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Untersuchungen über den Ginzburg-Landau-Parameter
in Indium-Legierungen

von Erich Fischer
Laboratorium für Festkörperphysik, Eidgenössische Technische Hochschule, Zürich

(23. VII. 69)

Zusammenfassung. Zur Überprüfung der Formeln von Gorkov und Goodman, welche sagen,
dass der Ginzburg-Landau-Parameter x linear mit dem Restwiderstand des Materials zunimmt,
ist x in verschiedenen Indium-Legierungssystemen als Funktion des Restwiderstandes experimentell

bestimmt worden.
Trotz verschiedenartigen Zulegierungen mit verschiedenen Streumechanismen konnte bei

nicht zu grossen Konzentrationen keine Abweichung von der Gorkov-Goodmanschen Formel
gefunden werden.

An der Legierung In-14%T1 wurde die Temperaturabhängigkeit des Ginzburg-Landau-
Parameters gemessen. Die Messresultate bestätigen die neuesten theoretischen Berechnungen.

I. Einleitung
Nach theoretischen Arbeiten von Gorkov [1] und Goodman [2] ist der Ginzburg-

Landau-Parameter x in der Nähe der Sprungtemperatur eine lineare Funktion von q0

(qq ist der Restwiderstand des Materials im Normalzustand.)
Dieser Zusammenhang zwischen x und q0 ergibt sich unter bestimmten

vereinfachenden Bedingungen, wenn man die Wirkung der Elektronenstreuungen auf die
elektrische Leitfähigkeit einerseits, auf die supraleitenden Eigenschaften anderseits
betrachtet. Bisher gemachte Experimente bestätigen den linearen Zusammenhang.

Van der Mark, Olsen und Rasmussen [3] haben 1966 eine experimentelle Arbeit
über den Hall-Effekt in verdünnten Indium-Legierungen veröffentlicht. Hier wird
gezeigt, dass der Hall-Koeffizient in Indium-Legierungssystemen stark von der Art
der Zulegierung abhängt. Je nach elektrischer Ladung und Atomradius der
eingebauten Fremdatome treten verschiedene Streumechanismen auf, welche die Grösse
und sogar das Vorzeichen des Hall-Koeffizienten beeinflussen.

Diese Resultate gaben den Anstoss dazu, den Zusammenhang zwischen Ginzburg-
Landau-Parameter und Restwiderstand nochmals genau zu überprüfen. Es sollte
abgeklärt werden, ob tatsächlich zur Berechnung von x und von q0 dieselbe Mittelung
der Elektronenstreuungen angewendet werden kann. In der vorliegenden Arbeit
wurde x in den Legierungssystemen Indium-Blei, Indium-Zinn, Indium-Thallium
gemessen und als Funktion des Restwiderstandes aufgetragen. Bei nicht zu grossen
Konzentrationen konnte innerhalb der Messgenauigkeit in x kein Unterschied
zwischen den verschiedenen Legierungssystemen festgestellt werden.

Der Ginzburg-Landau-Parameter ist eine temperaturabhängige Grösse. Nach
neueren theoretischen Arbeiten von Helfand und Werthamer [4] ist der Tempera-
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turverlauf abhängig vom Grad der Verunreinigung, nach einer Arbeit von Eilen-
berger [5] wird er zusätzlich noch durch die Art des Streumechanismus beeinflusst.

Die vorliegende Arbeit zeigt am Beispiel einer Indium-Thallium-Legierung, dass
diese theoretischen Berechnungen sich im Experiment bestätigen.

Neben Angaben über Ginzburg-Landau-Parameter, kritische Felder und
Restwiderstände lieferten die Experimente auch die Sprungtemperaturen der untersuchten
Legierungen. Diese sind alle aus der Literatur schon bekannt [6-11] und wurden
deshalb in dieser Arbeit nur der Vollständigkeit halber aufgezeichnet und mit den
Literaturwerten verglichen.
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Figur 1

Ausschnitt aus dem periodischen System. Die Metalle in den schraffierten Feldern sind in dieser
Arbeit als Zulegierungen verwendet worden. Obere Zahl: kritische Temperatur, untere Zahl:

kritisches Feld.

II. Theorie

/. Einfluss von Verunreinigungen auf den Ginzburg-Landau-Parameter

Im Jahre 1950 haben Ginzburg und Landau [12] eine phänomenologische Theorie
der Supraleitung veröffentlicht. Als wichtige Grösse wird in dieser theoretischen Arbeit
der Ordnungsparameter tp verwendet, dessen Quadrat - | yj\2 - ein Mass für die Dichte
der zur Supraleitung beitragenden Elektronen ist. Der Hauptgedanke der Ginzburg-
Landau-Theorie (Ginzburg-Landau wollen wir künftig mit G-L abkürzen) besteht
darin, das Gibbssche Potential des Supraleiters in Potenzen von \ip\2 zu entwickeln.
Der Übergang von der supraleitenden in die normalleitende Phase bei der kritischen
Temperatur ist ein Übergang zweiter Ordnung. Eine Folge davon ist, dass der
Ordnungsparameter stetig gegen Null geht und sich somit entwickeln lässt.

Ginzburg und Landau brechen die Entwicklung in ihren Berechnungen nach |y|4
ab. Aus diesem Grund ist ihre Theorie auf die nächste Umgebung der kritischen
Temperatur beschränkt. Pippard [13] hat in die Theorie der Supraleitung eine Grösse
£ eingeführt, welche als Kohärenzlänge bekannt ist. Aus der Unschärferelation folgt,



Vol. 42, 1969 Untersuchungen über den Ginzburg-Landau-Parameter 1005

dass der Ordnungsparameter eine nichtlokale Grösse sein muss, d.h. dass er sich
örtlich nicht beliebig rasch ändern darf. Sein Wert an einer Stelle ist durch die Werte
in einem bestimmten Umkreis festgelegt. Der Radius dieses Umkreises ist durch die
Kohärenzlänge gegeben.

| ist abhängig von der Reinheit des betrachteten Materiales. Im reinen Metall, wo
die freien Weglängen der Elektronen unendlich gross sind, beträgt sie etwa 10000
Gitterkonstanten und wird mit |0 abgekürzt. Je mehr ein Material verunreinigt ist, desto
stärker wird die Kohärenzlänge durch die mittlere freie Weglänge l der Elektronen
bestimmt. Der Zusammenhang zwischen f und l im verunreinigten Metall kann durch
die folgende Beziehung approximiert werden [13] :

r1 io1 +1-1 ¦

Durch geeignete Wahl des Materials kann erreicht werden, dass die Kohärenzlänge
klein wird sowohl gegenüber den Dimensionen des Supraleiters (diese Bedingung ist
bei makroskopischen Proben nicht schwierig zu erfüllen) als auch gegenüber Schwankungen

eines Magnetfeldes am Rand oder im Inneren der Probe (Eindringtiefe des

Magnetfeldes). Sind diese beiden Bedingungen erfüllt, so kann der Ordnungsparameter

wieder als lokale Grösse betrachtet werden.
Zur Vereinfachung der Rechnungen wurde in der G-L-Theorie ein dimensionsloser

Parameter x eingeführt :

x=f2(e*IHc)HJl (2)

mit
Xl mc2jA7ie*2wl (3)

v)q ist der Ordnungsparameter bei verschwindendem Magnetfeld, Hc das thermo-
dynamische kritische Feld, e* eine effektive Ladung der Ladungsträger, welche für
die Supraleitfähigkeit verantwortlich sind. X0 ist die Eindringtiefe im Grenzfall
schwacher Felder.

x ist allgemein als G-L-Parameter bekannt. Er ist im wesentlichen verantwortlich
für die Form der «idealen» Magnetisierungskurve eines Supraleiters. (Unter «idealer»

Magnetisierungskurve wollen wir den Verlauf der Magnetisierung in einem unendlich
langen Rotationsellipsoid verstehen, dessen Hauptaxe parallel zum Magnetfeld
steht. Dies entspricht nach der üblichen Definition einem Entmagnetisierungsfaktor
von der Grösse D 0. Dieser Idealfall kann im Experiment nur näherungsweise
erreicht werden.)

Für Supraleiter zweiter Art ist x per definitionem grösser als ]/2/2. Das obere
kritische Magnetfeld ist dann gegeben durch [14]

Hc2 Hcf2x (4)

während das Feld HcX, bei welchem erstmals magnetischer Fluss in den Supraleiter
eindringt, aus

HcX Hc (ln x + 0.08)/|/2 x (5)

berechnet werden kann [15]. Diese Formel gilt nur für sehr grosse x. Für Hc2 — Hc HcX

muss x gemäss der Definition |/2/2 sein. Gleichung (5) erfüllt diese Bedingung nicht.



1006 Erich Fischer H. P. A.

Allgemeiner formuliert, lautet die Beziehung zwischen dem unteren kritischen Feld
und dem G-L-Parameter

HcX Hcf(x) (5a)

mit

f(x) -^(lnx+ 0.08)/(/2 x für x > 1

und

f(x) -^1 für x-* j/2/2.

Harden und Arp [16] haben/(x) numerisch berechnet für alle x > 0,3.
Oberhalb HcX fällt die Magnetisierungskurve zuerst steil ab. Gegen Hc2 nähert

sich ihre Steigung dem Wert [15]

- A 71 dMjdH \H 1.16/(2 x2 - 1) (6)

Die Breite des gemischten Zustandes (d.h. des Zustandes zwischen HcX und Hc2) ist
gegeben durch das Verhältnis Hc2jHcX. Dieses erhält man aus (4) und (5a) :

Hc2jHcX f2xjf(x) (7)

Das thermodynamische kritische Feld fällt heraus. Der Verlauf von Hc2jHcX gegen
den G-L-Parameter ist in Figur 2 graphisch dargestellt.

Im Jahre 1959 hat Gorkov [17] gezeigt, dass die G-L-Gleichungen sich aus der
mikroskopischen Theorie der Supraleitung von Bardeen, Cooper und Schrieffer
[18] herleiten lassen. Als wichtiges Ergebnis findet Gorkov, dass für die Ladung e*
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Figur 2

Gestrichelte Gerade: HcnjHc als Funktion des G-L-Parameters, gestrichelte und ausgezogene
Kurve: Hc„jHcl nach Abrikosov bzw. nach Harden und Arp.
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in Formel (2) die doppelte Ladung freier Elektronen - 2 e - eingesetzt werden muss.
Eine weitere Arbeit Gorkovs [1] bringt Untersuchungen über das Verhalten
verunreinigter Supraleiter in starken Magnetfeldern. Diese Arbeit ist für uns von besonderer

Bedeutung, da sie die Herleitungen für die Formeln enthält, welche unserer Arbeit
zu Grunde liegen.
Wie bereits erwähnt, ist die Kohärenzlänge in unreinen Substanzen durch die mittlere
freie Weglänge der Elektronen bestimmt. Da der G-L-Parameter durch die Kohärenzlänge

| und die Eindringtiefe X beschrieben werden kann [17]

xocl/i (8)

ist er nach dem oben Gesagten auch eine Funktion der freien Weglänge /.

Gorkov [1] findet dafür durch Berechnung der Elektronenstreuungen den
Ausdruck

* K«h(A) (9)

mit
Xq (3 n Fc m cje) (2 n mj7 f (3) p0)112 (10)

und

X(A) (8/7 C(3)) JT{(2 »' + l)2 (2n' + l+ A)}-1 (11)
o

C(x) ist die Riemannsche f-Funktion: f(3) ~ 1,202. p ist der Impuls der Elektronen
an der Fermigienze. A ist ein Mass für die Verunreinigung1).

Es gilt
A ll(2jzFcTtr) (12)

Fc ist in Gorkovs Arbeit so definiert, dass es die Dimension (sec)^1 hat. Damit wird A
dimensionslos. rtr ist die mittlere Transport-Stosszeit der Elektronen, definiert durch

t"1 nv f (dajdü) (1 - cos 9) du (13)

wo n die Dichte der Streuzentren, v die Elektronengeschwindigkeit, a den Streuquerschnitt,

6 den Streuwinkel und ü den Raumwinkel, über welchen integriert wird,
bedeuten.

rtr ist die mittlere Flugzeit, nach welcher die Korrelation eines Elektronenpaares
zerstört wird. Es ist dieselbe Grösse, welche auch den Leitungsmechanismus im
normalen Metall bestimmt.

Für reine Materialien, wo die Transport-Stosszeit sehr lang wird, nimmt yr(A) den
Wert eins an, so dass nach Gleichung (9) xlein x0. Im Grenzfall sehr stark
verschmutzter Substanzen strebt %(A) gegen ~ tt2/7 f (3) A, so dass x oc A wird. Im Falle
isotroper Streuung kann xtr direkt durch die Leitfähigkeit a ausgedrückt werden:

rtr a m*jn e2 (14)

m* bedeutet hier eine effektive Elektronenmasse und n die Dichte der
Leitungselektronen.

x) In Gorkovs Arbeit [1] wird diese Grösse mit q bezeichnet, in der Arbeit von Helfand und
Werthamer [4] mit X. Da beide Symbole in der vorliegenden Arbeit schon in anderer Bedeutung
vorkommen, wollen wir hier den Buchstaben A verwenden.
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Gleichung (14) ist die entscheidende Gleichung für unsere Arbeit. Auf ihr sind die
nachfolgenden Überlegungen aufgebaut, insbesondere die Schlussformeln (15) und
(16) von Gorkov bzw. Goodman, welche sagen, dass der G-L-Parameter eine lineare
Funktion des Restwiderstandes ist.

Setzt man Gleichung (14) in (9) ein, so ergibt sich im Grenzfall sehr stark
verschmutzter Substanzen [1]

x= (ec yVî/a k n3) (21 £(3)/2 n)1'2

0.065 e c yWjo k (15)

wo y den Temperaturkoeffizienten der Elektronenwärme und k die Boltzmannsche
Konstante bedeuten.

Goodman [2] hat die allgemeine Formel (9) von Gorkov später auf die Form

x ~ xq + (21 C(3)/2 7t)1'2 e e oq y^jk ti3 (16)

gebracht mit dem Restwiderstand q0 und mit dem G-L-Parameter x0 der reinen
Substanz. Zur Ausführung dieses Schrittes hat Goodman die Näherungsformel (1)

benützt zur Aufteilung der Kohärenzlänge in f0 und einen widerstandsabhängigen
Anteil. Gleichung (16) ist somit nicht auf den Grenzfall stark verschmutzter Substanzen

beschränkt. Ihre Allgemeinheit wird nur durch die Verwendung der
Näherungsgleichungen (1) und (14) beeinträchtigt.

Die Proportionalitätskonstante vor Q0y112 in Gleichung (16) kann numerisch
berechnet werden. Sie beträgt 7,5 • 103, wenn g0 in i3cm und y in erg/cm3Grad2 eingesetzt
wird.

Für Xq gilt die Beziehung
xq 0.96 XL(0) /f0 (17)

XL(0) ist die Londonsche Eindringtiefe des Magnetfeldes im reinen Metall am absoluten

Nullpunkt.
Nach einiger Umformung kann x0 auch dargestellt werden als [19]

x0 | dHJdT \Tc Fc X\(0) ¦ const. (18)

und lässt sich somit aus direkt messbaren Grössen bestimmen.

2. Femperaturabhängigkeit des Ginzburg-Landau-Parameters

Gorkov [21] hat aus der G-L-Theorie eine Eigenwertgleichung aufgestellt, welche

diejenigen Feldbereiche zu berechnen gestattet, für welche die supraleitende Phase
stabil ist. Der niedrigste Eigenwert dieser Gleichung ergibt ein Magnetfeld Hc2,
welches - je nach der Art des Supraleiters - als Unterkühlungsfeld oder als oberes

kritisches Feld bezeichnet wird. Bei sinkendem Magnetfeld ist Hc2 derjenige Feldwert,

unterhalb welchem die normalleitende Phase nicht mehr existieren kann. Im
Supraleiter zweiter Art liegt Hc2 höher als das thermodynamische kritische Feld Hc

und wird als oberes kritisches Feld bezeichnet.
Wie Abrikosov [15] gezeigt hat, ist der Phasenübergang bei Hc2 bei jeder Temperatur

ein Übergang zweiter Ordnung, und der Ordnungsparameter geht stetig gegen
Null. Aus diesem Grunde ist es möglich, den Wert des oberen kritischen Feldes auch
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bei Temperaturen zu berechnen, welche weit ausserhalb des Bereiches liegen, für
welchen die G-L-Theorie formuliert worden ist. Gorkov [20] ist es gelungen, für den
Grenzfall unendlich reiner Substanzen am absoluten Nullpunkt eine untere Grenze
für Hc2 zu berechnen.

Sein Ergebnis lautet :

Hc2(F 0)=Hcxl.77. (19)

Dieser Wert ist später durch allgemeinere Rechnungen von Helfand und Werthamer
[4] bestätigt worden.

Um seinen Wert für das obere kritische Feld beim absoluten Nullpunkt mit
demjenigen bei der Sprungtemperatur zu verknüpfen, hat Gorkov eine einfache
Interpolationsformel angegeben :

Hc2jHc x (1.77 - 0.43 (FjFc)2 + 0.07 (FjFc)*) (20)

Fasst man die Gleichung (4) als Definitionsgleichung für den G-L-Parameter auf - wir
wollen das so definierte x mit xx bezeichnen -, so kann damit die Temperaturabhängigkeit

dargestellt werden als

Hc2(T)jHc(F) xx(F)f2

xx(Fc) fz (1.25 - 0.3 (FjFc)2 + 0.05 (FjFcY) (21)

Helfand und Werthamer [4] haben gezeigt, dass das Eigenwertproblem sich
allgemein, d. h. für den ganzen Temperaturbereich und für alle Grade der Verunreinigung,
lösen lässt. Die Autoren machen nur zwei Einschränkungen: Erstens vernachlässigen
sie die Wechselwirkungen zwischen Magnetfeld und Elektronenspin und zweitens
berücksichtigen sie nur die isotrope s-Streuung in der Wechselwirkung der Elektronen
mit dem Gitter. Es wird aber gezeigt, dass die erste Vernachlässigung bei Feldern von
weniger als 50 Kilogauss unwesentlich ist. Über den Einfluss der ^-Streuung auf x(F)
wird noch gesprochen werden.

Helfand und Werthamer mussten ihre Berechnungen numerisch auswerten.
Das Resultat besteht aus einer Schar von x*(T)-Kurven. Als Parameter erscheint der
Grad der Verunreinigung, ausgedrückt durch eine «reduzierte Kollisionsfrequenz»,
wie wir sie schon in den Formeln (9) bis (12) verwendet haben :

A 1/2 n Fc t= 0.882 f0/Z (22)

x* ist der auf xx(Fc) normierte Wert des G-L-Parameters. Die Grösse A kann nach [4]
experimentell bestimmt werden. Helfand und Werthamer definieren in dieser
Arbeit ein reduziertes Magnetfeld

h 2 e Hc2(vfj2 n Fc)2 0.5807 HJxe Hc (F 0) (23)

A ist dann gegeben durch die Ableitung von h nach der reduzierten Tempeiatur
t FjFc, an der Stelle Fc. Während diese Ableitung beim reinen Material (A 0)

1,426 beträgt, verzehnfacht sich ihr Wert füryl 10. Die Grösse A kann experimentell
bestimmt werden, sofern das obere kritische Feld als Funktion der Tempsratur, das

thermodynamische kritische Feld am absoluten Nullpunkt und der G-L-Parameter
des reinen Materials bekannt sind.



1010 Erich Fischer H. P. A.

Die bisher allgemeinste theoretische Arbeit über die Temperaturabhängigkeit des

G-L-Parameters stammt von Eilenberger [5]. Eilenberger hat in seiner Arbeit
zusätzlich zur isotropen s-Streuung der Elektronen verschiedene Anteile von p-
Streuung in Rechnung gezogen.

Für den Grenzfall reiner s- Streuung sind Eilenbergers h(T)-Kurven identisch
mit denjenigen von Helfand und Werthamer. Zunehmende Anteile von ^-Streuung
erniedrigen die x-Werte, und zwar um so stärker, je tiefer die Temperatur.

Eilenberger betrachtet die Fälle ltrjl5 1, ltrjls 1,5 und ltrjls 2 (ls ist die
mittlere freie Weglänge der Elektronen, wenn nur mit s-Streuung gerechnet wird).
Ei betont, dass jedes physikalisch sinnvolle Streupotential Werte von ltrjls liefert, die
zwischen 1 und 2 liegen, und dass 1,5 der wahrscheinlichste Wert sei.

Die Erniedrigung der «-Werte durch Mitberechnung der p- Streuung beträgt ein

paar Prozent und ist am absoluten Nullpunkt am grössten. Bei Fc verschwindet der
Unterschied. Dies zeigt, dass bei Fc der G-L-Parameter durch den Grad der
Verunreinigung eindeutig bestimmt ist, ungeachtet der Art der Streuung. Erst tiefere
Temperaturen bringen Unterschiede im Streumechanismus zum Vorschein.

Bis jetzt haben wir nur die Temperaturabhängigkeit von xx betrachtet, das durch
Gleichung (4) definiert ist. Bei der Sprungtemperatur darf der G-L-Parameter per
definitionem nicht von seiner Berechnungsart abhängig sein. Für ein bestimmtes
Material muss also derselbe Betrag herauskommen, gleichgültig, ob man zur Berechnung

von x die Formel (4), (5), (6), (7) oder (16) verwendet. Bei tieferen Temperaturen
zeigen sich aber beträchtliche Abweichungen.

Eilenberger hat in derselben Arbeit [5] neben xx auch Berechnungen über x2
veröffentlicht. (x2 folgt mit Gleichung (6) aus der Steigung der Magnetisierungskurve
beim oberen kritischen Feld.) Die x2-Verlaufe sind denjenigen von xx ähnlich, liegen
aber - ausser bei Fc - stets höher als diese, bei unseren Legierungen um etwa 10%
Auch die Werte von x2 werden durch zunehmende Anteile von />-Streuung erniedrigt-

III. Experiment

7. Herstellung der Proben

Während die Restwiderstandsmessungen an Drähten ausgeführt wurden, haben
wir für die Magnetisierungsmessungen Rotationsellipsoide von ca. 20 mm Länge und
3 mm Durchmesser (Entmagnetisierungsfaktor D 0,04) gegossen.

Als Ausgangsmaterialien wurden Indium mit einer Mindestreinheit von 99,999%
und Blei, Cadmium, Thallium, Wismuth, Zinn mit mindestens 99,9% Reinheit
verwendet. Die abgewägten Mengen wurden in Pyrexglasrohren unter Vakuum
zusammengeschmolzen und im flüssigen Zustand einige Minuten intensiv geschüttelt, um
eine gute Durchmischung sicherzustellen. Anschliessend an das Mischen wurde im
gleichen Arbeitsgang ein Draht für die Restwiderstandsmessung gegossen. Um ein
Ankleben der Schmelze an das Glas zu vermeiden, wurde dieses vorher mit «Dag»
(in Alkohol kolloidal gelöstem Graphit) ausgestrichen.

Das Ellipsoid für die Messung der Magnetisierung wurde in einer vierteiligen Gussform

aus Messing hergestellt (siehe Figur 3). Diese wurde vor dem Giessen ebenfalls
mit Dag bestrichen, um Verunreinigung und Ankleben der Schmelze zu verhindern.
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Draht und Ellipsoid derselben Legierung wurden nach dem Guss unter Vakuum
in ein Glasrohr eingeschmolzen und entsprechend ihrem Phasendiagramm über
mehrere Tage bis Wochen wärmebehandelt.

u f
Figur 3

Gussform zur Herstellung der Ellipsoide.

2. Messung der Magnetisierung
Die Magnetisierungsmessung erfolgte mit Hilfe einer Integrationsmethode. Das

langsam ansteigende Magnetfeld erzeugt in einer Pickup-Spule, welche die Probe eng
umschliesst, eine Spannung, die der zeitlichen Ableitung der Induktion in der Probe
proportional ist. Durch Kompensation und Integration des kompensierten Signals
ergibt sich eine Spannung, welche ein dhektes Mass für die Magnetisierung in der
Probe ist. Als Integrator wurde ein kapazitiv rückgekoppelter Gleichspannungsver-
stäiker mit einer maximal zulässigen Integrationszeit von ca. 7 Stunden verwendet.

3. Auswertung der Magnetisierungskurven

Figur 4 zeigt zwei Beispiele von Magnetisierungskurven, wie unsere Messmethode
sie geliefert hat.

Aus der reversiblen Magnetisierungskurve eines Supraleiters zweiter Art, welcher
die Form eines unendlich langen Rotationsellipsoids hat, dessen Hauptaxe parallel
zum Magnetfeld steht, können folgende Grössen herausgelesen werden: das obere

Figur 4

Zwei Beispiele von experimentellen Magnetisierungskurven. Links Indium mit 4 Atomprozent
Blei, ein Supraleiter erster Art. Rechts als Beispiel eines Typ-II-Supraleiters Indium mit 6 Atom¬

prozent Blei. Beide Kurven sind bei 1,8 °K aufgenommen worden.
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kritische Feld Hc2, das untere kritische Feld HcX, die Steigung der Magnetisierungskurve

beim oberen kritischen Feld - tg<5 — 4 71 dMjdH\Hc2 - und die Grösse H2/8 n,
welche durch die Fläche zwischen der Magnetisierungskurve und der Abszisse gegeben
ist.

Die experimentellen Kurven weichen von der idealen Form ab. Zu einem Teil sind
die Eigenschaften des Materials dafür verantwortlich: durch Irreversibilitäten im
Material wird die Spitze der Magnetisierungskurve bei HcX abgerundet. Die Steigung
bei Hc2 und die Fläche unter der Kurve werden zu gross. Zum andern Teil gibt es

Abweichungen von der idealen Kurvenform, welche durch die Gestalt der Probe
bedingt sind : die von uns verwendeten Proben haben einen nicht verschwindenden Ent-
magnetisierungsfaktor von ca. 0,04. Dies bewirkt einerseits, dass das Feld, bei welchem
erstmals magnetischer Fluss in die Probe eindringt, um etwa 4% nach unten
verschoben wird, anderseits verkleinert es die Steigung der Magnetisierungskurve beim
oberen kritischen Feld. Der Wert von Hc 2 und die Fläche unterhalb der Kurve werden
nicht verändert.

Abweichungen von der exakten Ellipsoidform tragen mit bei zur Abrundung der
Spitze beim unteren kritischen Feld. Unsicherheiten, welche sich durch Irreversibilität
des Materials ergeben, können durch geeignete Wärmebehandlung der Proben
verkleinert werden.

Die Formeln, mit Hilfe welcher sich die gemessenen Grössen auf den Idealfall
unendlich langer Zylinder im Längsfeld umrechnen lassen, sind im folgenden
zusammengestellt. Die gemessenen Grössen sind in den Formeln durch ' gekennzeichnet.

Hc2 HU (24)

HcX He\l(l - D) (25)

Hc {è7zF'jtE«.'(l-D)}1>2, (26)

tg<5 tg<5'/(tga' (1-D)- tg<5' D). (27)

oc bezeichnet die Anfangssteigung der Magnetisierungskurve und F ist die Fläche
unter der Kurve.

Die so gewonnenen «idealen» Grössen können nun in die verschiedenen Formeln
zur Berechnung des G-L-Parameters eingesetzt werden :

xx Hc2jHcf2, (28)

x2 {(0.58/tgr3) + 0.5}1'2, (29)

f(x3)=HcXIHc, (30)

Hc2jHcX f2xtJf(xt). (31)

Zur Auswertung von (30) und (31) müssen die Berechnungen von Harden und Arp
(graphische Darstellung in Figur 2) verwendet werden.

Die Ergebnisse aus (28) und (30) sind mit Vorbehalt aufzunehmen. Beide enthalten
sie das thermodynamische kritische Feld, berechnet aus der Fläche unter der Magneti-
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sierungskurve. Da jede Probe mehr oder weniger stark irreversibel ist, wird der
experimentell bestimmte //.-Wert im allgemeinen etwas zu gross ausfallen.

Besonders bei der Anwendung von Formel (30) ist Vorsicht am Platz. Ausser dem
thermodynamischen kritischen Feld enthält diese Gleichung das ebenfalls schlecht
bestimmbare HcX. Die Genauigkeit von HcX wird beeinträchtigt sowohl durch
Irreversibilitäten als auch durch Abweichungen der Probe von der genauen Ellipsoid-
form. Aus diesem Grunde haben wir für unsere Auswertungen Formel (31) verwendet
an Stelle von (30), weil hier wenigstens eine der beiden unsicheren Grössen eliminiert
ist.

IV. Ergebnisse

7. Ginzburg-Landau-Parameter und kritische Felder als Funktion der Zulegierung

In Figur 5 ist der G-L-Parameter für die Legierungssysteme Indium-Blei, Indium-
Zinn und Indium-Thallium graphisch gegen den Restwiderstand aufgezeichnet [21].
Als Berechnungsmethode wurde Gleichung (31) gewählt. Wie erwähnt, ist der G-L-
Parameter temperaturabhängig. Die Werte in Figur 5 beziehen sich auf eine Temperatur

von F 0,8 F..

1.4

1.0

Q8

tV

0.8 Tc

/
A

-/-

-A// /

/77Z

M//M-

4 g [pOcm] 5

Figur 5

G-L-Parameter als Funktion des Restwiderstandes. • In-Pb, In-Sn, ¦ In-Tl.

Diese Temperatur ist genügend nahe beim Sprungpunkt, um Werte zu liefern,
welche sich mit den Formeln von Gorkov [15] und Goodman [16] vergleichen lassen.

Um eine Darstellung zu erhalten, in welcher sich unsere Hauptfrage beantworten
lässt, muss x gegen Qo(yly0)112 aufgetragen werden, das heisst, die Abweichung des

Temperaturkoeffizienten der Elektronenwärme vom reinen Indiumwert muss
korrigiert werden. Dies ist in Figur 6 ausgeführt, y haben wir dafür aus dem
Temperaturverlauf des thermodynamischen kritischen Feldes bestimmt.
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Hier fallen - wenigstens unterhalb einem bestimmten Wert des Restwiderstandes -
die Verläufe der drei Legierungssysteme innerhalb der Messgenauigkeit zusammen.

Aus Figur 5 geht hervor, dass der G-L-Parameter in erster Näherung eine lineare
Funktion des Restwiderstandes ist. Extrapoliert man die Geraden zurück auf
verschwindenden Restwiderstand, so muss sich als Ordinatenabschnitt der G-L-Parameter

der reinen Grundsubstanz ergeben.

Vi i ¦ —' i i

/"

Q8TC /
*~

// -

-
'

-

i i

-

2 3 4 Bfr/tfiMnoT^ 5

Figur 6

G-L-Parameter als Funktion des normierten Restwiderstandes Qn(yly0)112.

• In-Pb, A In-Sn, ¦ In-Tl.

T= Q8TC

/// <?.

300

10O-"*"'=ii"

J_ J_
4 6 %\ynm\

Figur 7

Kritische Felder als Funktion des Restwiderstandes. In-Pb, • In-Sn, ¦ InTl.
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Obschon über eine weite Strecke extrapoliert werden muss, ergeben sich aus allen
drei Geraden x0-Werte, welche mit 0,06 für In-Sn und In-Pb und mit 0,11 für In-Tl
innerhalb des Bereiches der bisher bekannten Literaturwerte liegen [22].

In Figur 7 sind für die drei gleichen Legierungssysteme die kritischen Felder bei
0,8 Fc als Funktion des Restwiderstandes aufgezeichnet. Die Aufspaltung von Hc in
ein oberes und ein unteres kritisches Feld (d. h. der Übergang von Supraleitung erster
Art zu Supraleitung zweiter Art) erfolgt in allen drei Fällen annähernd beim gleichen
Widerstand. Der Widerstand beträgt q0 ~ 2,6 fAÜcm. Dies entspricht gut dem Wert,
welcher aus der GooDMAN-Formel (16) hervorgeht, wenn man x }/2/2 und für y den
Literaturwert für reines Indium [23] einsetzt.

Eine ähnliche Darstellung ist in Figur 8 gezeigt für alle fünf untersuchten
Legierungssysteme. Hier sind die auf F 0 extrapolierten Feldwerte für kleine
Restwiderstände dargestellt. Wegen der Temperaturabhängigkeit des G-L-Parameters
liegen hier die Verzweigungen der kritischen Felder bei einem kleineren
Restwiderstandswert, als dies bei der Situation in Figur 7 der Fall ist.

800

600

/TT=0°K .'**4£400

gCAmmSn^-m

200

2 3 p [iiTlcm]

Figur 8

Kritische Feldwerte am absoluten Nullpunkt, im Bereich kleiner Restwiderstände.
Indium-Blei, • Indium-Zinn, A Indium-Wismuth, o Indium-Cadmium, ¦ Indium-Thallium.

2. Restwiderstand als Funktion der Zulegierung

Der elektrische Widerstand der untersuchten Legierungen wurde an Drähten
bei der Temperatur des flüssigen Wasserstoffs gemessen. Zur Extrapolation auf den

eigentlichen Restwiderstand bei 0°K wurde der Temperaturverlauf des elektrischen
Widerstandes im reinen Indium eingesetzt. Dies ist nicht ganz korrekt, weil in Indium-
Legierungen die Matthiessensche Regel [24] nicht sehr gut erfüllt ist. Der Fehler ist
aber so klein, dass er vernachlässigt werden kann.

In Figur 9 sind die Restwiderstände unserer Legierungen als Funktion der
Konzentration aufgezeichnet. Die gestrichelte Horizontale gibt denjenigen
Widerstandswert an, für welchen man - nahe bei der Sprungtemperatur - den Übergang
von Supraleitung erster zu Supraleitung zweiter Art erwartet. Während für alle
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anderen Legierungen die Widerstandsänderung als Funktion der zulegierten Menge
bei nicht zu grossen Konzentrationen linear verläuft, zeigt das System Indium-
Cadmium starke Abweichungen von der Linearität. Dasselbe wurde auch im Verlauf
der kritischen Temperatur (siehe Figuren 10 und 11) beobachtet und lässt sich auf

metallurgische Phasenumwandlungen zurückführen.

3. Kritische Femperatur als Funktion der Zulegierung

Die kritische Temperatur Fc wurde in unseren Messungen als Nebenprodukt aus
den Messungen der kritischen Felder gewonnen. Im HC(F2)-Diagramm konnte Fc

durch lineare Extrapolation mit guter Genauigkeit bestimmt werden.
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Figur 9

Restwiderstand als Funktion der Zulegierung.
A. Indium-Blei, ¦ Indium-Zinn, Y Indium-Wismuth, O Indium-Cadmium, • Indium-Thallium
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Figur 10

Kritische Temperaturen als Funktion der Zulegierung in Atomprozent.
A Indium-Blei, ¦ Indium-Zinn, • Indium-Wismuth, A Indium-Cadmium, o Indium-Thallium.
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In Figur 10 sind die kritischen Temperaturen der untersuchten Indium-Legierungen
als Funktion der zulegierten Fremdmetalle (in Atomprozent) dargestellt. Zum

Vergleich sind die Ergebnisse anderer Autoren [6], [8-11] als Linien eingezeichnet.
Die Übereinstimmung ist gut.

Indium-Cadmium ist das einzige in dieser Arbeit untersuchte Legierungssystem,
bei welchem die Grenze der primären Löslichkeit überschritten wurde. Indium-
Cadmium hat ein kompliziertes Phasendiagramm. Ein enger Zusammenhang zwischen
Phasendiagramm und Verlauf der Sprungtemperatur ist in einer ausführlichen Arbeit
von Merriam [7] nachgewiesen worden. Die Resultate für In-Cd sind in Figur 11

separat dargestellt und mit den Ergebnissen von Merriam verglichen. Dass unsere
Messpunkte oberhalb etwa 11 Atomprozent Cadmium stark streuen, kommt daher,
dass dank verschiedener Wärmebehandlung nicht jedesmal die gleiche Phase
gemessen wurde.
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Figur 11

Verlauf der kritischen Temperatur im System Indium-Cadmium.
und T nach Merriam [7], • eigene Messungen.

4. Femperaturabhängigkeit des Ginzburg-Landau-Parameters
Die Figuren 12 und 13 zeigen die kritischen Felder als Funktion der Temperatur

für Indium mit 12 bzw. 23 Atomprozent Thallium. Im ersten Fall haben wir es

- wenigstens in der Nähe der Sprungtemperatur - mit einem Supraleiter erster Art zu
tun. Die Darstellung zeigt aber, dass das kritische Feld Hc sich unterhalb etwa 2°K
in ein oberes und ein unteres kritisches Feld aufspaltet : die Legierung wird unterhalb
einer bestimmten Temperatur zum Supraleiter zweiter Art. Dies beweist, dass der
G-L-Parameter mit sinkender Temperatur zunimmt.

Indium mit 23 Atomprozent Thallium ist bei jeder Temperatur ein Supraleiter
zweiter Art. Dies geht aus Figur 13 hervor. Berechnet man aus den Messwerten dieser

Figur den Quotienten Hc2jHcX als Funktion der Temperatur, so erhält man den Verlauf

der Figur 14.

Auch hier nimmt der G-L-Parameter, welcher nach Figur 2 eine monotone
Funktion von Hc2jHcX ist, nach sinkenden Temperaturen zu.
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Figur 15 zeigt das Temperaturverhalten des G-L-Parameters für die Legierung
In-7at.%Pb. Dass x2 um einiges höher liegt als xx, ist hier klar ersichtlich. xx und x*
zeigen vergleichbare Werte. Man sieht auch, dass - wie die Theorie es fordert - die

drei Verläufe gegen Fc dem gleichen Wert zustreben.
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Figur 12

In-12%T1, kritische Felder als Funk¬
tion der Temperatur.
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Figur 13

In-23%T1, kritische Felder als Funk¬
tion der Temperatur.
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Figur 14

In-23%T1, HcnjHcX als Funktion der Temperatur.

In unserem He4-Kryostaten war es nicht möglich, Temperaturen unterhalb etwa
0,4 Fc zu erreichen. Wir haben deshalb - wenigstens zur Messung einer Legierung -
den Temperaturbereich bis hinunter auf etwa 0,4 °K erweitert durch Verwendung
eines He3-Kryostaten. Die Messungen in diesem erweiterten Temperaturbereich
wurden an In-17,5at.%Tl durchgeführt. Indium-Thallium-Legierungen zeigen gute
Reversibilität und eignen sich daher für exakte Messungen des G-L-Parameters.
Zur Unterdrückung der Oberflächenströme wurde die Probe elektropoliert und
verkupfert.

Die Resultate sind in Figur 16 zusammengefasst. Es sind die Messwerte von xx, x2
und x* eingetragen.
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Während wir für x* keine theoretischen Grundlagen besitzen, stehen für xx und x2
Eilenbergers Kurven für x} als Funktion der Temperatur mit den Parametern £jltr
(Verunreinigungsgrad) und ltrjls (Anteil /»-Streuung) zur Verfügung.

Die Messresultate wurden nun mit Eilenbergers theoretischen Kurven verglichen.
Das Problem war, die experimentellen Verläufe sowohl von xx als auch von x2 mit den

entsprechenden theoretischen Kurven so in Deckung zu bringen, dass die Parameter
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Figur 15

Temperaturabhängigkeit des G-L-Parameters

in In-7%Pb. Axx, 0x2,Mx*.

Figur 16

Temperaturabhängigkeit des G-L-Parameters

in In-17,5%T1. A xx, % Xn, Mx\.
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Temperaturabhängigkeit des G-L-Parameters in In-17,5%T1. A xx aus Hc2 und Fläche unter der

Magnetisierungskurve, • x2, A xx aus Hc„ und Hc nach BCS. Ausgezogene Kurven : theor. Verläufe
für xx und x« nach Eilenberger.
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ì-jltr und ltrjls in beiden Fällen die gleichen waren. Wie Figur 17 zeigt, ist dies mit
Eilenbergers Kurven für }-jltr 4 und lirjls 1,5 recht gut gelungen. Damit haben
wir einerseits die theoretischen Verläufe bestätigt, anderseits wurde der Grad der

Verunreinigung und der Anteil an ^-Streuung annähernd bestimmt.
Wie weiter oben erwähnt worden ist, kann das Mass der Verunreinigung nach

Helfand und Werthamer [4] aus dem Temperaturverlauf von Hc2 bestimmt
werden. Diese Bestimmungsmethode führt auf den gleichen Wert, wie wir ihn durch
Einpassen unserer Messwerte in die theoretischen Kurven gefunden haben. Auch das
Resultat ltrjl =1,5 scheint sinnvoll, da für eine Verunreinigung von Indium durch
eine Substanz gleicher elektrischer Ladung ausser der Grosswinkelstreuung auch ein

gewisser Anteil an Kleinwinkelstreuung zu erwarten ist.
Die ausgefüllten Dreiecke in der Figur 17 beschreiben die Werte von xx, gewonnen

aus dem oberen kritischen Feld und dem zugehörigen thermodynamischen kritischen
Feld Hc. Dieses wurde durch Integration der jeweiligen Magnetisierungskurve
bestimmt. Werthamer (Ref. in [25]) hat jedoch darauf hingewiesen, dass zur Berechnung

des theoretischen Temperaturverlaufes von xx der Temperaturverlauf von Hc

eingesetzt worden ist, wie er durch die Theorie von Bardeen, Cooper und Schriffer
[18] beschrieben wird. Wir haben deshalb durch Extrapolation unserer experimentellen
//c(T)-Kurve die Sprungtemperatur Fc und das kritische Feld Hc9 am absoluten
Nullpunkt bestimmt und daraus die BCS-Werte des thermodynamischen kritischen
Feldes als Funktion der Temperatur berechnet. Die resultierenden xx-Werte sind in
der Figur 17 durch leere Dreiecke dargestellt.

V. Zusammenfassende Bemerkungen

7. Konzentrationsabhängigkeit des Ginzburg-Landau-Parameters

Die GooDMANsche Formel (16) sagt, dass der G-L-Parameter x in einer Legierung
eine lineare Funktion ihres RestWiderstandes ist. Um auf diese einfache Form zu
kommen, waren zwei Näherungen notwendig : Für den Zusammenhang zwischen der

Kohärenzlänge und der mittleren freien Weglänge der Elektronen wurde die Formel
(1) verwendet, und die Formel (14) wurde eingesetzt, um eine einfache Beziehung
zwischen der mittleren freien Flugzeit der Elektronen und der Leitfähigkeit (bzw.
dem spezifischen Widerstand) des Materials zu haben.

Bei der GooDMANschen Formel handelt es sich also um eine Näherungsformel.
Da der Zusammenhang zwischen xtr und a nur unter besonderen Annahmen eine
einfache Proportionalität ist, wäre es nicht verwunderlich, wenn bei genauem
Hinsehen die GooDMANsche Beziehung nicht erfüllt wäre. Dies besonders deshalb, weil
wir aus Halleffekt-Messungen wissen, wie stark verschieden die Leitungsmechanismen
in den verschiedenen Legierungen sind.

Wie Figur 6 zeigt, können für die drei Legierungssysteme In-Pb, In-Sn und In-Tl
innerhalb der Messgenauigkeit keine Abweichungen in x festgestellt werden, solange der
Restwiderstand einen bestimmten Wert nicht überschreitet. Oberhalb dieses Wertes
aberweichen In-Sn und In-Tl deutlich vom Verlauf des Legierungssystems In-Pb ab.
Dies zeigt, dass die GooDMANsche Formel doch nicht ganz vorbehaltlos angewendet
werden darf.
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2. Femperaturabhängigkeit des Ginzburg-Landau-Parameters

Wie Figur 17 zeigt, können unsere experimentellen Resultate für x(F) in In-
17,5%T1 gut mit den theoretischen Kurven von Eilenberger in Einklang gebracht
werden. Insbesondere kann auch der Unterschied zwischen xx und x2 deutlich festgestellt

werden.
Der durch Einpassen in die theoretischen Kurven erhaltene Wert für £jltr stimmt

gut überein mit dem, was man aus anderen Überlegungen für den Grad der
Verunreinigung erwartet.

Es wurde damit wenigstens für eine Legierung gezeigt, dass die neuesten theoretischen

Berechnungen für die Temperaturabhängigkeit des G-L-Parameters der
Wirklichkeit angepasst sind.
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