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Dislocations et champs cristallins1)

par J. Zahnd
Laboratoire de Génie Atomique, EPF-Lausanne

(5 XI 69)

Résumé. Les structures cristallines quasi-périodiques variables sont décrites à l'aide d'un
champ de déformation-vitesse appelé champ cristallin. Les équations fondamentales de ce champ
sont celles de la théorie des dislocations, déjà formulées en mécanique des milieux continus. Elles
sont déduites ici d'un principe variationnel, qui fait apparaître une force cinétique exercée par le

champ de vitesse sur les dislocations en mouvement. Les équations du champ cristallin moyen dans
un réseau de dislocations sont établies, en suivant la méthode de Lorentz en électrodynamique
des milieux continus, et en adoptant une classification élémentaire des réseaux de dislocations. La
théorie de la dispersion des ondes élastiques dans un réseau de dislocations est abordée selon cette
méthode.

1. Champ cristallin. Définitions

La fonction densité q(x, y, z) d'un cristal de N atomes identiques donne la densité
de probabilité de présence en un point (x, y, z) de l'espace pour un atome quelconque.
Dans un cristal parfait, c'est une fonction triplement périodique, les périodes étant
représentées par trois vecteurs ax, a2, aa. Dans le cas d'un cristal réel, g n'est plus
périodique. Cependant, dans la plus grande partie du solide, q peut être assimilée dans

tout petit domaine à une fonction périodique. Nous pouvons associer à chaque point
de l'espace une densité triplement périodique «tangente» en ce point à la fonction
densité réelle. Les régions dans lesquelles ceci n'est pas possible seront les régions de

mauvais cristal. Nous pouvons donc décrire l'état du cristal en associant à chaque
point de l'espace trois vecteurs ai (i 1, 2, 3), qui sont les périodes de la fonction
périodique tangente à la fonction densité du cristal en ce point.

Remarquons qu'aucune observation de structure n'est à même de déceler une
translation globale d'un cristal parfait. Compte tenu de ce fait, nous admettons
comme hypothèse de travail que les données sur un état d'un cristal consistent en un
champ de repères at, et que toute fonction g admettant le champ at comme champ de

périodes représente l'état du cristal.
Nous admettrons en outre que le solide est infini, et qu'il existe un état «naturel»

parfait, rigoureusement périodique de ce solide, dont les périodes sont trois vecteurs

ai0. Cet état naturel s'obtiendrait en éloignant toutes les dislocations à l'infini. Nous
appellerons «déformés en r des vecteurs ai0» les vecteurs périodes at(r), dans l'état
déformé, r étant le rayon-vecteur d'un point quelconque.

x) Résumé d'une thèse de doctorat présentée à l'Ecole Polytechnique fédérale de Lausanne, le 28

mars 1969. Subside No. 5105.2 du Fonds National de la recherche scientifique.
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De plus, nous appellerons «application de Burgers au point r» l'application
linéaire ai0~+ a^r), (i 1,2,3). Elle caractérise la déformation au point r. Soit
(e10, e20, e30) la base orthonormée associée au système de coordonnées cartésiennes
(xj) ou (x, y, z). Les déformés en r des vecteurs ei0 seront les images de ces vecteurs

par l'application de Burgers au point r. Nous les noterons et(r), et nous poserons:

ei(r) ei0 + eijej0, (1)

en adoptant la convention de sommation usuelle.
La déformation du cristal est définie par les 9 fonctions e{j(t). Il est commode

pour la suite d'introduire les vecteurs

Si ek0 Eki > (2)

que nous appellerons «vecteurs déformations».
Considérons deux points voisins P et Q, de rayons-vecteurs r et r + ôr. L'application
de Burgers au point P tait correspondre au vecteur ôr bxi ei0, le vecteur

ôr' ôx{ e{. On appellera «déplacement relatif» des points P et Q le vecteur ou
ôr' — ôr. Ses composantes dans la base (ei0) sont les nombres

ôuk ôr ¦ ek Sx, sik (3)

Dans tout domaine où les formes différentielles (3) sont intégrables, on peut
définir un champ de déplacement uk(r), tel que

ek grad %, (Ä i, 2, 3) (4)

Il faut et il suffit pour cela que

rot£A 0, (k= 1,2,3) (5)

Les relations (5) constituent les «conditions de compatibilité» des déformations,
celles-ci étant dites «compatibles» lorsque les formes (3) sont intégrables.

La relation (4) ne définit uk qu'à une constante près. Néanmoins, lorsque uk est
déterminé dans un référentiel, nous admettrons qu'il est déterminé dans tous les

autres, en vertu de la convention suivante: le champ de déplacement est un vrai
champ vectoriel. Ses composantes dans un référentiel particulier, ne dépendent que
de la base associée à ce référentiel.

Dans la description statistique du solide sur laquelle est basé notre travail, la
notion de «point du solide» n'a pas de sens. Nous ne pouvons donc appeler le champ uk
«déplacement des points du solide». La signification physique de uk apparaît alors
dans le théorème suivant, que nous donnons sans démonstration: soit u(r) un champ
de déplacement, tel que ek grad uk, et Q0(r) und fonction densité décrivant l'état
non déformé du solide. Alors la fonction g(r) q0 (r — u(r)) décrit l'état déformé
correspondant à la déformation ek. Va. réciproque est également vraie.

En vertu de la conservation du nombre des atomes, il existe un courant de

probabilité y tel que dqjdt= — divj. On appellera «champ de vitesse» un champ
(p tjpi ei0 tel que ;', Q(pt. On définit ainsi un champ de vitesse comme un champ <jp

tel que
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Lorsque le champ de déformation dérive d'un champ de déplacement u{, le champ
dujdt est un champ de vitesse, de sorte qu'en posant q>{ dujdt, on a dsjdt
grad cpj. Ce résultat, qui est trivial en mécanique des milieux continus - où le champ
de déplacement est défini comme le déplacement des points du corps - n'est pas
immédiat lorsqu'on attribue une signification statistique aux grandeurs en question.

Nous appelons «champ cristallin» l'ensemble des champs de déformation et de

vitesse. Il se transforme selon les formules suivantes, lorsqu'on effectue un changement
de référentiel galiléen:

cp'^cpi+V- et, (7)

ei e,- (8)

Ces formules se démontrent aisément dans le cas où le champ de déformation dérive
d'un champ de déplacement. Nous les admettrons dans tous les cas.

2. Equations fondamentales

La théorie du champ cristallin présente une grande analogie avec celle du champ
électromagnétique, et les équations fondamentales que nous allons donner correspondent

aux équations de Maxwell.
Nous considérons généralement un solide illimité dans lequel il n'y a pas de

forces de masse. Dès lors, il n'y a que deux causes de déformation et de vitesse: les
dislocations et leurs mouvements, c'est-à-dire les courants de dislocation. Les
équations du champ admettent aussi des solutions non nulles en l'absence de
dislocations: ce sont les ondes élastiques.

2.1. Quantité de dislocation

L'application de Burgers en un point P de l'espace est l'application linéaire qui
fait correspondre à tout vecteur co, ei0 le vecteur co,- et(P). Soit y un arc de courbe
d'extrémités P et Q. L'image de l'intégrale J dx{ ei0 PQ par la famille d'applications

de Burgers sera l'intégrale y

JdXi et= PQ + ek0J dr-ek.
Y Y

Si y est une courbe fermée, PQ 0, et nous appellerons «quantités de dislocation
enfermées dans la courbe y » les nombres

bk=fduk=Jdr-ek2). (9)

Y Y

Cette dernière intégrale peut se transformer en l'intégrale de surface

bk= [fdo-rot ek, (10)

2) Burgers [8] appelle «dislocation strength» le nombre (£ bjX1!2(f61)1
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27 étant une surface quelconque de bord y, et do l'élément de surface. Les vecteurs

ßk rotek (11)

sont appelés «vecteurs densités de dislocation». On a

bk lJdo-ßk (12)

et

div/3A 0, (k= 1,2,3) (13)

L'observation montre que les dislocations dans les cristaux sont filiformes. Les
vecteurs ßk sont nuls dans tout le cristal sauf sur un réseau de lignes appelées lignes
de dislocation, sur lesquelles ils ont une valeur infinie (distribution de type Dirac).

2.2. Densité de courant de dislocation

Il suit de (5) et (11) qu'en l'absence de dislocations, les déformations sont
compatibles et qu'on a dejdt gradç?,-. Si par contre les déformations ne varient
pas de manière compatible au voisinage d'un point, il y a en cet endroit un «courant
de dislocation». Nous appellerons «densités de courant de dislocation» les vecteurs

de
Vi - dfA grad Vt (14)

Le courant de dislocation passant à travers un arc de courbe A B sera représenté par
les vecteurs

B

dr.7l, (15)

de sorte que la dérivée dbjdt de la quantité de dislocation enfermée dans une courbe L
(fermée), est égale au courant de dislocation qui passe à travers L. On en tire la
relation de continuité

rot y, + ^ 0 (16)

Rappelons que la vitesse d'une dislocation en un point est un vecteur v, perpendiculaire

à la dislocation en ce point. On montre que les grandeurs ßm, ym, vM, qui sont
les moyennes de la densité, du courant, et de la vitesse des dislocations au voisinage
d'un point, prises sur un certain intervalle de temps, sont liées par la relation

7Mi A«iAi>M. (17)

Nous pouvons, de manière formelle, supprimer les indices de moyenne dans (17).
Cela revient à faire l'hypothèse suivante: il existe un champ v appelé vitesse de

dislocation, tel qu'en tout point

7i=ßtFv. (18)
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2.3. Les équations fondamentales du champ cristallin

Nous sommes déjà en possession de deux équations fondamentales: les équations
(11) et (14) qui relient le champ cristallin {y, tpA; à ses sources, les distributions et les

courants de dislocation. La troisième équation ne concerne que le champ. Nous
l'écrirons

à<pildt ciJkldJ.ekl. (19)

Les constantes cijkl peuvent être considérées comme les constantes élastiques usuelles
divisées par la masse spécifique du solide. Le tenseur

B,j clJkletl, (20)

est le tenseur de contrainte. Il correspond au tenseur usuel divisé par la masse

spécifique, et l'on admet sa symétrie: 6tj Qjt.
Le tableau ci-dessous fait ressortir l'analogie de la théorie des dislocations avec

l'électromagnétisme (dans le vide).

Tableau

Dynamique des dislocations Electromagnétisme

Champ de déformation F Champ électrique E
Champ de vitesse 'P, Champ magnétique H
Densité de dislocation ß, Densité de charge 0

Densité de courant r, Densité de courant i
Y, ßi A v j =ov
rot y. + dßjdt 0 div/ + dqjdt 0

y,- -dejdt + gradç>£ j - dEjdt + rot H
ßi =TOte, q div E
à<Pildt cijkldjekl ÔHjdt -rot£
- div H - 0

(Les relations de l'électromagnétisme sont citées aux coefficients près.)

2.4. Ondes élastiques

En l'absence de dislocations, /J,- yi 0, il existe un champ de déplacement ut
tel que e{ grad ut, et cp{ dujdt. L'équation (19) devient alors:

d*uljdt* cljkldjdkux. (21)

On reconnaît l'équation des ondes élastiques.

2.5. Energie

Si l'on introduit les vecteurs contrainte 0f eko0k{, l'équation (19) s'écrit

dq>,jdt div d] (22)

En multipliant scalairement (14) parö;-, et (22) parc;,-, et en additionnant membre à

membre, on obtient l'équation:

dt 2 ^ +
2

^ £') + °'-K~ div f< *' ° • {23)
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Le terme entre parenthèses représente la densité d'énergie du champ cristallin. Le

vecteur cpi Qt est le «vecteur de Poynting» du champ, i.e. la densité de courant

d'énergie. Enfin le terme 6i y{ représente le taux de variation d'une énergie propre de

mouvement des dislocations, ou énergie cinétique des dislocations. L'énergie contenue
dans un volume V est la somme de l'énergie du champ et de l'énergie cinétique des

dislocations contenues dans V. Sa variation est égale au flux du vecteur de Poynting
à travers la frontière de V. Ve tait qu'il existe une énergie cinétique des dislocations
nous incite à leur attribuer une certaine masse.

Remarque: Comme la masse spécifique du solide ne figure pas dans (19), toutes les

grandeurs dynamiques ont dans cet exposé la dimension des grandeurs usuelles,
divisées par la masse spécifique.

2.6. Force de Peach et Koehler

Une ligne de dislocation singulière peut être considérée comme un tube mince de
section ôS. On montre qu'en tout point P de cette ligne, les vecteurs ßt sont donnés

par la formule ß{ (bJôS) L, L étant un vecteur unité tangent à la ligne de dislocation
en P. Si dV est le volume d'un élément dl du tube, on a

ßi dV =btdl. (24)

D'après (23), l'intégrale de Bt •yi étendue au volume de cette dislocation donne la
dérivée de son énergie cinétique par rapport au temps. Compte tenu de (18) et de (24),

cette intégrale s'écrit / v ¦ (0, A b{ dl). On voit donc que la grandeur dF b{ 6{ A dl
est la force agissant sur l'élément dl de la dislocation. La force par unité de longueur
sera donc

/=HAl. (25)

On reconnaît la formule de Peach et Koehler [1].

3. Principe de moindre action

Il est montré dans ce paragraphe comment les équations du champ cristallin se

déduisent d'un principe variationnel. L'avantage de la méthode variationnelle, outre
son élégance, est ici de faire apparaître clairement qu'il y a deux types de forces
agissant sur une dislocation en mouvement: celle de Peach et Koehler, due au champ
de déformation, et une force cinétique due au champ de vitesse et dépendant de la
vitesse propre de la dislocation. Elle correspond à la force magnétique sur une charge
en mouvement. L'existence de cette force fait l'objet d'un débat scientifique dont on
trouvera un compte rendu dans l'ouvrage de Nabarro [2]. Ce débat, portant sur des

cas particuliers, est resté sans conclusion à l'heure actueUe. La méthode usuelle des

auteurs qui ont abordé ce problème est d'assimiler la dislocation à son champ de
déformation propre, et d'étudier l'interaction de ce champ propre avec le champ
cristallin extérieur. Une telle interaction ne peut être mise en évidence que dans une
théorie non linéaire, théorie pour laquelle on ne dispose d'aucune base expérimentale.
Nous espérons que les considérations exposées dans ce paragraphe jetteront quelque
lumière dans ce débat. Kosevich [3] a cherché avant nous les équations de mouvement



168 J. Zahnd H. P. A.

d'une dislocation par la méthode de Lagrange. Toutefois, son Lagrangien diffère du
nôtre par un terme qui nous paraît essentiel, et dont l'omission a conduit cet auteur à

des considérations que nous ne pouvons approuver.

3.1. L'action pour une boucle de dislocation

L'action pour un système d'objets classiques en interaction avec un champ se

compose de trois termes:

a) un terme cinétique Scin qui ne dépend que de la vitesse des objets,

b) un terme d'interaction avec le champ Sinter,

c) un terme Sch qui ne concerne que le champ.

Par exemple, l'action pour un système de particules électriques dans l'approximation

non relativiste s'écrit (à des coefficients près qui dépendent des unités) :

S Z m v2 dt + / E (ev ¦ A - e cp) dt + i (FA - H2) dV dt, (26)

expression dans laquelle, Aetcp sont les potentiels du champ, et E et H, les champs
qui «dérivent» de A et cp selon les formules bien connues.

Considérons une boucle de dislocation C. Sa configuration est décrite par une
famille de vecteurs-lieu à deux paramètres r(X, t), ont est le temps, et X un paramètre
sans dimension qui décrit la dislocation. On peut supposer que X varie entre des

limites fixes, par exemple 0 et 1, avec r(0, t) r(l, t). Posons

drjdX r et drjdt v, (27)

en supposant que la fonction r vérifie la relation

T ¦ v 0 (28)

Nous écrirons le terme cinétique de l'action

r i

Scin=j jl2fiv*dXdt. (28)

f 0

fi ju(X, t) est une fonction que nous appelons «masse spécifique» de la dislocation.
C'est ce terme qui fait défaut chez Kosevich. Or il est indispensable pour deux raisons:

1° Comme on l'a vu au paragraphe précédent, le mouvement des dislocations
s'accompagne d'une énergie cinétique propre aux dislocations. Il est donc logique de

leur attribuer une certaine masse. Ce phénomène s'explique simplement si l'on
considère le mouvement d'une dislocation coin rectiligne L dans son plan de glissement

n. Soit S un référentiel en translation avec L. Il est clair que quel que soit le

champ cristallin dans le solide, il existe un domaine D autour de L, dans lequel les

vitesses de part et d'autre de n sont de sens contraires dans le référentiel S. Ce

domaine possède un certain moment cinétique proportionnel à la vitesse v de L, de

même qu'une certaine énergie cinétique proportionnelle à v2.

2° Le centre d'une dislocation est la région dans laquelle le champ cristallin ne
vérifie pas les équations linéaires. Il y a dans cette région une concentration d'énergie
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élastique qu'on ne sait pas évaluer. Cette quantité d'énergie doit se manifester par
une certaine intertie, donc par une certaine masse.

Le terme
t" i

Sinter =J f(v A bt At + b, B,) -TdXdt, (29)
V 0

représentera l'interaction avec le champ. A l'aide de (18) et (24), il peut être présenté
sous la forme plus symétrique:

Sinler=j(Aryl + Bl.ßi)dVdt. (30)

At et Bt sont des vecteurs auxquels on n'attribue aucune signification physique pour
le moment, et qu'on appelle les potentiels du champ cristallin. En fait on a d'abord
posé la formule (30), en choisissant comme Lagrangien d'interaction une expression
linéaire simple.

3.2. Dislocation dans un champ extérieur

Pour étudier le mouvement d'une dislocation dans un champ extérieur, c'est-à-
dire un champ qui ne dépend ni de la position ni de la vitesse de la dislocation, mais
qui peut dépendre du temps, on utilisera le Lagrangien Lcin + Linjer sous la forme

L ~fiv*+(vAb{Ai+b.Bi)-T, (31)

ou

L jfi v2 + (b, AiAt)-v + bt B, t. (32)

Les équations de mouvement peuvent s'écrire sous la forme d'une seule équation
vectorielle:

ÖL d 1dL\ d idL
dr

~ dt\ dv} +
dX \ dx j ' '

En développant cette équation, on obtient

d f d \
(ptv) TA[ rot bt Br f b{ — A{ + r A v div bi A,. (34)

dt xr ' \ ' ' ' dt

Posons

6, - rot Bt - oAJdt, (34a)

et

cp, =-div At. (35)

Ö, et cp{ sont les grandeurs qui représentent le champ cristallin. Compte tenu de la

remarque du N° 2.5, pi, a pour dimension LA, Scin et Sinter Lh F~x, Ai L2 F-1, Bt L3 F~2,

0t L2 F~2 et qjj L F~L. L'équation de mouvement devient

d
— (pv) bt6,AT+bt<p,TAv. (36)
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On reconnaît dans le premier terme de droite la force de Peach et Koehler. Le second

représente la force cinétique. Etant perpendiculaire à la vitesse de la dislocation, elle

ne travaille pas. C'est la raison pour laquelle elle n'apparaît pas dans les exposés
usuels qui calculent la force exercée sur une dislocation à partir du travail effectué
lors d'un déplacement de cette dislocation. La formule (36) est l'analogue de celle
de Lorentz:

m dvjdt e E + ev A B

pour une charge électrique. On a toujours comparé jusqu'ici la force de Peach et
Koehler à la force magnétique evAB, en vertu de leur analogie formelle. Peach et
Koehler ont insisté les premiers là-dessus. On voit qu'en fait, elle correspond plutôt à

la force électrique e E, qui travaille.
Les formules (34) et (35) entraînent:

dt

On retrouve ainsi l'équation du champ (22). Il semble qu'on atteint avec ce formalisme
la meilleure formulation actuelle de la dynamique des dislocations, dans le cas «non-
relativiste ». On appelle ainsi par abus de langage le cas où la vitesse du son dans le

solide est grande vis-à-vis de celle des dislocations.

3.3. L'action pour le champ

Ve terme Sch de l'action devient indispensable si nous voulons trouver les

équations qui déterminent le champ lui-même. Nous posons

Sch= j] {9, •£,--??) dVdt, (37)

d'où l'action totale:

S.J\„ - a M +J(A, y, + B, ft, iV it+j\ ft - ,K M ,38,

Pour trouver Sch, on est guidé par le fait que ce terme doit être quadratique relativement

au champ pour que les équations déduites soient linéaires. D'autre part Sch ne

peut contenir les potentiels du champ, car ils ne sont pas définis univoquement.
Ils admettent en effet la transformation de jauge

A\ Ai+ rot V{ B't Bt-à VJdt, (39)

Vi étant un champ quelconque. L'analogie électromagnétique aidant, on pose (37).
Pour obtenir les équations du champ à l'aide du principe de moindre action, il

faut considérer que les mouvements des dislocations sont fixés, et faire varier le

champ seulement. Il s'ensuit que la variation du premier terme de (38) est nulle, et

que les grandeurs ß} et y{ ne doivent pas varier dans le second. Il vient

"-f»*.-r. + ».-H<r*+f<»-*.-f.*x<r*
iôA, ¦ y, + ÔBt ¦ ßi - e{ ¦ (rot ÔB, + ~ ÔA{) + cp{ div ôa\ dV dt
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=/k • Vi + ôB, ¦ ß{ + div (et A OB,) - ÔBt ¦ rot e, - | {e, ¦ ÖA{)

de-
+ M; -^- + div (Ç9,. • ÔAA - ÔAt ¦ grad cp\ dV dt.

L'intégrale des termes div(eiAôBj) et div^,- A{) se transforme en une intégrale de
surface sur la surface de l'infini où les champs sont nuls. Ensuite l'intégrale du terme
(djdt) (e{ ¦ ôAj) sur le temps est nulle, car les variations ÔA{ sont nulles aux extrémités
de l'intervalle de temps. On peut donc laisser tomber tous ces termes. Les ôAt et les

ôBj étant indépendants, la condition ôS 0 entraîne

àe,
Vi - dt

+ êrad cp., /3. rot e,.

On retrouve ainsi les équations fondamentales (12) et (14).

4. Champs cristallins macroscopiques

On sait que dans tout solide cristallin, il existe un réseau de dislocations à trois
dimensions (réseau de Frank), dont la maille moyenne présente une arête de 10_1 à
10~2 mm pour les cristaux les mieux recuits. Ceci nous conduit à chercher les équations
des champs cristallins moyens, ou «macroscopiques», en effectuant la moyenne des

champs exacts ou «microscopiques» sur des éléments de volume assez grands par
rapport à la maille du réseau de dislocations. Soit par exemple u(x, y, z, t) une
composante d'un champ quelconque. La moyenne de u est le champ <m> défini par

+L/2 +L/2 +LJ-Z

<uy U(x, y, z, t) (1/L3) f f f u(x + i, y + n> z + C, t) de dt] dt,

-UZ -L/2 -Z./2

L étant une longueur arbitraire satisfaisant à la condition ci-dessus. On vérifie que

(dujdxy d<uy/dx (dujdty diuyjdt, etc....

C'est la méthode de Lorentz pour déduire les équations des champs électromagnétiques
dans la matière des équations de Maxwell pour le vide.

En ce qui concerne leurs propriétés mécaniques, on peut distinguer parmi les
solides deux classes importantes qui diffèrent par la propriété suivante: un champ de

contrainte moyen r,- <0^> non nul crée dans un solide de la première espèce un
courant de dislocation moyen non nul, tandis que ce n'est pas le cas pour un solide
de la seconde espèce. Les solides de la première espèce sont dits plastiques. Nous
appellerons diélastiques ceux de la seconde espèce, car la distinction entre ces deux
espèces est tout-à-fait analogue à celle qui existe entre conducteurs et diélectriques.
Il est entendu que nous venons de définir des comportements idéaux, et qu'un même

corps peut appartenir à l'une ou l'autre catégorie selon la valeur du champ de

déformation, et de la fréquence.
Dans ce paragraphe, on considérera toujours un réseau de dislocations occupant

un domaine fini d'un cristal infini. C'est un tel domaine que nous appellerons brieve-
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ment un «corps». Nous choisirons toujours la surface du corps de façon qu'elle ne

coupe aucune des dislocations du réseau. Par contre, il pourra y avoir des dislocations
extérieures traversant le corps.

Il est clair que lorsqu'on s'éloigne du corps, les champs moyens deviennent très
rapidement identiques aux champs microscopiques. C'est pourquoi on les identifiera
souvent à l'extérieur de la surface du corps.

4.1. Les équations des champs cristallins macroscopiques

Considérons un corps D de surface 27, dans un cristal infini, et supposons d'abord
qu'il n'y a pas de dislocations extérieures. On a donc

</?,•> 0 sur 27 et à l'extérieur. (40)

Si Ei désigne le champ de déformation moyen, on a

</*,> rot Eit (41)

et

div </?¦> 0 (42)

(40) et (42) montrent que </3;> peut s'écrire comme le rotationnel d'un autre champ
— Pit nul sur 27 et à l'extérieur:

<A> -rot P,. (43)

Par analogie avec l'électricité, nous appellerons P{ «champ de polarisation élastique»
du corps. On montre que

PidV=-jjrA<ßl>dV. (44)

D D

L'intégrale de droite représente le «moment de la distribution </?;>», qu'on peut
appeler «moment élastique du corps D», de sorte que les vecteurs — P{ sont les

moments élastiques par unité de volume. Le champ

Dt El+ P, (45)

est tel que

rotD,-= 0. (46)

A l'extérieur du corps, D,- E{, et il existe dans tout l'espace un champ de déplacement

Ut tel que Dt grad £/,-.

Si l'on fait passer des dislocations extérieures à travers le corps, leur densité ßUex

doit être ajoutée au membre de droite de (46), de sorte que

rot D, ßu„. (47)

La contrainte moyenne Tt vérifie l'équation

*i} ctjkiEki. (48)
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et la vitesse moyenne Vt <ç>,->:

àV,jdt divr, (49)

(14) entraîne pour le courant moyen de dislocation:

</,> - dE.Jdt + grad Vt. (50)

L'équation de continuité relie aussi <y,-> et </?,->:

rot <y.> + d<ßtyjdt 0 (51)

On peut l'écrire aussi pour les dislocations extérieures:

™tVi,t*+dßi,Jat~0.
Il s'ensuit d'après (47) que

TOtidDJdt + y^j-O. (52)

L'expression entre parenthèses est donc le gradient d'un champ scalaire qu'on
notera Hf

grad Ht -V^+dDJàt. (53)

A l'extérieur du corps, on a Dt — Eit et (53) doit être identique à (50). Ainsi les

champs Hi et V{ sont identiques à l'extérieur du corps. Ils correspondent aux champs
H et B de l'électromagnétisme, et (53) correspond à la relation rot H j + dDjdt.
Le champ

M, V,- H, (54)

qui vérifie l'équation

<7,> - grad M, + dP,jdt, (55)

est analogue à l'aimantation en électromagnétisme. S'il n'est pas nul, il est du à des

mouvements du réseau de dislocation. Sans tirer de conclusion sur l'existence de tels

mouvements, nous utiliserons par la suite les grandeurs H{ et Vi sans faire aucune
hypothèse sur leur différence, que le lecteur peut très bien supposer toujours nulle.

4.2. Champs constants dans un diélastique

Un champ de déformation constant dans un diélastique vérifie les équations (41),
(45), (47), et l'équation

div r, 0 (56)

Les relations thermodynamiques dans un diélastique font l'objet de ce paragraphe.
Pour provoquer une petite variation quasi-statique du champ dans un corps,

il faut fournir un travail ÔR égal à la somme de deux termes:

a) une variation d'énergie ôW à l'intérieur du corps,

b) une variation d'énergie extérieure.
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Le terme ôW est égal au flux du vecteur de Poynting cpt 0; pendant un intervalle
de temps ôt, à travers la surface 27 du corps D. Comme ß{ 0 sur 27, cpf dujdt, donc

ÔW - j'do ¦ (ou,- 6{)

D'autre part, si 27 est assez éloignée du réseau de dislocations, les champs microscopiques

sur 27 sont égaux aux champs moyens, de sorte que

ÔW= do- (OU, rj - J div (ÔUlTJ)dV,

car le champ U( est défini dans tout l'espace. Compte tenu de (56) il vient

ÔW i xy ÔD; dV
D

Va variation d'énergie à l'extérieur du corps est l'intégrale j 0,- • ôs{ dV étendue à

tout l'espace extérieur. Comme dans toute cette région, dt t,- et £,- Et Dt,
on a finalement

ÔR= I T, ¦ ÔD, dV (57)

espace

L'énergie interne d'un corps comprend l'énergie du champ cristallin microscopique
des dislocations qui n'est pas nulle même lorsque la déformation moyenne est nulle.

La densité de cette énergie est w 1j2 6{ • e{. Or, comme div 0,- 0, il existe un

champ a, tel que 0; rot at. On a donc

1 1 1

w (rot aj) e - (rot ej) ¦ a{ div (a, A e{)

Va déformation moyenne étant supposée nulle, on admet que les champs décroissent
assez rapidement à l'extérieur du corps pour que l'intégrale du deuxième terme,
transformée en intégrale de surface soit nulle. La densité d'énergie «microscopique»
est donc simplement

w 2ai- ßi ¦

Va différentielle de la densité d'énergie interne sera

dU =FdS + at ¦ dßt + T,- ¦ dDt (58)

U représente l'énergie interne par unité de volume et de masse. L'énergie interne
totale du corps est l'intégrale / o U dV, étendue à tout l'espace. On a de même pour
l'énergie libre

dF - S dF + at ¦ dßi + Tt ¦ dD{. (59)

L'énergie libre totale du corps sera de même l'intégrale / q F dV, étendue à tout
l'espace. Ce dernier fait peut surprendre. Mais il faut considérer qu'un changement
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quelconque du corps peut entraîner une variation du champ dans tout l'espace,
champ dont l'énergie doit ainsi figurer dans l'expression du travail effectué pour ce

changement.
Un diélastique linéaire est un corps pour lequel il existe une relation linéaire entre

D, et E{.

D{J diJklEkl. (60)

Le tenseur dijkl s'appellera tenseur des constantes diélastiques. Ses composantes sont
des nombres sans dimension. On pourra écrire:

U=U0(S,ßj)+ ~ cl]kldijmnEklEmn, (61)

F F0(F,ß{)+
*

c,jkldljmnEklEmn. (62)

Notons la symétrie:

Cijkl d-ijmn <>i]mn d{jki ¦ (62a)

Elle provient du fait que

c,Jkld,jm„ d2Fj(dEkldEmn). (63)

4.3. Courant de dislocation constant

Considérons un courant moyen de dislocation constant dans un solide plastique.
Il vérifie les équations

rot </,.> 0 (64)

et

<7l> grad Vt. (65)

Le champ de déformation, constant lui aussi, vérifie l'équation

Cijkl djEkl 0

Ces équations doivent être complétées par une relation entre <y,> et Ei. Nous
envisageons ici le cas d'un corps plastique linéaire idéal, pour lequel on a:

<Yij> oijklEkl. (66)

On tire alors de (65) :

diVj aijklEkl. (67)

4.4. Champs variables dans un

Nous considérons tout d'abord des fréquences pour lesquelles la relation (60) est

valable, et nous supposons de plus qu'il existe une relation linéaire:

Vi hjHj
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Les équations (49), (53) avec yUex 0, (60), et (68), entraînent l'équation d'onde:

dans laquelle on a posé:

gijkl Cijmndmnkr^rl ¦ C70)

(d-1 et X'1 sont les matrices inverses de d et X). En comparant (69) et (21), on voit
comment la propagation des ondes dans un cristal est modifiée par la présence d'un
réseau diélastique de dislocations. Toutes les mesures de constantes élastiques par des

méthodes de vitesse du son, sont en fait des mesures des constantes gijkt.
Nous étudierons maintenant les champs dont la période est comparable au temps

de relaxation des dislocations. Nous entendons par là le temps moyen que mettrait un
segment du réseau de dislocations à reprendre sa configuration à la suite d'une
déformation.

Lorsque la fréquence augmente, la longueur d'onde X peut devenir égale à la
dimension a des mailles du réseau de dislocations, de sorte que la description macroscopique

du champ n'a plus de sens. Cependant, si l'on admet avec la plupart des auteurs

que la vitesse v des dislocations est toujours très inférieure à la vitesse du son c, il se

trouve qu'à la fréquence de dispersion maximum, la description macroscopique du

champ est encore valable. Il s'agit en effet de la fréquence 1/t, où t, le temps de

relaxation des dislocations est de l'ordre de grandeur de ajv, et cette fréquence
correspond à la longueur d'onde X c ajv, qui est grande par rapport à a.

Contrairement au cas des champs lentement variables, Dt(t) ne dépend pas
seulement de la valeur de Et à l'instant t, mais en général de la valeur de Ei à tous les

instants antérieurs. Cela provient du retard mis par la polarisation à s'établir. La
relation linéaire de ce type la plus générale s'écrit:

OO

DtJ(t) E{j(t) + ff;jkl(r) Ekl(t- r) dx (71)

o

fijki(x) est une fonction qui dépend des propriétés du corps. Pour une onde sinusoïdale
de fréquence circulaire m, on peut écrire:

D,j dtjkl(co)Ekl, (72)

avec

dllkl(co)=ôikô}l+fftjkl(r)é^dx. (73)

0

Les fonctions dijkl(œ) sont en général complexes. Nous pouvons établir leur forme
dans deux cas limites: les corps plastiques aux basses fréquences, et les corps
quelconques aux hautes fréquences.

Dans le premier cas, l'équation (53) entraîne dtVj dD{jjdt, si l'on suppose que
Vi,ex 0 et que Vi Hi. Cette équation doit être identique à (67). Or, pour une onde

sinusoïdale, on a dD^jàt —i co dijkl(co) Ekl. Il s'ensuit que

di!k,(co) (ijco)ai]kl. (74)
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Lorsque m tend vers l'infini, la fonction dijkl(co) doit tendre vers ôikôjt. En effet
lorsque le champ varie assez rapidement, le processus de polarisation ne peut pas se

produire. Lorsque la fréquence est grande vis-à-vis de celle des dislocations, on peut
calculer la polarisation en considérant les dislocations comme libres et en négligeant
leurs interactions. Les distances parcourues par une dislocation pendant une période
du champ étant petites par rapport à la longueur d'onde, nous pouvons supposer le

champ uniforme en calculant la vitesse acquise par une dislocation dans ce champ.
On obtient cette vitesse par la formule (36) dans laquelle on néglige le deuxième
terme :

dvjdt (Ijpi) bf r,- /\ À (75)

On désigne ici par Â le vecteur unité tangent à la dislocation au point considéré, et

par t,- le champ de contrainte de l'onde. En supposant qu'il s'agit d'une onde
sinusoïdale, le déplacement r d'un point de la dislocation est donné par

r -(bijfico2)TiAÂ. (76)

La polarisation P, étant le moment élastique par unité de volume, on l'écrit

P} ZlrbjjrAdl, (77)

c'est-à-dire comme une some d'intégrales sur toutes les dislocations contenues dans

une unité de volume. On calcule que

Pij ~(XijkM)Ekl, (78)

avec

Xijki Z (K bjj2fi)jdl (XtXn -ôin)cmnkl. (79)

Xijkt est un facteur de structure, caractérisant le réseau de dislocations. Comme

DH Eu + Pij> ona

<W®)= *«**,/-(1/û>*)Zv*i- (8°)

5. Travaux importants

Les premiers travaux importants concernant la théorie des dislocations, sont
ceux de Weingarten [4] et Volterra [5], relatifs aux corps élastiques multiplement
connexes. C'est en traduisant ces travaux que Love [6] introduit le terme de
dislocation. Ce terme prend sa signification actuelle de défaut de structure avec Taylor [7].
Burgers [8] et Frank [9] définissent les concepts de base de la théorie des dislocations
dans les cristaux. Nye [10] introduit le tenseur de densité de dislocation. Kroner [11]
met au point une méthode pour calculer le champ de contrainte dans un continu
élastique d'une distribution de dislocations donnée par son tenseur densité. Kondo [12],
Bilby et al. [13], développent la théorie mathématique des déformations incompatibles.
Le centre des dislocations est l'objet du travail fondamental de Peierls [14].
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