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On Properties of Unstable Particles
by Jifi Jersak
Institut fiir theoretische Physik der Universitiat Bern (Switzerland)?l)

(1. IX. 69)

Abstract. The condition is postulated which determines possible decay laws of unstable
particles. These decay laws are interpreted in terms of single and multiple poles on the second sheet.

1. It is well known that the exponential decay law is not the only possible decay
law of unstable particles. Various models of mixing give decay laws in the form of a
superposition of exponentials [1]. Further, possible poles of higher order in amplitudes
are expected to produce decay laws of the form: an exponential times polynomials in
time [2]. One could ask whether also other possibilities do exist.

In order to answer this question and to find all possible decay laws we have to
postulate some general property of unstable particles allowing to distinguish them
from other states and their decay from other time evolutions. The present approach
to this subject is based on the natural assumption that any decay is always accompa-
nied by the production of outgoing decay products which can no longer reproduce the
unstable particles. This assumption, distinguishing the decay from the mutual
transitions of unstable particles (like in mixing) leads to an equation which determines
the possible decay laws in dependence on the number N of the mutually transiting
unstable particles.

The interpretation of the decay laws thus obtained in terms of the singularities
on the unphysical sheet is made by means of the resonance approximation of the
scattering amplitudes of the decay products. Then any solution for finite N turns out
to produce a set of single or multiple poles. Further, the unitarity condition relates
the parameters describing the decay laws to the decay vertices of the unstable
particles. For illustration, a particular case of the pole of second order is considered in
some detail.

2. Let a set of N mutually transiting unstable particles U, be described by some
set of orthogonal states | U, >: These states are characterized by zero velocity so that
their time evolution does not include spatial montions of the unstable particles?).
This time evolution can then be written in the form

N
e M IUa>:£“aﬁ(t) IU5>+ lpf>, a=1,..., N;
aa,ﬁ‘(o) =(§aﬁ, <U;,I'!/)ta> =0, | (1)

1) On leave of absence from Charles University, Prague.
%) Such a possibility of the description of unstable particles is discussed in some detail else-
where [3].
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where the states |yf> describe the decay products of the particles U, which are
present at the moment ¢ > 0. Our assumption is that these states fulfil at least
approximately the condition

(| [y =0 @

tor any «, § and ¢,-¢' > 0.

Intuitively, this assumption is consistent with a good localisability of the unstable
particles. The decay products leave immediately after their production the interaction
region which is given by the size of the unstable particles and can no longer reproduce
an unstable particle,

On the other hand, if some resonance state of the decay products allowed them
to remain longer in the interaction region and thus violate (2), such a state should be
included into the set of the unstable particles U, 3). In this sense the exactness of the
condition (2) depends on how many states mutually transiting with some unstable
particles during their decay are included into their set.

From (1) and (2) the matrix equation

A)) AF) =A@+ 1), [AW)]ap = a4 40) (3)

follows immediately. Presumably it determines possible decay laws in dependence
on the number N. The solution for finite N is apparently of the form

A) =21T Br (4)

n=10 7!

where B is an arbitrary N-dimensional matrix. We note that provided the Hamiltonian
H and the states | U, > are T-invariant the matrices 4(f) and B are symmetric.

3. For the classification of the solutions (4) it is convenient to write the matrix B
in the Jordan form [4]

B=V{..,(—ig+F),. .}V (5)

where the brackets {} mean a quasi-diagonal N-dimensional matrix with N;-dimen-
sional matrices on the diagonal. Here

Flip=bup  i=L...,n IN=N. ©
i=1

The matrix V is any arbitrary regular matrix and » is the number of the matrices on
the diagonal. The parameters y; are written in the form

, 7
Mi:VMf_zMjrj:MﬁErj_,ogrj<M,. (7)
which excludes increasing of the amplitudes a, 4 with time.

- 3) Here, it is only a matter of convenience whether the mutually transiting unstable particles
are called different particles, different states of some particle or analogously,
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In the case » = 1 the matrix A(#) can be rewritten in the form

. N-1 1
_ ptut n fn _ -1

At) = e ,é:)%!Rt’ K=V FP, _ (8)
where the summation is finite because the matrix R is nilpotent. The decay laws
obtained from this solution are just of the form expected for the pole of N-th order [2].
The case » > 1 can be interpreted as a mixing of several above cases.

It is worth mentioning that a non-exponential decay law is allowed by equation
(3) only if N > 1. This is easily understood on the basis of the condition (2): For a
non-exponential decay, some mechanism for remembering the age is necessary but
because of (3) the decay products cannot serve for this purpose. Thus only the
existence of more mutually transiting particles can cause deviations from the ex-
ponential.

We note that the solution (4) are not in agreement with the constraint

+oo

|In |a, 4(¢) ||
dt 9
f 1e < o0 (9)

— 00

which is, according to the Paley-Wiener theorem [5], a consequence of the positive
definiteness of the energy [6, 7]. Thus the condition (2) cannot be exact if the
number of the unstable particles N is assumed to be finite. However, the effects of the
positive definiteness of energy are important only for ¢ > 1/I" [7, 8] and the solutions
with finite V can thus represent reasonable approximations of the decays.

4. The resonance effects caused by unstable particles decaying according to
equation (4) can be obtained by means of the propagator approximation of the
amplitudes. The corresponding propagator matrix is of the form

I =V {.,(s—p—2imF+F)7L . V. (10)

Its poles are given by the equations
(st?)Nf:O; i=1,..,r (11)

which, because of (7), are situated on the second sheet or eventually on the real axis.
We note that a pole of the N-th order is connected at least with N unstable particles.
The formation scattering amplitudes are then assumed to be of the form

N
Tils) =i (Sij—0;) =} g2V IILR(s) gy 4,7=1,...,¢ (12)
o, =1
where gl¥) is the constant decay vertex of the particle U, into an ¢-th channel. The |
unitarity condition for these amplitudes restricts possible values of g and relates them

to the parameters which determine the matrix B. With use of these vertices also the
production processes can be written )

N

Tis) = G, IIZH(s) gff (13)

a’rﬁ=1
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the constants G, remaining without further dynamical assumption undetermined,
however.

5. To illustrate the present approach we consider in some detail the case N = 2,
r = 1 which corresponds to the pole of the second order in the amplitudes. This case
has been considered by various authors [9] mostly in connection with the structure of
the A,-meson peak [10]. The general form of the symmetric nilpotent matrix R in
equation (8) is

1 —4
B = 14
T a4
where the parameter g can be made real by a proper choice of the basis |U;>, |U,>.
On neglecting the terms I'? and [I". p the propagator is then of the form

1
ITH(s) = 6 ME M)
. (s—M2+iM(['+ 2p) 20M (15)
20M s—M24+ i M (I'—29))"

The unitarity condition is easily solved in the case of one-channel decay ¢ = 1.
One non-trivial solution is

a=)MT, g=+iyMT (16)
with arbitrary g leading to the 7-matrix of the form
2Mr
T(s) = (17)

s—M24+iMI
The disappearance of the pole of the second order is due to the fact that the states
| U = = (U £ 4| Up)) (18)
decay, in consequence of equations (8) and (14), exponentially for # S 0. The second

order pole in the form

4MT (s — M
) = s mrr M Iy )

is obtained in two ways

I
6=0, gg=4MTI, 0= (20)
or
I
g{"gl—ZMF(l——a—), g;"gz—ZMI’(lnL%)
§1 . 82 I
=41 . o o=, (21)
[gli |gzl [Q| 2
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The formula (19) is a possible explanation of the structure of the A,-meson in its
dominant ¢ 7 decay channel [11].

In the case of more decay channels, various amplitudes are apparently possible.
One set, which is an extension of (20), is given by the equations

2 &gl =2M (I'-29)
j=1

3 g =24 (I'+ 29

j=1
gt gl = ¢ (22)
i=1

which allowe amplitudes to differ from the typical double peaked amplitude (19).
Further variations of the amplitudes are possible due to the free parameters G, in the
production processes. For example, the explanation of the one-peak structure of the
KK decay mode of the 4,-meson [12] has been given in this way [13].

It could be important to stress that some possible amplitudes produced by the
pole of the second order are hardly distinguishable from the single pole. For example,
in the two-channel case it is possible to choose, in agreement with (22),

D gl —2]/ﬁM1’
— __7/=
gg g2 ]/SMF

3
Q:_]BF (23)

which, provided G, ~ G,, leads to the production amplitudes

2 (s— M2 —3/5MD)2+ (4/5MI')?
2 _ 2 __ “ 2
Q‘Tz |T1| 5 GEM I [(s — M2)2 + M2 22

(24)

Their forms, identical in both channels, can easily be misinterpreted as a Breit-
Wigner resonance.

Finally, we shall establish, in our approach, the second order pole as a limit of

two nearby poles. It is a straightforward procedure to show that the matrix B2 can be
written in the case N = » = 2 in the form

Bz }u’l PA 1AVP2+P
zA]/ybwzb —y+p A
A= ui—ps (25)

with p real. The corresponding propagator evidently becomes identical with the
propagator (15) in the limit

M?—:»,uz, M;—>,u2, p — oo p(lﬁ—‘ug)m%ZiMQ. (26)
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One will readily verify that this limit calculation can be performed in agreement with
unitarity.

The author is pleased to thank Prof. H. Leutwyler and Prof. A. Mercier for the

hospitality in Berne and for various suggestions. He is further indebted to Prof.
J. S. Bell and Prof. V. Votruba for discussions.
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