) we again use M 4,z and M 5 in (22), since, for s; = (1 + N)2,

N2 — (N2 —u?)2s7! =2 u (2N —u) > 4 u? Thus, as for 1 K —x K, the boundary
curve of g4(sq, $5) for (v + N2 <s; <2u+ N)2 s

Sy = 16 pu* 4 64 p* [s; — 2 (u° + N®) + (N* — p®)* 577!
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With s, replaced by s; on the right side, this is also the boundary of p,(s,, s3) for
(u+ N2 <s3 < (2up+ N2

The two possible boundary curves of p,(s5, s;) are again identical, but now they
are much more complicated. After some simplifications the result for this boundary is

sg =44+ N>+ [s; — 2 (¢° + N?) + (N? — 2 717" F(sy),
where

F(Sl) _ SMZ N2 o 8:”/2 (Nz e M‘.’.).?. SIl
+4uNs {1l — (N?— 4% s7H{1 — (V2 + 2 u?) sy 132
% {1 - (N . Mz N71)2 SI1}1/2 :
this result holds for (u + N)? <<s; < (2u + N)% With s; and s3 interchanged, this
also gives the boundary of p,(ss, s;) for (u + N)? << sy < (2u + N)2 After some
pages of algebra, this explicit result can be cast into the implicit form given by
Frazer and Fulco [13].
To use (22) for process 2 we take

A=B=E=F=a C=N, D=N,
Myz = Myz=2u, Mczg= Mz =N .

Again, the two possible boundary curves of g,(s,, $5) and of gs4(s,, s,) are all identical;
for 4 u® < s, << 16 u2, we have

sg (0r s;) = 4 2 + N2 + (s, — 4 p?)1
1 1/2
X [8ﬂ4+4MN32{1 —4u2(1 = ;L?N—z)s;l} ] )
This result can be quickly changed into that of Frazer and Fulco [13].

NN-—-NN

For process 1,
A=bB=C=D= E=F=N,
Myg=Mig=M;z=Mcp=u.

The boundary curves of p4(s;, s,) and py(ss, s;) are the same; for4 N2 << s; << (2 N + p)?
we have the simple result

S (Or Sg) = 4 u? + 4 ut (s, — 4 N3)—1.,

Processes 2 and 3 are the same in this case. For process 2 we take
A=C=N,B=D=N, E=F=n,
Myz = Meg = Myz = Mz = N .

Again, the boundary curves of g,(s,, $3) and ps(s, s,) are the same; for 4 u2 <<s, << 9 u?,
we have

Sg (0r8y) = 4 N2+ 4yt (sy — 4 u?)~1t.
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Further, for 4 u? < s; << 9 42, we have
sy (orsy) =4 N* + 4 p? (sy — 4 p?) !

for the boundaries of p,(s3, s1) and o,(s,, $3).

Note that, in this case, all the boundary curves have the same functional form.
In particular, for g4(sy, s,) and g,(s,, s;) we have a single bounding curve, with
asymptotes s; = 4 N2 and s, (or s;) =4 u? The two pieces we determined above
(for 4 N2 << s5; << (2N + u)® and for 4 u® << s, (or s3) << 9 x?) have an arc in common.

ad-—=nA

For process 1,
A=C=E=m B=D=F=4,
while
Myg=Mz=2p Myz=Mzp=2,
since a (m /) state has total isospin 1. Now, for s; = (u + A)2,
2P (A= sy = X (A )t 4

and so the boundary curve of g4(s,, s,), for (u + A)? << s; << (2 u + A)?, is given by
inserting M,z and M. above into (22). This gives

Sp =10 4 + 64 p* sy — 2 (p® + A%) + (4> — p?)? sy

With s, replaced by s; on the right side, this is also the boundary of g,(s,, s3) for
o+ AP <5, < 2+ AP,

The two possible boundary curves of g,(s;, s;) are identical; for (u + A4)% < s,
< (2 + A)* we have the boundary

Sy = 4P 4 L4 sy — 2 (P 4 A% + (AP — @) sy Fsy),
where
Fis) = 82 {22 — (42— 2 sy} 4 4pu Zsy {1 (4% — ) 57}
X AL — (A% — p?2 22571201 — (2% + 242 — 2% s71}2,

With s, and s4 interchanged, this also gives the boundary of p,(ss, s;) for (u + A)>
<S5 < (2u+ A2

It will be seen that we have claimed that these boundaries hold up to (2 u + )2
However, a (n ) intermediate state is possible in this case, and (4 + 2) << 2 u + A4).
But, being a fwo particle intermediate state, we can calculate the boundaries arising
from it; they will be obtained by replacing /1 by 2" throughout the expressions above.
Then we see that the value of s, or s; arising from the (7 X)) intermediate state is
greater than that arising from (m A), for each value of s; in the range (u + )2 < s,
< (2 u + A)2 This is obvious for the case of s,. For s,, numerical evaluation leaves
no doubt that both curves are monotonic decreasing in the range under consideration;
we have not constructed a rigorous proof. The curve arising from (7 X) is always above
that from (@ A); indeed, s, for the former, at s; = (2 u + A)?, is greater than s, for the
latter, at s, = (u + 2)2
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FFor process 2, we insert
A=B=E=F=g, C=/A, D=4,
Mz= Mz=25 Moo M s 2

The two possible boundary curves of g,(s,, s5) and of g4(s;, s,) are yet again all the
same; using (22), we have, for 4 u? < s, << 16 p?,

s3(0T 8;) = 4 u2 + X2 4 (s, — 4 u2)~1 [8 u2 (X2 — A2 4 p2)
FApZs{l = (- I (A —py (B (A +p - Z) sy
KN-+KN
For process 1,
A=C=E=K, BsD=F=N,
Mz=Mz=2p Myzp=>Mz=14,

Now, fors; = (K + N)%, A% — (N2 — K?)%s71 2= A% — (N — K)? > 4 u® Hence, for the
boundary of 94(s;, s5) we use (22) directly to obtain, for (K + N)? << s; << (u + K + N)3,

Sg =16 u? + 64 ut[s; — 2 (K2 + N2?) 4 (N2 — K22 5711,

The two possible boundary curves of p,(s,, s;) are identical once more. For (K + N)?
< sy < (u + K + N)2, the boundary is

Sg=4put+ A%+ [s; — 2 (K2 + N2) + (N2 — K22 57171 F(sy),
where
F(s)) =8pu2{A? — (N* — K®2s71 44 puds {1 —2(K>+ N2—2pu? syt
+ (N2 — K?)2s72}2 {1 — (2 K% 4 2 N% — A%) s7 1}
%41 —(N? — K?)2 A-2 gy
For process 2 the particles are
A=K, B=K,C=N,D=N,E-~F—n
and the required masses are
Myg=Muz=(p+K), Mcg=M =N

As usual, there are four identical boundary curves. For 4 u? << s, << 16 y* the
boundaries of p,(s,, s3) and o4(s;, $,) are given by

S5 (01 53) = (1t + K)? + N2 4 (5 — 4 p8)!

1 1/2
% [4,u3 (v + K) 4+ 2(u+ K) N s, {1 4,:L2(] ~3 u? ‘7\7—2)351} ] .
Process 3 for this case is the most complicated of all the situations we have had to
consider. We have
A=K, B=N,C=N,D-K,E gz, F=/,
Mypg=Mer=(n+K), Myg=Mg=N.
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The two possible boundaries of p,(ss, s,) are identical; for (u + A4)% << s3 < (2 + A)*
the boundary is given by

s= (4 K)o NP [s5— 2 (02 4+ %) + (42 — 12 55717 Gy,
where
G(sg) =p(u+2K) (u>+ A2+ N* — K?) + 252 A4% — s u{(u + 2 K)
X (A2 — )+ (u+ 2 K) (N2 — K?) (4 = @) + 20 (V* — K7}
+ 25+ K)N[L—{(KA + p N%) (K + @)= — u K} 77
X [1— (242 + u® + 2 K2 N-2 — 12 A2 N-2) 531
+{(A2 — ) (A2 — 2 K2 N2 4 g2 (N — K? N-1)2) 5212
For the boundary of g,(s,, s3) there are two possible curves. One curve corresponds to
using M,z and M;z; the other corresponds to using M,z and M7 and may be found

by substituting (u + K)2 + (N2 — K?) (A% — u?) s3! for N2 in the equation of the
first curve. The two curves intersect for that value of s; which makes

N2 (o K)o+ (N2 K2) (A2 ) syt
Call the value of s; at this crossover point s;,; then
(N2 — K?) (A2 — 123
S g s
TN (u ot KP

Numerical evaluation shows that
g 4 A 5 85, & fat B,

Thus the crossover point occurs in the range of values of s; for which we expect the
‘extended’ unitarity relation to hold. For (u + A)% < sy <Cs,,, the boundary curve
of py(s,, s3) 1s obtained by using M,z and M;z; the result is

Sg=4 N2+ [s3— 2 (u* + A% + (A% — p?)?s5 1)L
X 4 pt[(N24+ A2 — K2) + (N2 — K?) (A% + N2 — K% — 4u?) s31].
Fror s, << s3 << (2 + A)? we use M 5 and M7 to obtain the boundary
= 4 K+ (5 — 2 (02 + 47 + (42 - )7 5511
X 4p(2(p+ K){(u+ K)?+ A2 — N3}
— (A2 == N2+ K 2KA2+u N2+ p A% — 22 K — u K% — p®) s3] .

As for the process w A — z A, we have claimed that the above boundaries hold in a
range of s, which extends, not just to (u + 2')2, but to (2 u + A)% This is because the

curve arising from (7 z ) is always above that from (n A), in the range (u + 2')2 < s,
< (2 + A)% For the boundary of g,(s,, s;) it is not difficult to prove that both

curves are monotonic decreasing in this range; moreover s,, for the (w 2') curve, at

sg = (2 u + A)?, is greater than s,, for the (w A) curve, at s, = (u + 2)%. By numerical
evaluation it is clear that exactly similar statements ca e for the boundary of
O\RE ,

02(S3, $1). V:‘
g, <
£ { &
2 e O
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We are greatly indebted to Professor W. Heitler and to Professor H. S. W. Massey,
of the Cepartment of Physics, University College London, for the opportunity to
work together in their respective departments on a number of occasions.

Appendix

We give an evaluation of the integral I of equation (15) which uses real analysis
only. The first steps are completely standard. Since

1

s L ab>0
J Taarb—wp " apt 7T

f //“ af;
do. —
onz, 1—0()15 (xn+ (1 —a)n')-n)?

on reversing the order of integration; the integrand is always positive, so this is
justified. Now take the vector (« n + (1 — «) n’) as the axis of a system of spherical
polar coordinates to obtain

we have

I-—Zﬂfdoc N— . dx ‘ S—
(et + (1 —a)t,— lan+ (1 —a) n'|x]?
But

+1

f dx 2 .
@+ bx?2  (a®— 87

-1

and so
1

d neo — )2 (2 -1 =i
Zﬂf "'O( - |:---*(Tz 1)+(1 Ot) (72-- ‘)JFT.;T;I"‘TI'”'] .
(1—a) 20 (1 — o) c

0

Now change the variable of integration to

L@t =)+ (1= (Té2“1)+rﬂg.
20 (1 — a)

Then du/do vanishes just once in (0, 1), when
tg (L= )" = (52 — )2 (gf 2 — )72,

As « increases from 0 to o, # decreases monotonically from + oo to u,; as « increases
from «, to 1, u increases monotonically from %, to 4 cc. The minimum value of # is

e = Ty Ty + (15° — 12 (x% — 1)Y2,

&
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The equation connecting # and « is a quadratic in « of the form

= Qlat, u) = pu) o® + 2 q(u) & + 7(u) ,

where
Qax, u) = p(ar) — (4 — 75 73) () ,
B = (= 1)+ (1= (1),
plo) = a (1 — o)

Then

p(e) dujde = ¢'(2) — (u — 7y 78) ¥/ (@) = 0Q(at, u) O
— 2(plu) & + q() = = 2 [g*u) — plu) r() 2.

Thus, for the two values of « which give the same value of u, y(a) du/do has values
which are equal in magnitude but opposite in sign. Since

4 (g*(u) — pu) r(w) = (u — 5 73)° — (,* — 1) (w,* — 1)

the integral now becomes

&9}

du
I == 4. 75 - - ; - - - 3 ot ;)' SRS S s 1/:7 .
(#—n-n")[{u—1,7)2— (7,*— 1) (z2° — 1)]"*

Uy
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