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Le saut de diffusion lacunaire?)

par J.-J. Paltenghi

Laboratoire de Génie Atomique, EPF Lausanne

(30. IV. 69)

«La nature ne fait pas de sauts» Leibniz

Abstract. A phenomenological theory of the vacancy jump is presented. It is shown on one
hand that diffusion of crystalline structure defects should be described as evolution of statistical
distributions. On the other hand, a strong conceptual relation is noted between the states of a
diffusive particle and of a particle in a fluid.

The crystal energy is then taken as a sum of interactions between pairs of atoms. Jaynes’
generalization of Gibbs’ statistical method is used. A self consistent field approximation gives a
simple analytical expression for the jump rate, the migration energy and the migration volume of
a vacancy. Numerical results agree clearly well with experimental data.

This theory may be considered as a connection between fluid and solid mechanisms of diffusion.

Introduction

L’idée qu'un nceud d’un réseau cristallin pouvait ne pas étre un site atomique a
été émise en 1926 par FRENKEL [1]. Ce défaut de structure cristalline, la lacune, est
devenu depuis lors une réalité, grace a de multiples expériences de résistivité électrique,
de chaleur spécifique, de dilatation, ou grice & des observations au microscope a effet
de champ inventé par Miiller (1951). L’intérét d’étude des lacunes ne réside pas tant
dans les modifications qu’elles apportent aux propriétés physiques d'un cristal que
dans les effets indirects résultant de leur mobilité. Il s’avére en effet que la diffusion
lacunaire contribue pour une grande part a la diffusion atomique dans un métal.
Or il est bien connu que les processus métallurgiques sont pour la plupart régis par la
diffusion atomique. On congoit donc I'intérét qu’il y a a maitriser le phénomeéne de
diffusion lacunaire. Malheureusement, aucune théorie fondamentale ne donne encore
un réel controle des résultats expérimentaux.

La description du saut de diffusion matérielle dépend des relations de positions
et de vitesses qu’entretiennent N corps d'un systéme. Aussi, ne devrait-elle pas
différer essentiellement selon la phase (solide, liquide ou gazeuse) du systéme. Pour
I'instant, les théories du mécanisme de diffusion traitent séparément chaque phase
et sont étrangeres les unes aux autres. Cette diversité pourrait bien étre pléthorique.

Dans ce travail nous avons construit une théorie phénoménologique du saut
lacunaire, qui relie les mécanismes de diffusion dans les cristaux et dans les fluides.
Nous avons acquis durant cette étude la conviction que le saut de diffusion lacunaire

1) Travail subsidié€ par le Fonds National Suisse pour la Recherche Scientifique.
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850 | J.-J. Paltenghi H.DP. A

consiste en une instabilité locale du réseau cristallin, équivalente a l'instabilité
globale qui apparait lors de la fusion.

Cette théorie repose essentiellement sur une conception récente de la physique
statistique, le principe de GIBBS-JAYNES [2], qui généralise la méthode de Gibbs &
partir de la théorie de I'Information,.

Le travail se divise en quatre parties. La premiere fait état du principe de Gibbs-
Jaynes et de la relation phénoménologique que nous désirons établir. La deuxiéme
partie expose la recherche des états du cristal dans une approximation de champs
autoconsistants. La troisiéme partie consiste 4 déterminer la fréquence du saut
lacunaire. L'épreuve expérimentale forme la derniére partie.

I. Les concepts

§1. Le systéme de particules

Considérons un systéme de N particules identiques, d’impulsions p, et repérées
par les vecteurs-lieu g, (¢ = 1... N)2). La distribution statistique p(p ¢) caractéristique
de I’état du cristal observé satisfait 4 la condition de normalisation:

~

Nigl=[e(pg)al =1. (1)

Dans cette relation, d/” est un élément de ’espace de phase v et 'intégration est portée
dans tout le domaine accessible au systéme.

La prédiction d'une mesure <G> d'une grandeur physique G(p g) est alors donnée
par l'espérance mathématique:

G> =[G g elpg)al. 2
Pour décrire les états d’équilibre statistique
do

o =0 3)

il suffit de connaitre I'énergie £(p g) du systéme. Il est naturel d’introduire un potentiel
cristallin £, qui soit la somme d’interactions de paires de particules, puisque le
probléeme de diffusion est un probléme de relations entre N corps:

NN

E,=5 Y Ulei—9) #

i=1,j=1
Selon BLANDIN [3], cette forme est en particulier valable pour les métaux solides ou
liquides, parfaits ou imparfaits, dont la surface de Fermi se rapproche de celle d'une
sphere. L’énergie cinétique ainsi que 1'énergie totale sont réductibles a une forme
analogue:

N
E(pq) :ZE@' (5)
avec 1 ) {
Ey= S U(@—a) + 4 war (B —B)*. ©)

) La notation de LaNDAU [9] est reprise ici.
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Grace au principe d’égalité de 'action et de la réaction, E,; = E;,, extrayons le role
de la particule 1:
-3 E:J+22F1, (7)
i,j=*1

Symbolisons les variables du sous-espace de phase y, relatif aux N — 1 particules
autres que 1 par le couple (p, g,), et notons:

Eo(po 7o) = ZE V(?Q’):ZZEu- (8)

5,i+1

L’énergie cristalline prend la forme que nous utiliserons:

E(pq) = Eo(pog) + V(P q) - (9)

Le systéme de particules ainsi représenté est doué de propriétés physiques tres
différentes suivant la phase dans laquelle il se trouve. Dans la phase cristalline la
densité des particules dans l'espace ordinaire n’est pas homogéne. Les maxima de
cette fonction sont les sites atomiques et coincident avec les nceuds du réseau cristallin.
Les propriétés physiques du systéme sont alors anisotropes et varient avec la symétrie
du réseau.

Dans les phases tluides (liquide et gazeuse) la fonction de distribution a une
particule est constante dans tout le volume accessible. La particule n’a donc plus de
site. A moins de symétries internes de la particule (molécules orientées dans les
cristaux liquides par ex.), le fluide est alors isotrope.

§2. L'entropie et le principe de Gibbs-[aynes

A chaque état g, on peut faire correspondre un nombre S[g], dit entropie statistique,

dont la définition est: ,
Sle] = —j o(p q) logo(p q) al”. (10)

L’entropie statistique peut s’interpréter (4] comme une mesure de 'information que
nous avons sur le systéme de particules.

Sur les bases de la théorie de 'Information, JAYNES (2] a récemment développé
en mécanique statistique une généralisation de la théorie de Gibbs. Réduit a I'appli-
cation que nous voulons en faire, ’énoncé de son principe variationnel est le suivant:
La fonction de distribution ¢ qui donne la description la plus raisonnable du systéeme
physique est celle qui rend maximum son entropie

8S[p] = 0 82S[p] < O (11)

sous les contraintes de normalisation (1) et d’information acquise par des mesures (2).
La lettre d désigne la dérivée fonctionnelle.

Dans ce principe, la distribution statistique s’établit donc directement a partir de
I'information acquise. Aprés JAYNES, nous admettrons qu’elle décrit un élat de
CONNALSSANCE.

Notons encore que dans sa forme générale le principe de Gibbs-Jaynes est suscep-
tible de traiter des phénomenes dissipatifs. Il est en effet facile d’introduire des con-
traintes et des distributions qui dépendent du temps.



852 J.-J. Paltenghi H. P. A,

§3. Le saut lacunaive

Considérons dans un cristal une particule baptisée 1 voisine d'une lacune O et
oscillant autour de son site /. L’expérience montre que la particule peut changer de
localisation, faisant du nceud 0, vacant jusqu’alors, son nouveau site. Le mécanisme
est dit ¢saut lacunaire», puisque selon toute apparence la lacune s’est comportée
comme une pseudo-particule se transportant en sens inverse de la particule diffusante.

Admettons d’une part que les etfets de surface du cristal ou d’interactions entre la
lacune et d’autres défauts cristallins soient négligeables, et d’autre part que les
particules non diffusantes 2, 3, ... IV soient indiscernables. Les deux états cristallins
antérieur et postérieur au saut lacunaire sont alors équivalents, au déplacement pres
du cristal qui ramene le site de la particule marquée du nceud 0 au nceud /:

{1(D} =A{10)}. (12)

Les concepts de lacune, de site atomique, et plus généralement de défaut de
structure cristalline, sont de nature statistique comme le concept de réseau cristallin
dont ils dérivent. Nous entendons par la qu’ils ne sont définis qu’a partir de la distri-
bution statistique p. Il s’ensuit la conséquence trés importante que la diffusion des
défauts de structure cristalline ne peut étve décrite que par I'évolution de distributions
statistiqgues. e manquement a cette régle, largement répandu actuellement3),
entraine une inadaptation conceptuelle de la théorie a 'expérience [6].

L’observation expérimentale ne recueille que les traces du saut de ditfusion. Aussi
concevrons nous un état de transition entre les états initial et final (12), par lequel
passe et doit passer le systéme de particules durant le saut de diffusion. Cet état de
transition difféere de I'état activé familier [8] en ce qu’il n’est pas état d’équilibre
thermodynamique total. On verra dans le paragraphe suivant comment nous avons
construit I'état de transition associé au saut lacunaire.

§4. L’état de transition

I’état du cristal étant représenté par la distribution p, nous en tirons 1'état g, de la
particule 1: .
01(p1 ¢1) = /Q(Ib q) dl’. (13)

o

L’intégration d’élément d/’, est portée dans le sous-espace y, de y relatif aux N — 1
particules restantes. La notation p, ¢; symbolise les variables p, q,. Sinous intégrons
la fonction g, (p; ¢,) sur les impulsions, nous obtenons la distribution spatiale g, ,(¢,).

Nous avons vu que cette distribution p, , réduite présentait un maximum au
site I dans I'état antérieur, puis au site 0 dans 1'état postérieur au saut. Le phénomeéne
(12) du saut lacunaire est logiquement décomposé par l'introduction d’'un état de
transition dans lequel la particule diffusante n’a déja plus de site en I, et pas encore
de site en 0. Le schéma du phénomeéne est alors la succession logique:

annihilation création

{I(I)} _du sit;_* {1( )} du site 0 1(0)} (14)

3) Par exemple dans les théories [5], [50], [51], [52]. Rappelons que le site est par définition un
maximum de la fonction de distribution spatiale & une particule.
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Appelons o’(p ¢) I'état de transition du cristal. La particule diffusante sera délocalisée
quand la distribution réduite o], , ne présentcra pas de maximum. Cette condition est
satisfaite le plus simplement par la fonction plate dans le volume accessible:

01,,(q1) = cte. (15)

Or cette distribution est précisément celle qui représente une particule au sein d’'une
phase fluide (§1). Le saut lacunaire est donc lié conceptuellement a la fusion, comme
une destruction locale est apparentée conceptuellement a la destruction totale du
réseau cristallin (Figure).

P1q |

T
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.P1q

7

]
|
i
|
i q
l
0

Représentation symbolique de la succession des états réduits durant le saut lacunaire.

La relation notée entre la fusion et la diffusion lacunaire confére un grand intérét
a I'analyse de l'autodiffusion dans les fluides. Pendant tres longtemps, les physiciens
ont cru que 'autodiffusion dans les liquides procédait par une activation thermique
analogue a celle qui a lieu dans les solides. Aussi la vitesse de diffusion était-elle
présentée dans des coordonnées d’Arrhénius et les résultats rapportaient des énergies
d’activation. Au cours de ces derniéres années, des observations ont été établies, qui
montrent que le coefficient d’autodiffusion est approximativement proportionnel a la
température. Ce résultat conduit & rompre avec le point de vue traditionnel. Suivant
NACHTRIEB [7], 'autodiffusion dans un liquide est un processus coopératif, chaque
atome effectuant de petits mouvements de diffusion dans un temps comparable a une
période de vibration. Dans les liquides, comme dans les gaz, le concept d’état de
transition (ou d’état activé au sens particulier de la «Rate process theory» [8]) est
alors dépourvu d’utilité, puisque le fluide est toujours dans un état de transition.
Il s’ensuit le résultat important qu'un fluide est un systéme de particules en état d’ auto-
diffusion permanent et généralisé.

Dans l'introduction de ce travail, nous avons signalé qu'une description de la
diffusion matérielle ne devait pas diftérer essentiellement selon la phase physique du
systéme. Nous avons maintenant suffisamment d’informations qui doivent nous per-
mettre de relier la diffusion lacunaire, cristalline, a la diffusion dans les fluides:
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Tout état fluide étant un état de transition pour la diffusion, nous postulerons que
dans I'état de transition associé au saut lacunaire, la particule ditfusante est dans un
état fluide:

01(br 1) = Q;k(fbl q1) - (16)

La distribution g représente 1’état d’une particule dans la phase fluide p* du systéme.
Cette relation doit étre considérée comme une relation phénoménologique, c’est a dire
comme une liaison conceptuelle entre le phénomeéne de fusion et le phénoméne de
diffusion lacunaire.

Nous verrons par la suite comment le principe de Gibbs-Jaynes permet d’obtenir
a partir de cette relation (16) I'état de transition complet o’ du cristal. L’épreuve
expérimentale du chapitre IV permettra d’apprécier la validité de la relation phéno-
ménologique.

II. Le procédé des champs auto-consistants
§5. L’état d’équilibre total
Les états antérieur et postérieur au saut sont dits d’équilibre total. Aucune

information spécifique a des parties du systéme n’est alors connue. Nous n’avons dans
ces €états qu'un renseignement global sur 'énergie thermodynamique <E> du cristal:

<E» ==_//‘9(1> q) E(pg)al. (17)

Cette unique information détermine la distribution ¢ d’équilibre total, grace au
principe de Gibbs- Jaynes. Ainsi, le probleme variationnel

0Slel =0, Nel=1,  [olpq) E(pq)dl'= <E>, (19

conduit par la méthode de Lagrange a la relation nécessaire:

~

[ 0o [logo +1+a+ BE@pgldl=0 (19)

ol « et § sont les deux multiplicateurs de Lagrange associés aux contraintes (1) et (17).
La distribution solution est alors la distribution canonique (Gibbs, 1901) bien connue:

olpg) =expLF — E@pq)]. (20)
Le paramétre de Lagrange § est lié a la température thermodynamique 7 par la
constante de Boltzman: .
L’énergie libre F est une constante précisée par la condition de normalisation:
exp— B I~ [exp— BE(pq)dl’ (22)

L’ignorance que nous avons des forces interatomiques dans les métaux nous mene
pour le calcul de F a une impasse. Nous allons rechercher une solution approchée au

probleme précédent, en nous inspirant de la méthode des champs auto-consistants
(Fok, 1930).
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Considérons les distributions de la forme particuliére:

0(? 9) = 0o(Po 90) 01(P1 41) - (23

La meilleure approximation de ce type?) a la distribution canonique exacte est solution
du probléme variationnel (18):

[ 30 llog(cte o) + B [ E(p g) 02 dIy) Iy =0, (24)

301 log(cte o) + B [ E(p g) g dl'e) dl’y 0. (25)

odl'= dI'y dI';. En faisant varier dp, et dp, séparément, nous obtenons des conditions
d’extremum (24, 25) les distributions cherchées:

olpo40) = ¢, &P — B [Eolpo o) + V(po 0], (26)
exlprar) = ¢ exp— B Vipra) (27

ou
V(p1 1) :/ V{(p q) olpo 90) @l (28)

est le champ moyen exercé par les particules 2 ... N dans lequel se meut la particule 1,
et

V(pogo) = | V(b q) oslpr a0) ALy (29)

o

le champ moyen exercé par la particule 1 sur le reste du cristal. C, et C; sont deux
constantes.

Les distributions (26) et (27) ne sont pas des solutions exactes, mais sont les
meilleures distributions & variables sépaiées qui puissent représenter 1’état d’équilibre
total du cristal. Dans I'appendice III, nous examinerons les conditions qui valident
cette approximation.

Afin d’évaluer 'entropie de I'état d’équilibre total, nous devons normaliser les
distributions (26) et (27).

Il est commode de représenter 1'état de la particule 1 par la forme:

o1y 1) = exp B [Fy — Vipr 1)1, (30)
I} est une constante précisée par la normalisation de g, :
exp — f Fy = [ exp — fV(pygr) dly (31)

La constante de normalisation C, de la distribution (26)

Co= | exp = B [Enfpogo) + V(pog0)] L' 2)

1) La restriction de la distribution & cctte classe de fonctions n’implique pas l'indépendance
statistique de la particule 1 vis a vis des particules 2 ... N. En effet, I’état de la particule 1
continue a dépendre de I’état des autres particules ainsi que nous le constaterons.
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peut, elle, étre évaluée par une méthode de perturbation [Peierls, 1932]. Le calcul
détaillé est donné dans 'appendice 1. Il vient:

00bo 9o) = exp f [Fy+ V> — B2(V — V)2 — Eo(po g0) — Vipogo)]  (33)

avec la détinition de la constante F suivante:

Ll

exp — 8 Fy = / exp — B Eylpo 90) a1 - (34)

!
v

Le crochet < », la barre — et le cintre 7 symbolisent les moyennes prises sur les

~

distributions g, g, et g; respectivement. Les termes <V'> et /2 (V — <F>)? sont dans
I'ordre les perturbations du premier et second ordre al'énergie libre F de la distribution
0o non perturbée par la présence de la particule 1.

L’entropie statistique S du cristal dans 1'état d’équilibre total se calcule im-
médiatement avec la définition (10):

Sle] = Seloe] + S1loi] (35)
avec
So= —log gy = f [<Ey> — Fo+ B2 (V — V)2 ...] (36)
et
T
5= —~logp; =g [<F>— Fy] . (37)

Introduisons I'énergie thermodynamique
(E>=<Ep+ V> (38)
et négligeons les termes d’ordre supérieur au premier (voir appendice II). Il vient:

S=B[KE>—<V>—Fg]+ S;. (39)

§6. L’état d’équilibre partiel
I’état de transition peut étre considéré comme un état d’équilibre partiel. Cet
état de connaissance est de durée breve, relativement a celle de 1'état d’équilibre total.

L’état d'une particule dans la phase fluide est donné par la distribution d’équilibre
total (30):

of (b1 qu) = exp B* [FF — V*(py1 q1)] - (40)

L’astérisque indique les parametres et distributions du systéme de particules en phase
fluide. Si 7, est la température de fusion du cristal, 7* doit étre supérieure a

Ty (B* < Br).
La relation phénoménologique (16) détermine alors 1’état de transition de la
particule diffusante:

01(p1 q1) = exp B* [F¥ — V*(prq1)] - (41)

L’espérance mathématique <V'>" de I'énergie IV dans 1'état de transition est (3):

VY = (V* :/ V*(py q1) 0¥ (1 q0) dTy . (42)
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Le principe de Gibbs-Jaynes détermine 1'état de transition complet ¢’. Toujours
dans I'approximation des champs auto-consistants, la distribution g/ (s, ¢,) qui donne
la description la plus raisonnable du systéme de particules 2... N dans l'état de
transition est solution du probléme variationnel:

5Sife)) =0,  Nigjl=1. (43)
L’énergie thermodynamique <(E> = <E,>" + <(V>* n’a d’autre part pas changé:
[ (b0 90) Eofpo g0) = <Eo>"- (44)
A ces conditions générales (43) et (44) s’ajoute la contrainte spécifique:
ebtbo 90 V*ipogo) aly = <v>*. (45)
En eftet, le champ auto-consistant
P*(pogo) = [ V(p ) o3 (pr41) dl' (46)

doit étre compatible avec l'information (42). La méthode de Lagrange conduit a
nouveau a la relation variationnelle:

[ 304 og g + 1+ cte + By Eqlpo go) + B ¥ dly = 0 (47)

dont la solution est:

00(Po 90) = cte exp — By Eo(po qo) — P T7*(1570 do) (48)

B, et B, sont les multiplicateurs de Lagrange associés aux contraintes (44) et (45)

respectivement. Le terme f, = représente la perturbation des particules 2... N
du bain due a I'excitation de la particule diffusante.

La température statistique f; de la partie non perturbée de la distribution g; n’a
changé qu’infinitésimalement par rapport a la valeur qu’elle avait dans 1'état d’équi-
libre total?):

461 = 16 : (49)

Les conditions de convergence d’'un développement de perturbation pour le calcul
de la constante de proportionnalité dans (48) n’ont pas changé par rapport a celles qui
légitimaient l'approximation des champs auto-consistants dans le paragraphe 5.
Aussi:

00(Po 90) = exp B [Fg — Eopo 90)] exp B [V * — T?*(po q0)] - (50)

L’entropie statistique S’ du cristal dans I'état de transition se calcule alors facilement
jusqu’au premier ordre:
') = Sileg) + Sile] (51)
avec '
So =P [KE> — V>* — Fg] (52)

%) L’énergie moyenne {E,>'/N —1 dans la contrainte (44) ne s’est modifiée qu’infinitésimalement
par rapport a sa valeur {E>/N —1 dans I’état d’équilibre total. '
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et
Si= St =p*[KI"N*— Fy]. (53)
Il vient finalement:

S"=B[KE> — <V>* — Fgl + 5f. (54)

III. Les fluctuations thermodynamiques hétérophases

§7. La correspondance thevmodynamique

La forme symétrique des interactions de paires (6) va nous permettre de faire
correspondre les états du chapitre II & des états thermodynamiques bien connus,
moyennant I’hypothese que I'effet de la lacune sur I'état de la particule diffusante soit
négligeable. Cette hypothése est d’autant plus facilement admissible qu’elle coincide
avec la condition de convergence (98) qui légitime le procédé des champs auto-
consistants (voir appendice I1I).

Dans I’état d’équilibre total, la moyenne <&,> = \Z E;;> ne dépend pas de
I'indice de référence 4: 7=

<Ei>_/ ZE expﬂ[ ZE} (55)

E>
Ep =¥ (56)

De ce fait:

L’espérance mathématique <> du champ V(p ¢) s’exprime (8) ainsi treés simplement
en fonction de I'énergie thermodynamique du cristal:

2 <.5>

7

V> =

De méme (38), 5

. N —
By =T (B> (58

D’autre part, 'entropie statistique S est liée a l'énergie thermodynamique par la
relation différentielle bien connue:

dS =Bd<E>. (59)
Chacune des distributions partielles g, et g, induisent la méme relation:
dSe=fd <Eg>, dS;=8d V> . (60)
Soit .
dSy= 232 ds, iS, = 2. ds. (61)

L’entropie est une forme définie positive; elle obéit au principe de Nernst. Aussi
a-t-on les relations intégrales:

N-2 . 2
Sg= —g— 3 et Si=3 2. (62)
La diminution AS d’entropie statistique du cristal consécutive au passage de
I'état d’équilibre total a I'état de transition s’écrit donc (39), (54)

, 2 [(EY*—(E> -
AS=8§—S=— [ ZatmhS2 AR —s]. (63)
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Ce résultat est important. Il montre que la description du saut lacunaire dans les
cristaux monoatomiques ne requiert pas la connaissance des forces interatomiques.
Les renseignements globaux donnés par les expériences de calorimétrie (énergie,
entropie thermostatiques) suffisent. Il n’y a rien de surprenant a cela lorsque nous
nous souvenons que la méthode de Gibbs- Jaynes consiste en une généralisation de celle
de Gibbs. L’état de transition associé au saut lacunaire peut étre considéré heuristique-
ment comme une fluctuation thermodynamique hétérophase. La variation d’entropie
(63) correspond, taille du systéme fluctuant mise a part, a la formule donnée par la
théorie classique des fluctuations thermodynamiques [9]. Il est évident cependant
que seule la théorie de Gibbs-Jaynes permet de traiter de cette fagcon un systéme
microscopique en forte interaction avec un bain.

§8. L'effet de volume

Nous n’avons pas tenu compte encore des effets d’'un champ extérieur sur les
propriétés statistiques du cristal. Or la pression qui s’exerce sur notre systeme peut
étre modifiée indépendamment de la température dans l'expérience. L’entropie du
cristal est alors fonction du volume considéré comme un champ extérieur variable
agissant sur la distribution par l'intermédiaire d’une part des limites accessibles aux
variables de position et d’autre part de la forme du potentiel cristallin [10]. La
pression P et la température 7" déterminent la variation d’entropie due a une modifi-
cation infinitésimale du volume cristallin v:

0S

= (64)

BT
Comme 1'énergie thermodynamique <E, le volume v du cristal ne doit pas changer
entre 'état d’équilibre total et I’état d’équilibre partiel. Cependant, si dans I'état de
transition le volume des particules 2 ... N du bain est modifié, tel un champ extérieur,
la fluctuation d’entropie (63) est diminuée du terme9)

2 (v¥—v)
TN kT E (65)

représentant la variation conséquente d’entropie du bain. Le terme —(2/N) (v* — v)
définit une fluctuation de volume.

Quand nous avons postulé la relation phénoménologique (16), nous avons identifié
I'état de la particule diffusante a l'un des états qui caractérisaient une particule dans
un fluide, sans préciser le role d’'un champ extérieur. Faut-il admettre que la phase
fluide sus-dite ait méme volume que le cristal, ou plutét qu’elle soit soumise a la
méme pression ou encore qu’elle n’ait ni corrélation de pression ou de volume avec la
phase cristalline? Nous admettrons dans la suite ’hypothése d’une fluctuation de
pression négligeable. L’arbitraire n’est pas considérable, car I'effet de volume est
relativement faible devant I'effet de 1'énergie sur les propriétés de diffusion. Le rapport
des chaleurs spécifiques a volume C, et & pression Cp constants donne une éva-
luation de I’écart qu’on peut introduire ce faisant.

Les grandeurs auxquelles nous nous intéressons sont désormais définies d'un point
de vue thermodynamique. Convenons de supprimer les crochets de moyenne pour

) La formule (65) est une conséquence directe de la définition (64).
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I'énergie thermodynamique, et d’exprimer 'entropie en unités thermodynamiques
grace a la constante de Boltzman. La différence d’entropie entre les états d’équilibre
total et d’équilibre partiel peut s’écrire alors (63), (65):

AS—— P E*—E4 P*—u)— T(S*— ). (66)

§9. La distribution de fluctuation?)

La distribution wg(E* v¥) des états de transition [E*, E* + dE*], [v¥*, v* + do*]
est donnée par I'entropie rapportée a la constante de Boltzman [9]:

S -

w(E*v*) = A exp 27 (67)

A est une constante. Il est plus commode cependant d’utiliser la distribution am(7* v*)
qui donne la probabilité infinitésimale d’oberserver une fluctuation [T*, T* + dT*],
¥, v¥ 4 dv*]. Les deux distributions sont liées par le Jacobien de la transformation:

o(T* v*) = w (E* v¥) ggz*; : (68)
Par conséquent:
w(T* v*) = cte C, exp 5 g (69)
Baptisons A la fonction suivante:
AQ(T* v¥) = (E* — E) + P (v* —v) — T (S* — S) (70)

dans laquelle I'énergie E* et I'entropie S* sont des fonctions de la température T*
et du volume v*. La distribution (68) s’écrit:

2
NkET

w(T* v*) = A4 C, exp — AQ(T* v¥*) . (71)

La constante 4 est déterminée par la normalisation$):

o0

an

e // C,exp — 'Kf’lzéff AQ(T* v*) dT* do* . (72)

0

Cette intégrale converge rapidement loin de la valeur minimale AL(T v) de AQ(T* v¥).
Aussi pour la normalisation (72) nous bornons nous a considérer les petites fluctuations
voisines de 1'état d’équilibre total:

g 0240 1 02482

AQ(T* ) = 4 (T = T2 222 () 4 L (or =) P22 (1)
F(T* = T) (0" —0) 2o (To) + - (73)

Or, s1 % est le coefficient de compressibilité isotherme,

02482 Gy 02480 1 02480
——— - = sy — _— e — O .
ore (T0) = 1 aE = aT i LY )
?) Pour un calcul détaillé, voir [11].
8) Dans ce §, le domaine de variation de T* et v* doit naturellement étre étendu a tout le domaine
possible, de 0 a I'infini.
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La distribution (71) peut donc étre approchée par une distribution doublement
Gaussienne. Les variables 7* et v* sont statistiquement indépendantes:
Co (T*—T)? (v*—1)?

exp — ———. (75)

* %\ o 5 . oA NE TR
BT G, NET? NETwo

Les écarts quadratiques moyens de température et de volume sont:

(T*—T) = N;C,T?i 0 — o)t = %ﬁj (76)
L’intégration de (72) a l'aide de l’approximation (75) donne:
A '=(@ANET)-(C, T xv)~12. (77)
La distribution de fluctuation (71) est alors compléte:
1 1 9 2
CU(T* 7)*) = —’f:‘!E m C;/_ (% ‘U)_llz eXp Ee —I\kajﬂ AQ(T* U*) & (78)

§10. La fréquence du saut lacunaire
La probabilité p d’observer I'état de transition associé au saut lacunaire s’écrit:
% oo
p :f j"w(T* %) dT* dv* (79)

Tp v,

v, est un volume d’activation, déterminé par la condition du §8 sur la fluctuation de
pression.

Nous avons dit que la durée de vie 7 de ’état de transition était bréve. Ce temps
de relaxation ne peut étre donné?®) que par une théorie cinétique que nous n’aborderons
pas dans ce travail. v dépend certainement de la température 7* et du volume v*
caractéristiques d’une fluctuation élémentaire, car I'énergie nécessaire a la formation
de I'état de transition doit étre résorbée dans le cristal suivant un processus a plusieurs
phonons. Pour nos préoccupations cependant, il est a présumer que ce temps de
relaxation, comme la conductibilité thermique ou la chaleur spécifique, varie peu
avec la température ou le volume.

La fréquence [' de saut d'une lacune est alors:

. R
r—;f frco(T*v*)dT*dv*. (80)

TF Uy

La coordinence z donne le nombre de chemins possibles pour le saut lacunaire, et le
facteur 1/2 traduit la possibilité, équiprobable au saut, d’un retour de la particule
diffusante au voisinage du site primaire en corrélation avec la fluctuation hétéerophase.

Les fluctuations comptées dans (80) sont larges devant la fluctuation moyenne
(76). Aussi évaluons nous I' avec l'approximation habituelle dans le calcul des

9) Nous avons pu estimer 'ordre de grandeur de 7 & 10® périodes de Debye.
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fluctuations [12]19). Les relations de thermodynamique usuelle ainsi que la définition
(70) permettent de calculer les expressions

048 T

S (Tru) =C, (1 - TF)

0480 Cp,—C,)12

- (Trv) = ST (T = 1) + (P - P) 81)

dans lesquelles P — P, représente la fluctuation de pression que nous négligerons.
Il vient:

n_ z T, T Nk 2
L 87d (Tp— 1) CICp—Cp)in eXp — i T AQ(Ty) . (82)
Différencions d’autre part la fonction AQ(T* v*). A pression constante, la variation
de (70) se réduit a:
* T
AT = C, (1= ) AT*. (83)

En notant que AQ(T) est nulle, nous obtenons par intégration:

TI;

~

T

AQ(T,) :/ (1 - .ﬁ) Co(T*) dT* + (T, — T) AS; (84)
T

ASr est U'entropie de fusion du cristal. La fréquence du saut lacunaire s’écrit finale-

ment:

A T T Nk
T 8ad (Tr o T')’z' C’;i)f%a ((j_fv)*ﬂz
Tp
% exp — ﬁ.k._.ir‘/ (1 — T) ColTY dT" + (T — T) AS,. (85)
T

Si les chaleurs spécifiques, ainsi que 1’entropie de fusion sont données molaires, alors
le nombre N de particules du cristal doit étre le nombre d’Avogadro.

IV. L’épreuve expérimentale
§11. L'énergie de migration

Le comportement des lacunes est analysé dans 1'expérience par l'intermédiaire de
propriétés physiques sensibles a leur disparition. Le nombre de puits lacunaires
variable d'un cristal a 'autre modifie la cinétique d’annihilation de telle sorte qu'il
n’est pas possible d’obtenir une mesure directe de la fréquence de saut lacunaire.
Cependant, des parameétres de diffusion caractérisant la dépendance en température
ou en pression de la fréquence de saut peuvent étre extraits de I'observation d'une

10) La condition qui valide cette approximation est:
Tp-T > (T*— 1)1
Avec I'évaluation 3 N % de la chaleur spécifique C, dans la formule (76), il vient la condition:
T €07 Tg.
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facon reproductible [13]. Ils constituent les bases des confrontations directes entre
mesures et théories,

Le parameétre le plus important est ’énergie EY de migration?). Il traduit la
dépendance thermique de la fréquence de saut:

M 0 1
B (ﬁ]ﬁ)ﬂ0 Inl". (86)
T est la température de recuit du cristal. La variation prépondérante de /" est donnée

par la variation de la fonction exponentielle qui y figure:

e -
E¥ = 2| [CodT*+AH, | (P=10). (87)
j,’.
AHp est 'enthalpie de fusion du cristal. La table T donne pour différents éléments
quelques valeurs de I'énergie de migration (87) calculée a 0,01 eV pres.

Cette théorie prévoit donc que !'énergie de migration dépend de la température
de recuit. La diminution de ce parameétre est d’environ 5 - 10-2eV par 100 °K. De plus,
I'énergie de migration doit présenter des discontinuités réelles dans les transitions de
phase de premiere espéce, et apparentes dans les transitions de deuxiéme espéce
(points de Curie).

Table 1

Energies de migration (87) théoriques d'une lacune en eV pour différentes températures de recuit T°

Elément 7 = 0°K 200°K 300°K 400°K 500°K
Li 0,28 0,20 0,15 0,09 »
Na 0,25 0,15 0,10 - =
K 0,23 0,13 0,07 =
Al 0,74 0,65 0,60 0,55 0,49
Cu 1,03 0,93 0,88 0,83 0,77
Ag 0,94 0,84 0,79 0,74 0,68
Au 1,01 0,91 0,86 0,80 0,75
Ni 1,49 1,41 1,36 1,30 1,24
Pt 1,72 1,61 1,56 1,51 1,45
Pb 0,43 0,33 0,28 0,22 0,16
Fe 1,63 1,54 1,50 1,44 1,38
Mg 0,70 0,60 0,55 0,50 0,44
Zn 0,52 0,43 0,37 0,32 0,27
cd 0,45 0,35 0,30 0,24 0,18
Te 0,77 0,68 0,63 0,58 0,52
Bi 0,51 0,42 0,37 0,32 0,26
Ge 1,37 1,26 1,22 1,17 1,11
Ga 0,25 0,17 0,12 . -
Si 1,95 1,83 1,79 1,75 1,70
W 3,00 2,89 2,84 2,80 2,74
U 1,48 1,39 1,34 1,28 1,22
A 0,05 . o - -

1) Ce nom ne traduit évidemment plus le sens qu’a donné la « Rate Process Theory» & ce paramétre,
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Table 11

Epreuve expérimentale pour le calcul des énergies de migration des lacunes

Temp. moy.

Métal A& gt Eyr exp. Epy calc. Traitement Mesure Réf.
Au 292°K 0,83 eV 0,86 eV Trempe Dilatation [14]
322 0,82 0,84 Trempe Rés. élec. [15]
328 0,83 0,84 Trempe Rés. élec. [16]
333 0,82 0,84 Trempe Rés. élec. [17]
370 0,87 0,83 Trempe Rés. élec. [18]
Ag 300 0,78 0,79 Ecrouis. Mod. élas., [19]
Rés. élec.,
Frot. int.
390 0,83 0,75 Trempe Rés. élec. [20]
351 0,83 0,76 Trempe Thermo-é€lec. [21]
Al 220 0,62 0,64 Trempe Rés. élec. [22]
300 0,58 0,60 Trempe Rés. élec. [23]
Cu 300 0,80 0,88 Trempe Rés. élec. [24]
390 0,85 0,84 Trempe Rés. élec. [25]
Ni 540 1,4 1,22 Trempe Rés. élec. [26]
520 1,35 1,23 Ecrouis. Calor. [27]
Pt 688 1,38 1,35 Trempe Rés. élec. [28]
612 1,30 1,39 Trempe Thermo-élec. [29]
550 1,42 1,42 Ecrouis. Rés. élec. [30]
Fe 568 1.2 1,35 Ecrouis. Rés. élec. [31]
Mg 293 0,52 0,55 Ecrouis. Rés. élec. [32]
Na 320 (0,03) (0,09) D’apreés 'auto-diffus. et les [33]

mesures d’équil. dans le sodium

Les déterminations expérimentales des énergies de migration des lacunes sont
encore rares et controversées. En table II, les valeurs rassemblées sont données avec
les températures moyennes de recuit auxquelles elles ont été mesurées, et sont
comparées avec les énergies prédites (87). On note en général une excellente con-
cordance, qui semble aller jusqu’en la variation du parameétre avec la température.

Qu’aucune diminution de 1’énergie de migration des lacunes n’ait été observée sur
les graphiques expérimentaux s’explique simplement: afin que les temps de recuit ne
soient ni géologiques, ni d’'une fraction de seconde, et qu’ainsi des mesures puissent
étre entreprises, la température de recuit doit appartenir a un intervalle qui ne saurait
excéder 100 °K pour la diffusion des lacunes. Or dans cet intervalle de température, la
variation prévue de l'énergie de migration (0,05 eV) n’est pas suffisante pour étre
décelée actuellement.

§12. Le volume de migration

Le parametre qui donne la variation de la fréquence de saut en fonction de la
pression est le volume de migration V¥. Sa définition expérimentale est:

V¥=—kT(;p), InT. (88)
Avec la relation de Clapeyron
aTp _ AV (89)

dP ~ ASp
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dans laquelle AV est le volume de fusion du cristal, il vient:

v =2 av, [1+ Cj‘;F)--- (1- T:’:)] . (90)

Quelques valeurs du volume de migration (90) rapportées au volume atomique V,,,
a pression nulle et température ambiante, sont données dans la table III.

Table I1I

Volume de migration (90) des lacunes, pour P = 0 et T = 300°K

Elément (V¥[V,):  Au(0,36) A1(0,35) Pt(0,35) Fe(0,31) Ni(0,30)
Mg(0,28) Ag(0,26) Cu(0,25) Zn(0,21) Pb(0,19)
Cd(0,19) Na(0,09) Li(0,08) K(0,07) Te(0,07)
Ga(—0,06) Bi(—0,12) Ge(—0,18)

Il est intéressant de remarquer que pour les cristaux covalents dont le point de
fusion est abaissé par une élévation de pression, le volume de migration théorique est
négatif. Cecl s’accorde avec l'idée identique émise précédemment par NACHTRIEB
34, p. 99]. La migration des lacunes dans ces cristaux serait favorisée a haute pression.

Pour les éléments qui nous intéressent, une seule valeur du volume de migration
est rapportée par 'expérience a ce jour. EMRICK [35] a mesuré dans I'or un volume
V¥ =0,15V,, 4 350°C. Aucune conclusion ne peut étre tirée de cette unique valeur.
Accordons nous seulement a écrire que les résultats de la table I1I sont de I'ordre de
grandeur des valeurs du volume de migration lacunaire que laissent prévoir les
expériences d’autodiffusion et d’équilibre (formation de lacunes) sous pression [36].

Résumeé

Dans le saut lacunaire, ’analyse montre qu’entre deux états ou la particule
diffusante est chaque fois localisée au voisinage d’un site atomique, il est logique
d’introduire un état de transition dans lequel la particule diffusante est délocalisée.
Or une particule d’un fluide est précisément délocalisée au sens que nous avons donné
a ce terme. De plus, il s’avére qu'un fluide est un systéme de particules en état
d’autodiffusion permanent et généralisé. Ces indices nous conduisent a postuler
comme relation phénoménologique que 'état de transition de la particule diffusante
est un état fluide.

Nous admettons alors pour 1'énergie du cristal une forme d’interactions de paires
de particules. Le principe de Gibbs-Jaynes généralisant la méthode de Gibbs nous
permet de déterminer 1’état de transition complet du cristal, puis, dans une approxi-
mation de champs auto-consistants, de calculer son entropie. Grice a la symétrie des
interactions de paires, nous pouvons ensuite identifier les grandeurs statistiques
obtenues a des grandeurs thermodynamiques bien connues. Le traitement conduit a
une expression analytique simple de la fréquence du saut lacunaire, de laquelle nous
tirons les parametres expérimentaux de la diffusion lacunaire. Les énergies et volumes
de migration calculés correspondent bien aux valeurs de 'expérience.

53
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Cette théorie est valable pour des réseaux monoatomiques, et ce d’autant mieux
que les forces entre particules agissent a4 grande distance et que la coordinence est
grande. Les formules des parameétres de migration obtenues ne sont valables que dans
le domaine des températures de recuit inférieures 0,7 T, domaine suffisant cependant
pour traiter le processus de diffusion lacunaire qui a lieu entre 0,2 et 0,3 1.

Comme résultats directs, la théorie prévoit une diminution de 1'énergie de migration
en fonction de la température de recuit de 'ordre de 5 - 10~ eV/°K. De plus ce méme
parametre doit présenter des discontinuités réelles lors de transitions de phase de
premiére espéce, et apparentes dans les transitions de deuxiéme espéce. Il semble
d’autre part que pour quelques cristaux covalents, le volume de migration doive étre
négatif.

Conclusion

La théorie exposée est loin d’étre compléte. Elle ne s’applique en effet qu’aux
cristaux monoatomiques, et laisse indéterminé le facteur préexponentiel de la tréquence
de saut. Les résultats qu’elle fournit sont cependant excellents comparés a ceux
produits par d’autres descriptions (appendice 1V). La découverte de 'anomalie de
Curie du coefficient de diffusion atomique [37, 38] laisse en plus bien augurer de la
possibilité d’observer les discontinuités prévues des parametres de migration.

Deux idées essentielles peuvent étre tirées de cette contribution:

1) Le concept de défaut de structure cristalline est un concept statistique, comme
le concept de réseau cristallin dont il dérive. Ceci a pour conséquence que la diffusion
de ces défauts doit étre décrite par I'évolution de distributions statistiques. Le saut
de diffusion est alors un processus hors équilibre thermodynamique total dans le
cristal.

2) Le phénomeéne du saut lacunaire est fortement relié au phénomene de la fusion.
Dans un cas comme dans l'autre, un ou des sites atomiques ne sont plus définis. Dans
le saut lacunaire, cette condition est instable et locale; dans un fluide, elle est per-
manente et généralisée. Parallelement, la diffusion matérielle est un processus local
et discontinu dans les solides, global et continu dans les fluides.

Concluons par deux bréves perspectives. D’une part, les études de diffusion
atomique devraient amener une meilleure compréhension du mécanisme de la
cristallisation. D’autre part, le phénomene de croissance des grains durant la recristalli-
sation pourrait bien étre dirigé par le mécanisme de fluctuation hétérophase locale [39].
En effet, il s’avere que la température a laquelle la fluctuation hétérophase devient de
I'ordre de la fluctuation moyenne (0,7 Ty) est curieusement voisine de la température
de recristallisation. En tous les cas, I'idée qu’une particule passe d’'un réseau cristallin
a un autre par une libération analogue a celle que nous avons décrite n'est pas
incompatible avec le processus de croissance d’un grain au dépend d'un autre.
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Appendice I

Normalisation par la méthode des perturbations

Nous devons évaluer la constante de normalisation (32):

Co= [ exp — B [Eg(poqo) + p(]’bo go)] dl’y .

Développons l’exponentielle en série suivant le champ V' considéré comme une
perturbation a I'énergie E:

exp— BV =18V + V2. (91)
Avec la définition (34) de F,, il vient:
Co—exp—ﬁFo{l — B[V exp B [Fo— By dl’y
+ o, B ] P2 exp 8 [Fy — Eg] dl'y-- } (92)

Les intégrations dans cette expression peuvent étre considérées comme les moyennes
des champs I’ et "2 sur la distribution g,:

Cozexp—ﬁFo[l—ﬂ!}—+;—ﬁ“ﬁ---]. (93)

Cette expression ne converge que lentement. Aussi prenons cn le logarithme et
développons a nouveau en série. Il vient:

Co=-e><p~ﬁ[Fo+ <V>~--}ﬁ(l7— <V>72~--]- (94)

Cette forme, avec (26), détermine la distribution (33).

Appendice 11

La convergence de la méthode des perturbations

La convergence du développement (36) est rapide, et 1'expression (39) de I'entropie
du cristal est justifiée si le terme du second ordre est négligeable par rapport au terme
du premier ordre:

BV>> ; BE(V — IR, (95)

Or, tant la valeur moyenne que le carré moyen de 1'écart sont proportionnels au
nombre de particules 7 touchées par la perturbation dans l'espace y, [9]:

-~ A o~ ~
r

Vi=V=an; V —<2=V-V2=0bn. (96)
La fluctuation d’énergie par particule est approximativement de I'ordre de la moitié

de I'énergie par particule: 42 = 1/2 a. La condition de convergence rapide (95) peut
alors s’écrire:

BV><L8n. (97)
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Mais l'énergie <(V'> est égale a 2/N <E> (57). Avec le principe d’équipartition, nous
pouvons attribuer a I'énergie totale <£> la valeur approximative de 3N 2 7. La
condition de convergence rapide se réduit a:

NS

n>1. (98)

Le nombre n de particules atteintes par la perturbation due a la particule 1 dans
I'ensemble des particules du bain 2 ... N doit étre grand par rapport a 'unité. Cette
condition est bien réalisée lorsque les forces interatomiques agissent a grande distance,
et que le nombre de plus proches voisins, la coordinence, est grand. C’est le cas des
métaux, en particulier.

Appendice 111

La légitimité du procédé des champs auto-consistants

Pour légitimer le procédé des champs auto-consistants, il faut montrer que
I'entropie approximative, donnée par le procédé,

S=pKE> — Fy— Fy] (99)
ne différe que trés peu de I'entropie exacte
S =B[E> — F] (100)

donnée par la distribution canonique (20).
A cette fin, explicitons 'énergie libre F (22):

exp — B F = [ exp — B [Eolpogo) + V(p @) dlydl},. (101)
Un calcul de perturbation identique & celui de I'appendice I conduit a:
& s 1 —_—
exp—BF—exp—fF,[dlvexp—p[Viprg) = ; f0V—TP--]  (102)

I.es mémes considérations de convergence qu’en appendice 11 font que nous pouvons
traiter le terme du deuxiéme ordre dans (102) comme une perturbation au terme du
premier ordre. Apres avoir rappelé la définition (31) de F,, nous obtenons:

1 =
F=F,+ F,— 2—/3<(V—V)2>--- (103)
L’entropie exacte du cristal (100) s’écrit donc suivant le développement:
1 =
S=B|[<E>—Fo— Fyt+ , BV =17 -] (104)

Les entropies exacte (104) et approchée (99) ne différent donc que par un terme du
deuxiéme ordre, négligeable si la condition (98) est satisfaite, ce qui légitime le
procédé des champs autoconsistants.

Appendice IV
Apergu des vésultats de la théorie de Vineyard

Hormis la présente, les théories du saut de diffusion lacunaire font toutes I’hypo-
thése de 1'équilibre thermodynamique total du cristal durant le phénomene. La
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théorie de VINEYARD [5] présente parmi elles une des formes les plus élaborées.
Plusieurs auteurs ont calculé avec cette théorie I'énergie de migration d’une lacune
dans les métaux en utilisant des potentiels interatomiques divers (table IV).

Table 1V

Energies de migration des lacunes calculées selon [5]

Metal EM Auteur Références
Cu 0,6 ¢V Fuwmi [40]
Cu 0,97 BARTLETT et col. [41]
Cu 0,42 JounsoN [42]
Cu 1 HuTtiNngTON (431
Cu 1,3 Damask et col. [44]
Li 0,0 Fumi ‘ [40]
Li 0,15 ToRRENS et col. [45]
Al 0,66 WYNBLATT [46]
Al 0,16 ToRrRRENS et col. [45]

Par ailleurs, SCHOTTKY et col. [47] ont trouvé pour l'or (0,70 eV), I'argent (0,86 eV)
et le cuivre (1,06 eV) des valeurs relativement bonnes. Malheureusement, leur résultat
est probablement entaché d’une faute de calcul importante [42].

Le volume de migration a été estimé d’une fagon analogue par JOHNSON et col. [48],
SCHOTTKY et col. [47] dans le cuivre. Les résultats vont de 0,02 4 0,38 V,,. La valeur
estimée dans 'or est de 0,01 1, [47].

On constate que la théorie de VINEYARD reste encore treés académique. Cette
difficulté d’application doit-elle étre attribuée principalement a l’inadaptation
conceptuelle que nous avons relevée ailleurs [6], ou a une méconnaissance momentanée
des forces interatomiques dans les cristaux (notablement dans les métaux)? Cette
question est encore sans réponse.

Il existe d’autres approches théoriques du saut lacunaire, qui mériteraient par
ailleurs de figurer dans un article de revue. La plupart contiennent un ou plusieurs
parametres d’ajustement. Citons seulement l'original traitement de FLYNN [49] qui
met bien en évidence le role essentiel des positions relatives et non absolues des
particules du cristal durant le saut de diffusion.
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