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Dislocations et champs cristallins?!)

par J. Zahnd

Laboratoire de Génie Atomique, EPF-Lausanne

(5 XI 69)

Résumé. Les structures cristallines quasi-périodiques variables sont décrites a 1'aide d’'un
champ de déformation-vitesse appelé champ cristallin. Les équations fondamentales de ce champ
sont celles de la théorie des dislocations, déja formulées en mécanique des milieux continus. Elles
sont déduites ici d’un principe variationnel, qui fait apparaitre une force cinétique exercée par le
champ de vitesse sur les dislocations en mouvement. Les équations du champ cristallin moyen dans
un réseau de dislocations sont établies, en suivant la méthode de Lorentz en électrodynamique
des milieux continus, et en adoptant une classification élémentaire des réseaux de dislocations. La
théorie de la dispersion des ondes élastiques dans un réseau de dislocations est abordée selon cette
méthode.

1. Champ cristallin. Définitions

La fonction densité p(x, v, 2z) d’'un cristal de N atomes identiques donne la densité
de probabilité de présence en un point (x, v, z) de 'espace pour un atome quelconque.
Dans un cristal parfait, c’est une fonction triplement périodique, les périodes étant
représentées par trois vecteurs @,, a,, a;. Dans le cas d'un cristal réel, ¢ n’est plus
périodique. Cependant, dans la plus grande partie du solide, p peut étre assimilée dans
tout petit domaine a une fonction périodique. Nous pouvons associer a chaque point
de I'espace une densité triplement périodique «tangente» en ce point a la fonction
densité réelle. Les régions dans lesquelles ceci n’est pas possible seront les régions de
mauvais cristal. Nous pouvons donc décrire I'état du cristal en associant a chaque
point de l'espace trois vecteurs @, (¢ = 1, 2, 3), qui sont les périodes de la fonction
périodique tangente a la fonction densité du cristal en ce point.

Remarquons qu’aucune observation de structure n'est a méme de déceler une
translation globale d’un cristal parfait. Compte tenu de ce fait, nous admettons
comme hypothese de travail que les données sur un état d'un cristal consistent en un
champ de repéres a;, et que toute fonction p admettant le champ @; comme champ de
périodes représente 1'état du cristal.

Nous admettrons en outre que le solide est infini, et qu’il existe un état «naturel»
parfait, rigoureusement périodique de ce solide, dont les périodes sont trois vecteurs
a;,. Cet état naturel s’obtiendrait en éloignant toutes les dislocations a l'infini. Nous
appellerons «déformés en r des vecteurs a,,» les vecteurs périodes a,(r), dans I'état
déformé, r étant le rayon-vecteur d’un point quelconque.

1) Résumé d’'une thése de doctorat présentée a I’Ecole Polytechnique fédérale de Lausanne, le 28
mars 1969. Subside No. 5105.2 du Fonds National de la recherche scientifique.
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De plus, nous appellerons «application de Burgers au point r» 'application
linéaire a;, — a,(r), (¢ =1, 2, 3). Elle caractérise la déformation au point r. Soit
(€10, €59, €39) la base orthonormée associée au systéme de coordonnées cartésiennes
(x;) ou (x, v, 2). Les déformés en r des vecteurs e;, seront les images de ces vecteurs
par I'application de Burgers au point r. Nous les noterons e;(r), et nous poserons:

ez(r) €0 + 81] jo > (1)

en adoptant la convention de sommation usuelle.,
La déformation du cristal est définie par les 9 fonctions ¢;;(r). Il est commode
pour la suite d’introduire les vecteurs

€= €0 &kis (2)

que nous appellerons «vecteurs déformations».

Considérons deux points voisins P et Q, de rayons-vecteurs r et r + dr. L’applica-
tion de Burgers au point P fait correspondre au vecteur ér = dx; e;,, le vecteur
dr’ — dx; e;. On appellera «déplacement relatif» des points P et Q le vecteur ou =
or’ — or. Ses composantes dans la base (e;,) sont les nombres

Ou, = O * &, = O, ¢, . (3)

Dans tout domaine ol les formes différentielles (3) sont intégrables, on peut
définir un champ de déplacement u,(r), tel que

g =gradu,, (k=1,23). (4)
I1 faut et il suffit pour cela que
rotg, =0, (k=1,2,3). (3)

Les relations (5) constituent les «conditions de compatibilité» des déformations,
celles-ci étant dites «compatibles» lorsque les formes (3) sont intégrables.

La relation (4) ne définit #, qu’'a une constante pres. Néanmoins, lorsque #, est
déterminé dans un référentiel, nous admettrons qu’il est déterminé dans tous les
autres, en vertu de la convention suivante: le champ de déplacement est un vrai
champ vectoriel. Ses composantes dans un référentiel particulier, ne dépendent que
de la base associée a ce référentiel.

Dans la description statistique du solide sur laquelle est basé notre travail, la
notion de «point du solide» n’a pas de sens. Nous ne pouvons donc appeler le champ #,
«déplacement des points du solide». La signification physique de #, apparait alors
dans le théoreme suivant, que nous donnons sans démonstration: soit #(r) un champ
de déplacement, tel que &, = grad u,, et p,(r) und fonction densité décrivant I'état
non déformé du solide. Alors la fonction g(r) = g, (r — u(r)) décrit I'état déformé
correspondant a la déformation g,. La réciproque est également vraie.

En vertu de la conservation du nombre des atomes, il existe un courant de
probabilité j tel que 0p/0f = —divj. On appellera «champ de vitesse» un champ
P = @; e;, tel que 7, = p ¢;. On définit ainsi un champ de vitesse comme un champ ¢
tel que

0 0 _
=" P ©
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Lorsque le champ de déformation dérive d’'un champ de déplacement #;, le champ
Ou;/0t est un champ de vitesse, de sorte qu'en posant @, = 0u;/0t, on a 0¢;/0t =
grad ;. Ce résultat, qui est trivial en mécanique des milieux continus — ol le champ
de déplacement est défini comme le déplacement des points du corps — n'est pas
immédiat lorsqu’on attribue une signification statistique aux grandeurs en question.

Nous appelons «champ cristallin» I'ensemble des champs de déformation et de
vitesse. Il se transforme selon les formules suivantes, lorsqu’on effectue un changement
de référentiel galiléen:

v =g, +V-g, (7)
& =8, (8)

Ces formules se démontrent aisément dans le cas oit le champ de déformation dérive
d'un champ de déplacement. Nous les admettrons dans tous les cas.

2. Equations fondamentales

La théorie du champ cristallin présente une grande analogie avec celle du champ
électromagnétique, et les équations fondamentales que nous allons donner correspon-
dent aux équations de Maxwell.

Nous considérons généralement un solide illimité dans lequel il n'y a pas de
forces de masse. Dés lors, il n’y a que deux causes de déformation et de vitesse: les
dislocations et leurs mouvements, c’est-a-dire les courants de dislocation. Les
équations du champ admettent aussi des solutions non nulles en 1’absence de dislo-
cations: ce sont les ondes élastiques.

2.1. Quantité de dislocation

L’application de Burgers en un point P de 'espace est I’application linéaire qui
fait correspondre a tout vecteur w; e;, le vecteur w; e,(P). Soit ¥ un arc de courbe
d'extrémités P et (). L’image de 11ntegra1e f dx; e;o = PQ par la famille d’applica-
tions de Burgers sera l'intégrale

fdx,.e,-zPQ—l—ekofdwek.
bd 4

Si y est une courbe fermée, PQ = 0, et nous appellerons «quantités de dislocation
enfermées dans la courbe y» les nombres

b, =fduk =fdr-8k 2). (9)

Cette derniére intégrale peut se transformer en l'intégrale de surface
b, :ffda .rotg, , (10)
>

%) Burgers [8] appelle «dislocation strength» le nombre ( P b%)lfz.
k
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2’ étant une surface quelconque de bord v, et do I'élément de surface. Les vecteurs
By = rotg, (11)

sont appelés «vecteurs densités de dislocation». On a

b, :ffda B, (12)

et
divp,=0, (k=1,2,3). (13)

L'observation montre que les dislocations dans les cristaux sont filiformes. Les
vecteurs 3, sont nuls dans tout le cristal sauf sur un réseau de lignes appelées lignes
de dislocation, sur lesquelles ils ont une valeur infinie (distribution de type Dirac).

2.2. Densité de courant de dislocation

Il suit de (5) et (11) qu'en l'absence de dislocations, les déformations sont
compatibles et qu’on a 0¢;/0f = grad ¢,. Si par contre les déformations ne varient
pas de maniere compatible au voisinage d'un point, il y a en cet endroit un «courant
de dislocation». Nous appellerons «densités de courant de dislocation» les vecteurs

0€;

Yi=— - +gradg,. (14)

ot
Le courant de dislocation passant a travers un arc de courbe A B sera représenté par
les vecteurs

B )
Fz’ = | dr - $ 4T (15)
/

de sorte que la dérivée 0b,/0¢t de la quantité de dislocation enfermée dans une courbe L
(fermée), est égale au courant de dislocation qui passe a travers L. On en tire la
relation de continuité
08, _
roty, + —ﬂ‘ =1. (16)
0t
Rappelons que la vitesse d’'une dislocation en un point est un vecteur v, perpendicu-
laire a la dislocation en ce point. On montre que les grandeurs By;, Yumi, Um, qui sont
les moyennes de la densité, du courant, et de la vitesse des dislocations au voisinage
d'un point, prises sur un certain intervalle de temps, sont liées par la relation

Vi = By A\ vy - (17)

Nous pouvons, de maniére formelle, supprimer les indices de moyenne dans (17).
Cela revient a faire 'hypothése suivante: il existe un champ v appelé vitesse de
dislocation, tel qu’en tout point

yi=BiAv. (18)
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2.3. Les équations fondamentales du champ cristallin

Nous sommes déja en possession de deux équations fondamentales: les équations
(11) et (14) qui relient le champ cristallin {¢;, ¢;} a ses sources, les distributions et les
courants de dislocation. La troisiétme équation ne concerne que le champ. Nous
I'écrirons

O(pildt = Ciikt 0;‘5;;1 . (19)

Les constantes ¢, ;,, peuvent étre considérées comme les constantes élastiques usuelles
divisées par la masse spécifique du solide. Le tenseur

Gij: Ciikt€kis (20)

est le tenseur de contrainte. Il correspond au tenseur usuel divisé par la masse
spécifique, et 'on admet sa symétrie: 6,; = 0, ;.
Le tableau ci-dessous fait ressortir 'analogie de la théorie des dislocations avec

I'électromagnétisme (dans le vide).

Tableau

Dynamique des dislocations Electromagnétisme
Champ de déformation g, Champ électrique E
Champ de vitesse ®; Champ magnétique H
Densité de dislocation 3, Densité de charge 0
Densité de courant Vi Densité de courant j
Yy = tBi Awv J=ov

roty, + 0f3,/0t = divj + 0plot =0

Y:; = —0&;/0t + grad @, j = —0E|[0t + rot H

B; = roteg, o =divE

0@, |0t = c;ipy 058, OH[0t = —rot E

divH =0

(Les relations de 1'électromagnétisme sont citées aux coefficients pres.)

2.4. Ondes élastiques

En I'absence de dislocations, 3; = ¥, == 0, il existe un champ de déplacement u;
tel que &; = grad u;, et ¢, = Ou;/0t. L’équation (19) devient alors:

On reconnait I'équation des ondes élastiques.

2.5. Energie

Si Ton introduit les vecteurs contrainte 0; = e, 0,,;, I'équation (19) s’écrit

O, /ot = div 0, . (22)
EEn multipliant scalairement (14) par 92 et (22) par ¢;, et en additionnant membre a
membre, on obtient I'équation:

0 /1 , 1- A
NE e F v —dive.B.—0. 23
m(2¢“%2m8J+ o ¥i— dv ey 23)
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Le terme entre parenthéses représente la densité d’énergie du champ cristallin. Le
vecteur ¢; 0; est le «vecteur de Poynting» du champ, i.e. la densité de courant

d’énergie. Enfin le terme é; v; représente le taux de variation d'une énergie propre de
mouvement des dislocations, ou énergie cinétique des dislocations. L’énergie contenue
dans un volume }” est la somme de I'énergie du champ et de I'énergie cinétique des
dislocations contenues dans V. Sa variation est égale au flux du vecteur de Poynting
a travers la frontiére de V. Le fait qu'il existe une énergie cinétique des dislocations
nous incite a leur attribuer une certaine masse.

Remarque: Comme la masse spécifique du solide ne figure pas dans (19), toutes les
grandeurs dynamiques ont dans cet exposé la dimension des grandeurs usuelles,
divisées par la masse spécifique.

2.6. Force de Peach et Koehler

Une ligne de dislocation singuliére peut étre considérée comme un tube mince de
section S. On montre qu’en tout point P de cette ligne, les vecteurs 3; sont donnés
par la formule 3, = (b,/6S) L, L étant un vecteur unité tangent a la ligne de dislocation
en P. Sidl est le volume d’un élément dl du tube, on a

B:;dV =b,dl. (24)

D’apres (23), l'intégrale de 5 -y; étendue au volume de cette dislocation donne Ia
dérivée de son énergie cmethue par rapport au temps. Compte tenu de (18) et de (24),

cette intégrale s’écrit [ v - (6; A b, dl). On voit donc que la grandeur dF = b, 9 Adl
est la force agissant sur l’élement dl de la dislocation. La force par unité de longueur
sera donc

f=b,0,AL. (25)

On reconnait la formule de Peach et Koehler [1].

3. Principe de moindre action

Il est montré dans ce paragraphe comment les équations du champ cristallin se
déduisent d’un principe variationnel. I.’avantage de la méthode variationnelle, outre
son élégance, est ici de faire apparaitre clairement qu’il y a deux types de forces
agissant sur une dislocation en mouvement: celle de Peach et Koehler, due au champ
de déformation, et une force cinétique due au champ de vitesse et dépendant de la
vitesse propre de la dislocation. Elle correspond a la force magnétique sur une charge
en mouvement. L’existence de cette force fait 'objet d’un débat scientifique dont on
trouvera un compte rendu dans 'ouvrage de Nabarro [2]. Ce débat, portant sur des
cas particuliers, est resté sans conclusion a I'heure actuelle. La méthode usuelle des
auteurs qui ont abordé ce probleme est d’assimiler la dislocation a son champ de
déformation propre, et d’étudier l'interaction de ce champ propre avec le champ
cristallin extérieur. Une telle interaction ne peut étre mise en évidence que dans une
théorie non linéaire, théorie pour laquelle on ne dispose d’aucune base expérimentale.
Nous espérons que les considérations exposées dans ce paragraphe jetteront quelque
lumiere dans ce débat. Kosevich [3] a cherché avant nous les équations de mouvement
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d’'une dislocation par la méthode de Lagrange. Toutefois, son Lagrangien différe du
ndtre par un terme qui nous parait essentiel, et dont I'omission a conduit cet auteur a
des considérations que nous ne pouvons approuver.

3.1. L’action pour une boucle de dislocation

L’action pour un systéme d’objets classiques en interaction avec un champ se
compose de trois termes:

a) un terme cinétique S,;, qui ne dépend que de la vitesse des objets,

b) un terme d’'interaction avec le champ S,,,,,,

c) un terme S,, qui ne concerne que le champ.

Par exemple, I'action pour un systéme de particules électriques dans 1'approxi-
mation non relativiste s’écrit (2 des coefficients pres qui dépendent des unités):

1
Sz/k%ﬂ%ﬁ+]é@v-A~e@db%Z/ﬁ?vEMdVﬂ, (26)

expression dans laquelle, A et @ sont les potentiels du champ, et E et H, les champs
qui «dérivent» de A et ¢ selon les formules bien connues.

Considérons une boucle de dislocation C. Sa configuration est décrite par une
famille de vecteurs-lieu 4 deux parametres r(4, #), ot ¢ est le temps, et 4 un parameétre
sans dimension qui décrit la dislocation. On peut supposer que A4 varie entre des
limites fixes, par exemple 0 et 1, avec r(0, {) = r(1, ). Posons

or/oA=1 et Or/0t=v, (27)
en supposant que la fonction r vérifie la relation
T -v=0. (28)

Nous écrirons le terme cinétique de ’action
q

71
1
&mu[fZMWﬂﬂ. (28)
0

1 = u(A, t) est une fonction que nous appelons «masse spécifique» de la dislocation.
C’est ce terme qui fait défaut chez Kosevich. Or il est indispensable pour deux raisons:

1° Comme on l'a vu au paragraphe précédent, le mouvement des dislocations
s’accompagne d'une ¢énergie cinétique propre aux dislocations. Il est donc logique de
leur attribuer une certaine masse. Ce phénoméne s’explique simplement si l'on
considere le mouvement d'une dislocation coin rectiligne L dans son plan de glisse-
ment 7. Soit S un référentiel en translation avec L. Il est clair que quel que soit le
champ cristallin dans le solide, il existe un domaine D autour de L, dans lequel les
vitesses de part et d’autre de z sont de sens contraires dans le référentiel S. Ce
domaine posseéde un certain moment cinétique proportionnel a la vitesse v de L, de
méme qu’une certaine énergie cinétique proportionnelle a »2.

2° Le centre d’une dislocation est la région dans laquelle le champ cristallin ne
vérifie pas les équations linéaires. 11 y a dans cette région une concentration d’énergie
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élastique qu’on ne sait pas évaluer. Cette quantité d’énergie doit se manifester par
une certaine intertie, donc par une certaine masse.
Le terme

o1

Sinter :f /(v N bi Ai -4 bi Bz) - T dA dt , (29)
0

représentera l'interaction avec le champ. A I'aide de (18) et (24), il peut étre présenté
sous la forme plus symétrique:

Simter = | (Ay -7+ B By dV dt (30)

A, et B, sont des vecteurs auxquels on n’attribue aucune signification physique pour
le moment, et qu’on appelle les potentiels du champ cristallin. En fait on a d’abord
posé la formule (30), en choisissant comme Lagrangien d’interaction une expression
linéaire simple.

3.2. Daslocation dans un champ extérieur

Pour étudier le mouvement d’une dislocation dans un champ extérieur, c’est-a-
dire un champ qui ne dépend ni de la position ni de la vitesse de la dislocation, mais
qui peut dépendre du temps, on utilisera le Lagrangien L, + L,,,,, sous la forme

1
L:’EH”2+(vaiAi+biBi)‘T’ (31)
ou

1
L:27”7/'24“(55/1:‘/\1-)'v+biBi'T' 9%

Les équations de mouvement peuvent s’écrire sous la forme d’une seule équation
vectorielle:

0L d (0L d (0L

R el I (V _ (33)

or dt \ ov dA \ 0t
En développant cette équation, on obtient

d 0

7 (pv) =TA (rot b; B, + b, p Ai) +1Avdivd A, (34)
Posons

6_:. = —Trot B, — 0A,/o0t, (34a)
et

él et ¢; sont les grandeurs qui représentent le champ cristallin. Compte tenu de la
remarque du N° 2.5, y a pour dimension L3, S,;, et S,,,., L> T}, A; L2 T}, B, L® T2,

inter
0, L2 T2 et ¢, L T-'. L’équation de mouvement devient

cin

d —
(WO =B AT+ b g T A, %)
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On reconnait dans le premier terme de droite la force de Peach et Koehler. Le second
représente la force cinétique. Etant perpendiculaire a la vitesse de la dislocation, elle
ne travaille pas. C’est la raison pour laquelle elle n’apparait pas dans les exposés
usuels qui calculent la force exercée sur une dislocation a partir du travail effectué
lors d'un déplacement de cette dislocation. La formule (36) est I'analogue de celle
de Lorentz:

mdvjdt =eE+ev A\ B

pour une charge électrique. On a toujours comparé jusqu’ici la force de Peach et
Koehler a la force magnétique ew /\ B, en vertu de leur analogie formelle. Peach et
Koehler ont insisté les premiers la-dessus. On voit qu’en fait, elle correspond plutét a
la force électrique ¢ E, qui travaille.

Les formules (34) et (35) entrainent:

On retrouve ainsi ’équation du champ (22). I1 semble qu’on atteint avec ce formalisme
la meilleure formulation actuelle de la dynamique des dislocations, dans le cas «non-
relativiste». On appelle ainsi par abus de langage le cas ol la vitesse du son dans le
solide est grande vis-a-vis de celle des dislocations.

3.3. L’action pour le champ

Le terme S, de l'action devient indispensable si nous voulons trouver les
équations qui déterminent le champ lui-méme. Nous posons

{1 s
Sen = 2/(01' "€ — %2) av dt, (37)

d’ou 'action totale:

1 1 - 0
S:fZ-Mv2dldt —Ff(Aﬂ’i+ B, j,) dV dt +f2(61.ei—qo;) v dt . (38)

Pour trouver S,,, on est guidé par le fait que ce terme doit étre quadratique relative-
ment au champ pour que les équations déduites soient linéaires. D’autre part S , ne
peut contenir les potentiels du champ, car ils ne sont pas définis univoquement.
Ils admettent en effet la transformation de jauge

Al = A, + Tot V, B, = B, — 0V,jot, (39)

V. étant un champ quelconque. L’analogie électromagnétique aidant, on pose (37).

Pour obtenir les équations du champ a 'aide du principe de moindre action, il
faut considérer que les mouvements des dislocations sont fixés, et faire varier le
champ seulement. Il s’ensuit que la variation du premier terme de (38) est nulle, et
que les grandeurs j3; et y, ne doivent pas varier dans le second. Il vient

85 :f((SAi-yi—i—éBi-ﬁi) dth+f(8i-éé:—¢i6qoi) dV dt

= /{6AI. ¥+ 0B;- B, — ¢, (rot OB; + gi (3Ai) + @, div 6A,.} av dt

v



Vol. 43, 1970 Dislocations et champs cristallins 171

=/{6Ai'?’i+53i'ﬂi + div (¢; A O0B;) — 0B, - Tot &; — Odt (&;- 04,

0&;
—= +div (g, - 6A;) — A, - grad %} av dt .

L 8A.
%ézot

L’intégrale des termes div(g;/\0B;) et div(p; A;) se transforme en une intégrale de
surface sur la surface de 'infini o1 les champs sont nuls. Ensuite I'intégrale du terme
(0/0f) (&;-0A;) sur le temps est nulle, car les variations dA; sont nulles aux extrémités
de I'intervalle de temps. On peut donc laisser tomber tous ces termes. Les dA; et les
0B, étant indépendants, la condition 0S = 0 entraine

0e

i

Y= — 5 + grad ®; /31, = rot g, .

On retrouve ainsi les équations fondamentales (12) et (14).

4. Champs cristallins macroscopiques

On sait que dans tout solide cristallin, il existe un réseau de dislocations a trois
dimensions (réseau de Frank), dont la maille moyenne présente une aréte de 10-! a
10=2 mm pour les cristaux les mieux recuits. Ceci nous conduit a chercher les équations
des champs cristallins moyens, ou «macroscopiques», en effectuant la moyenne des
champs exacts ou «microscopiques» sur des éléments de volume assez grands par
rapport a la maille du réseau de dislocations. Soit par exemple #(x, v, 2, {) une
composante d’un champ quelconque. La moyenne de « est le champ <u) défini par

+Lj2 +L/2 +L{2

uy = Ulx, y, 2,8 = (1/L3) / / / ulx+&y+mnz+E ) dédnydl,

—Lj2 —Lj2 —LJ2

L étant une longueur arbitraire satisfaisant a la condition ci-dessus. On vérifie que
{Oul0xy = 0<u>[0x, <0u/0ty = 0<uy/ot, etc. ...

C’est la méthode de Lorentz pour déduire les équations des champs électromagnétiques
dans la matiére des équations de Maxwell pour le vide.

En ce qui concerne leurs propriétés mécaniques, on peut distinguer parmi les
solides deux classes importantes qui difféerent par la propriété suivante: un champ de

contrainte moyen 7; = <f;,> non nul crée dans un solide de la premiére espece un
courant de dislocation moyen non nul, tandis que ce n’est pas le cas pour un solide
de la seconde espéce. Les solides de la premiére espece sont dits plastigues. Nous
appellerons diélastiqgues ceux de la seconde espeéce, car la distinction entre ces deux
especes est tout-a-fait analogue a celle qui existe entre conducteurs et diélectriques.
Il est entendu que nous venons de définir des comportements idéaux, et qu'un méme
corps peut appartenir a 'une ou I'autre catégorie selon la valeur du champ de défor-
mation, et de la fréquence. ‘

Dans ce paragraphe, on considérera toujours un réseau de dislocations occupant
un domaine fini d’'un cristal infini. C’est un tel domaine que nous appellerons brieve-
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ment un «corps». Nous choisirons toujours la surface du corps de fagon qu’elle ne
coupe aucune des dislocations du réseau. Par contre, il pourra y avoir des dislocations
extérieures traversant le corps.

Il est clair que lorsqu’on s’éloigne du corps, les champs moyens deviennent trés

rapidement identiques aux champs microscopiques. C’est pourquoi on les identifiera
souvent a l'extérieur de la surface du corps.

4.1. Les équations des champs cristallins macroscopiques

Considérons un corps D de surface 2, dans un cristal infini, et supposons d’abord
qu'il n'y a pas de dislocations extérieures. On a donc

{B;> = 0 sur X et a 'extérieur. (40)
Si E; désigne le champ de déformation moyen, on a

{B;> = rotE,, (41)
et

div ¢(8,> = 0. (42)

(40) et (42) montrent que <{f3,> peut s’écrire comme le rotationnel d’un autre champ
— P, nul sur X et a 'extérieur:

(B> = —rot P, . (43)

Par analogie avec I'électricité, nous appellerons P; «champ de polarisation élastique»
du corps. On montre que

~

1
jPi dv = —éfr/\q}p av . (44)
D D
L’intégrale de droite représente le «moment de la distribution <(J;>», qu'on peut

appeler «moment élastique du corps D», de sorte que les vecteurs — P; sont les
moments élastiques par unité de volume. Le champ

D,=E, + P, ' (45)
est tel que
rot D, = 0. (46)

A l'extérieur du corps, D; = E;, et il existe dans tout 'espace un champ de déplace-
ment U, tel que D, = grad U,.

Sil'on fait passer des dislocations extérieures a travers le corps, leur densité 3
doit étre ajoutée au membre de droite de (46), de sorte que

ot Dy = 8, ;- (47)

i, ex

La contrainte moyenne 7; vérifie 'équation

Ty = Ciini By (48)
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et la vitesse moyenne V, = <(g,>:

oV;jot =div T, . (49)
(14) entraine pour le courant moyen de dislocation:

<y;> = —0E ot + grad V; . (50)
L’équation de continuité relie aussi <y,> et <3;>:

rot (y;> + 0<B,>/0t = 0. - (51)
On peut I'écrire aussi pour les dislocations extérieures:

roty, . + 08, ,/0t=0.
I1 s’ensuit d’aprés (47) que

rot (0D /0t + y, ,.) = 0. | (52)

L'expression entre parenthéses est donc le gradient d'un champ scalaire qu’on
notera H;:

grad i, =y, . + 0D,[ot . (53)

A l'extérieur du corps, on a D, = E_, et (53) doit étre identique a (50). Ainsi les
champs H; et V, sont identiques a I'extérieur du corps. Ils correspondent aux champs

H et B de I'électromagnétisme, et (53) correspond a la relation rot H = j + 0D/ot.
Le champ ‘

M,=V,—H, (54)
qui vérifie I'équation

{y;»>=—grad M, 4 0P /ot (55)
est analogue a I'aimantation en électromagnétisme. S’il n’est pas nul, il est du a des
mouvements du réseau de dislocation. Sans tirer de conclusion sur I'existence de tels

mouvements, nous utiliserons par la suite les grandeurs H, et V, sans faire aucune
hypothése sur leur différence, que le lecteur peut trés bien supposer toujours nulle.

4.2. Champs constants dans un d'z'élastz'que

Un champ de déformation constant dans un diélastique vérifie les équations (41),
(45), (47), et I'équation

dive, = 0. (56)

Les relations thermodynamiques dans un diélastique font 'objet de ce paragraphe.
Pour provoquer une petite variation quasi-statique du champ dans un corps,
il faut fournir un travail dR égal a la somme de deux termes:

a) une variation d’énergie 617 a I'intérieur du corps,

b) une variation d’énergie extérieure.
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—

Le terme 0W est égal au flux du vecteur de Poynting ¢, 0; pendant un intervalle
de temps d¢, a travers la surface X' du corps D. Comme 3, = 0 sur X, ¢, = 0u,;/0t, donc

oW :j‘do - (Ou; 5,) "

D’autre part, si 2 est assez éloignée du réseau de dislocations, les champs microsco-
piques sur 2 sont égaux aux champs moyens, de sorte que

oW — /'da- OU. T,) = fdiv OU. 1) av,
Py D

car le champ U, est défini dans tout 'espace. Compte tenu de (560) il vient

oW :j'ri oD, dV .
D

La variation d’énergie a l'extérieur du corps est l'intégrale / 5,- -0¢€; dV étendue a
tout I'espace extérieur. Comme dans toute cette région, 0, = 7, et &, — E, = D,,
on a finalement

OR = j T,-0D; dV . (57)
espace
L’énergie interne d'un corps comprend I'énergie du champ cristallin microscopique
des dislocations qui n’est pas nulle méme lorsque la déformation moyenne est nulle.
La densité de cette énergie est w =1/,0,-¢&;. Or, comme div §; = 0, il existe un

champ e; tel que 5: = rot@;. On a donc

1 1 i
Yl e > (rotet;) - € = 2 (rot &) - at; — 2 div (e; N g;) .

La déformation moyenne étant supposée nulle, on admet que les champs décroissent
assez rapidement a l'extérieur du corps pour que l'intégrale du deuxiéme terme,
transformée en intégrale de surface soit nulle. La densité d’énergie «microscopique»
est donc simplement

1
W = a. 3. .
2 4 ﬁl

La différentielle de la densité d’énergie interne sera

U représente 1'énergie interne par unité de volume et de masse. L’énergie interne
totale du corps est 'intégrale [ o U dV, étendue a tout I'espace. On a de méme pour
I'énergie libre

dF = —SdT +a; - dB, + 1, - dD, . (59)

L’énergie libre totale du corps sera de méme l'intégrale [ o I dV, étendue a tout
I'espace. Ce dernier fait peut surprendre. Mais il faut considérer qu’un changement
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quelconque du corps peut entrainer une variation du champ dans tout l'espace,
champ dont I'énergie doit ainsi figurer dans I'expression du travail effectué pour ce
changement.

Un diélastique linéaire est un corps pour lequel il existe une relation linéaire entre
D, et E;:

Bl = e s o s (60)

tt

Le tenseur d,,,, s’appellera tenseur des constantes dié¢lastiques. Ses composantes sont
des nombres sans dimension. On pourra écrire:

U= UyS, 8;) + ; Cijnt Bijmn Ext Emn s (61)

F—=F\(T, B,) + ; Corint Bigimn Lug Emn s (62)
Notons la symétrie:

Cijkldz‘jmnzcijmndijkl‘ (62a)
Elle provient du fait que

Cijki Rijmn= OFJ(OE,, OF,, ) . (63)

4.3. Courant de dislocation constant

Considérons un courant moyen de dislocation constant dans un solide plastique.
I1 vérifie les équations

rot <y;> =0, (64)
et

yy=grad V, . (65)
Le champ de déformation, constant lui aussi, vérifie I'équation

Cijrt ;B = 0.

Ces équations doivent étre complétées par une relation entre <y;> et k.. Nous
envisageons ici le cas d'un corps plastique linéaire idéal, pour lequel on a:

<7Vz'j>:0'ijszkz- (66)
On tire alors de (65):
aiVj =0kl Eyp. (67)

4.4. Champs variables dans un diélastique

Nous considérons tout d’abord des fréquences pour lesquelles la relation (60) est
valable, et nous supposons de plus qu’il existe une relation linéaire:

Vi=AyH,. (68)
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Les équations (49), (53) avec y,,.=0, (60), et (68), entrainent I'équation d’onde:
02V,[08% = g4, 0,0,V (69)
dans laquelle on a posé:

= T 70
gzjk!

ijmn “mnkr “rl

(d-1 et A~! sont les matrices inverses de d et ). En comparant (69) et (21), on voit
comment la propagation des ondes dans un cristal est modifiée par la présence d'un
réseau diélastique de dislocations. Toutes les mesures de constantes élastiques par des
méthodes de vitesse du son, sont en fait des mesures des constantes g, ;.

Nous étudierons maintenant les champs dont la période est comparable au temps
de relaxation des dislocations. Nous entendons par 13 le temps moyen que mettrait un
segment du réseau de dislocations a reprendre sa configuration a la suite d'une
déformation.

Lorsque la fréquence augmente, la longueur d’onde 4 peut devenir égale a la
dimension a des mailles du réseau de dislocations, de sorte que la description macrosco-
pique du champ n’a plus de sens. Cependant, si I’on admet avec la plupart des auteurs
que la vitesse v des dislocations est toujours trés inférieure a la vitesse du son ¢, 1l se
trouve qu’a la fréquence de dispersion maximum, la description macroscopique du
champ est encore valable. Il s’agit en effet de la fréquence 1/z, ot 7, le temps de
relaxation des dislocations est de l'ordre de grandeur de afv, et cette fréquence
correspond a la longueur d’onde 4 = ¢ a/v, qui est grande par rapport a a.

Contrairement au cas des champs lentement variables, D,(f) ne dépend pas
seulement de la valeur de E; a I'instant £, mais en général de la valeur de E; a tous les
instants antérieurs. Cela provient du retard mis par la polarisation a s'établir. La
relation linéaire de ce type la plus générale s’écrit:

Dy;(t) = E;;(f) + /fijki(r) Ee (t—7)dr. (71)

/:;x.(7) est une fonction qui dépend des propriétés du corps. Pour une onde sinusoidale
de fréquence circulaire w, on peut écrire:
Dij = di_ik{(w) Eqps (72)

avec
d;jpi(w) = 04y aj[ +]f1‘jkl(r) ¢ dv | (73)
0

Les fonctions d,;,,(w) sont en général complexes. Nous pouvons établir leur forme
dans deux cas limites: les corps plastiques aux basses fréquences, et les corps quel-
conques aux hautes fréquences.

Dans le premier cas, I'équation (53) entraine 0,V; = 0D,;/0¢, si I'on suppose que
Yie — 0 et que V; = H,. Cette équation doit étre identique a (67). Or, pour une onde
sinusoidale, on a 0D;;/0t = —iw d;;,(w) E,,. Il s'ensuit que

diikl(w) = (i/w) Oijkt (74)
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Lorsque e tend vers l'infini, la fonction d,;,,(w) doit tendre vers 9, d;,. En effet
lorsque le champ varie assez rapidement, le processus de polarisation ne peut pas se
produire. Lorsque la fréquence est grande vis-a-vis de celle des dislocations, on peut
calculer la polarisation en considérant les dislocations comme libres et en négligeant
leurs interactions. Les distances parcourues par une dislocation pendant une période
du champ étant petites par rapport 4 la longueur d’onde, nous pouvons supposer le
champ uniforme en calculant la vitesse acquise par une dislocation dans ce champ.

On obtient cette vitesse par la formule (36) dans laquelle on néglige le deuxieme
Teriie:

dvldt = (1u) b, 7, A 4. (75)

On désigne ici par 4 le vecteur unité tangent a la dislocation au point considéré, et
par 7; le champ de contrainte de l'onde. En supposant qu’il s’agit d'une onde
sinusoidale, le déplacement r d’un point de la dislocation est donné par

r=—(bjuwd)T, \A. (76)

La polarisation P; étant le moment élastique par unité de volume, on I'écrit
1
Pj:Z--ijfr/\dl, (77)

c'est-d-dire comme une some d’intégrales sur toutes les dislocations contenues dans
une unité de volume. On calcule que

‘Pij = (xijkl/wz) Bos s (78)

avec
ik = Z (b 65120 [ A (s 2 = 012) G (79)

Zijx: est un facteur de structure, caractérisant le réseau de dislocations. Comme
Diszij—i—P on a

ijo

dijkl(w) = 0y 5jz — (Ljw?) Xijkt - (80)

5. Travaux importants

Les premiers travaux importants concernant la théorie des dislocations, sont
ceux de Weingarten [4] et Volterra [5], relatifs aux corps élastiques multiplement
connexes. C’est en traduisant ces travaux que Love [6] introduit le terme de dislo-
cation. Ce terme prend sa signification actuelle de défaut de structure avec Taylor [7].
Burgers [8] et Frank [9] définissent les concepts de base de la théorie des dislocations
dans les cristaux. Nye [10] introduit le tenseur de densité de dislocation. Kréner [11]
met au point une méthode pour calculer le champ de contrainte dans un continu
élastique d'une distribution de dislocations donnée par son tenseur densité. Kondo [12],
Bilby et al. [13], développent la théorie mathématique des déformations incompatibles.
Le centre des dislocations est ’objet du travail fondamental de Peierls [14].

1z
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