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On the Structure of Quantal Proposition Systems?)

by J. M. Jauch and C. Piron

Institut de Physique Théorique University of Geneva, Switzerland

(23.1V. 69)

Abstract, 1t is shown that the axiom of atomicity and the covering law can be justified on the
basis of a new and more satisfactory notion of state and the existence of ideal measurements of the
first kind. These two axioms are thereby given a satisfactory justification in terms of empirical
facts known about micro-systems. Furthermore the new notion of state introduced here does not
involve any probability statements and there is therefore no difficulty attributing it to individual
systems, which was not possible with the notion heretoforth used in quantum mechanics.

1. Introduction

One of the central problems in the foundation of quantum mechanics concerns the
question to what extent the theory, as we know it today, is determined by the
empirical facts that we observe in microsystems. Such a question does not have a
precise answer, since it is clear that empirical facts alone do not determine a theory.
Indeed the theory can only be constructed from the raw material of the facts by a
process of induction which proceeds from a finite number of observations to an
axiomatically formulated mathematical structure supplemented by the rules of
interpretation. The best that one can hope to do then is to rule out certain of these
structures on the basis of empirical evidence. One can never really verify a theory,
one can only falsify it.

The axiomatic construction of the theory has the great advantage in that the
theoretical structure and its rules of interpretation are introduced explicitly and the
empirical foundation of the theory is thereby much easier to identify. If the theory is
essentially determined by the axioms and if such a theory is falsified by a test of one
of its consequences then (provided the mathematical deductions are free from error)
one or several of the axioms must be modified.

Recent attempts [1] to reconstruct conventional quantum mechanics by such an
axiomatic approach have shown, that quantum mechanics in Hilbert space can only
be deduced if, in addition to empirically well supported axioms, certain additional
axioms are introduced, which heretofore have not had a good support with empirical
facts. We mean the two (related) axioms of atomicity and the covering law.

By a more careful analysis of the concept of the state of a physical system it has
been possible to improve on this aspect and to give a better justification of these two

1) This is a revised version of a widely distributed preprint by C. PIRON, Sur Uinterprétation des
treillis ovthocomplémentés.
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axioms. At the same time it has become possible to clarify the notion of state and that
of a physical property. The latter notion is closely related to that of element of physical
reality introduced by EINSTEIN, RosEN and Poporsky in the discussion of their
paradox which bears their names [2].

It 1s significant that these three authors came to the conclusion that the notion of
state as used in quantum mechanics cannot meaningfully be attributed to an indi-
vidual system and that it is a statistical concept, applicable only to a suitably chosen
assembly of systems. This criticism is justified for the usual definition of state in
terms of a state vector (or Schrédinger function) in Hilbert space. However we shall
show in this paper that a modified definition of state can be meaningfully applied
to an individual system which represents all the properties (or elements of reality)
provided the propositions of that system are an atomic lattice.

It is perhaps interesting to point out that this new notion of state, although fully
quantum mechanical in its connotations, resembles the classical notion of that
concept. In both areas of physics, classical and quantal, the state can only be deter-
mined by a statistical procedure, as in all physical measurements. Neverthelessin both
areas it 1s possible and useful to define a notion of state which would correspond to an
idealized set of measurements of infinite precision.

This possibility counters effectively some of the criticisms which have been
formulated by several physicists and philosophers in various ways concerning the
conventional notion of state and its implication for that of ‘physical reality’.

Equally important for the reconstruction of conventional quantum mechanics is
the axiom which we have called the covering law. It is shown that this axiom is closely
related to the possibility of an ideal measurement, where ‘ideal’ will have to be
properly defined. There is no doubt that such measurements are possible in many
situations, or more precisely, that such measurements can be often simulated by
actual (and therefore not ideal) measurements to any desired degree of accuracy. The
covering law, which formerly had to be postulated ad hoc, obtains thereby a high
degree of plausibility.

2. Yes-No Experiments

The properties of a physical system are determined by measurements. A certain
class of measurements play a particularly important réle in the establishment of the
physical properties of a system. It is the experiment with only two possible
results which may be denoted by 1 or 0 (yes or no). We denote such experiments by
Greek letters «, 8, p, ... and shall refer to them as yes-no experiments.

If o 1s a yes-no experiment then there exists another one, denoted by «”, obtained
from « by inverting the results yes and no. Thus if the result of « is ‘yes’ that of «” is
‘no’ and vice versa. It is clear that «” can be measured with the same physical equip-
ment as that used for the measurement of « and that («")" = «.

If a; (1€ I, same index set) is any family of yes-no experiments then one can
define another such experiment, denoted by /T «; by the following procedure: One
chooses at random one of the «; (+ € I) and measures it. The result is the value of
1T ;. It follows that

(£ o) = H ol -
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There exists a trivial and an absurd yes-no experiment denoted by I and ¢,
respectively. The first consists of the ‘experiment’ which verifies that the system
exists and the second is ¢ = I".

3. Properties of a System

We shall say that the yes-no experiment « is ‘true’ if a measurement of « will give
the result yes with certainty. For the time being we are not concerned with the
question how we can produce systems for which a given yes-no experiment is known
to be ‘true’ nor how we obtain this knowledge.

It is an empirical fact that certain pairs «, § of ves-no experiments have the

t
PTOpErty o true = f true.
If this is the case, we write « < . This relation is a partial preorder relation, that
1s it satisfies the properties

(1) o <o, (2) a<fand f<y=a<y.

If two yes-no experiments «, and «, satisfy the relation o; < oy and oy < a; we
shall call them eguivalent and we denote it by «, ~ a,. This relation is an equivalence
relation, that is, it satisfies

1) a~a, 2) a~f=8~uw, 3) a~pand f~y=a~y.

Let « be any yes-no experiment. We denote by a = {«} the class of all such
experiments which are equivalent to o and we call it a proposition. Thus

a={o;|o; ~oa} = {a} .

If « is true, then every «; ~ « is true too. Hence we see the proposition a is true if
and only if any (and therefore all) of the « € a are true. If the proposition « is true
we shall call it a property of the system. We writea C bifaea, feband a < §.

If o, is a family ot yes-no experiments all of which are true then /7 «; is true too.
We denote by [ a; the equivalence class {// «,} which contains the yes-no experiment

11 ;. Tt follows from the definition that (] «; depends only on the equivalence classes
i
{a;} and not on the representatives of these classes. Hence the notation is justified.

Thus if a; are properties of a system then N a, is a property too.
If & C N a; then it follows from the definition that this is equivalent to 6 C a;:

bCNa,<=bCa, Yiel.

Thus N a, is the greatest lower bound of the propositions a;.
Similarly we can define the least upper bound by setting U a; = ] x and verify
. L opr ai Cx
that it satisfies Jm CEea b Vial,

If L denotes the set of all propositions we have ¢ = [ x and [ = U =

xel xel

We have thus proved the

Theovem: The set of all propositions is a complete lattice.
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4. The Complements

Two propositions @ and b are said to be complements of one another if they satisfy
aNb=¢ and avb=1.
TFor a lattice which satisfies the distributive laws

an(bue)y=(@nbulanc,
av(bNc)=(avb)Davc).

the complement, if it exists, is unique.

The lattices which are encountered in quantal systems do not satisfy the distribu-
tive law and there exist usually many complements. Among these different com-
plements we can still distinguish one, called the compatible complement, by the
following:

Definition: The complement b is said to be a compatible complement ot a if there exists
a yes-no experiment « € @ such that «” € . We denote a compatible complement by a’.

All the known physical systems have the property that every proposition has a
compatible complement. We therefore formulate the

Axiom C: For every proposition a € L there exists at least one compatible comple-
ment a’.

The lattices which satisfy the axiom C are still too general for quantal systems.
The essential physically motivated axiom [1] which limits this generality is

Axrom P: If a C b then the sublattice generated by (a, b, a’, b’) is Boolean.

It follows from this axiom that a C b < a’ C &’ so that the mapping a > a’
is an orthocomplementation. Furthermore the lattice L is weakly modular, that is we
have

aCb=au(@nd =>b.

It is now possible to introduce the fundamental notion of compatibility by the
following

Definition: Two propositions a, be L are said to be compatible (a <> b) if the sublattice
generated by (a, b, a’, b’) is Boolean.

In classical systems any pair of propositions is compatible. The greater richness of
quantal systems appears through the presence of proposition pairs which are not
compatible.

5. The States

The classical notion of state is so familiar that it has influenced much of our
thinking about quantal systems. A classical system is described by a number of real
variables which define the phase-space of the system and a state is determined by a
point In this space.

The propositions of a classical system can be identified with the subsets of the
phase space with inclusion as the ordering relation. For any given state (identified
with a point P in phase space) there exists then a class of propositions which are true
in the sense defined before. They are in fact all subsets which contain the point P.
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For quantal systems the phase space does not exist, but the property of states
expressed in the last paragraph still persists and can be used as the defining property
of states.

Guided by this analogy we are led to the

Definition: A state of a system is the set S of all true propositions of the system:
S={x|xel, xtrue}.

The following remarks should clarify the meaning of this definition.

The definition is meant to imply that the state is a property of an individual
system and not of a statistical ensemble of such systems. This was not possible in
previous definitions of the state which involved probabilities (or probability ampli-
tudes). Indeed, a probability is meaningful only with reference to a statistical ensemble.
The definition we have given above refers only to true propositions, that is to what
we have called properties of the system, and there is no objection in attributing these
properties to an individual system.

We shall in fact assume that every individual system, be it an isolated system or a
member of a statistical ensemble, is in a definite state as defined above.

It is important to distinguish the state of a system from the amount of information
available about the system. This distinction is already important for classical systems
and 1ts appears again here for quantal systems. We attribute to every system a state
in the sense defined above quite independently whether this state has been measured.
We may think of the state as containing the maximal amount of information that is
possible concerning an individual system. Thus we shall postulate that two states
S, and S, cannot be subsets of one another.

The states defined here correspond to the so-called ‘pure’ states of quantum
mechanics. In the view that we adopt here every individual system 1is in a pure state.
Mixtures are only properties of statistical ensembles.

The following properties are elementary consequences of the definitions given
earlier.

(1) f xe Sand x C y thenye S.
(2) If x,yeSthenxNyeS.
(2)Ifx,€S (i€ I) then [] x,€S.
1el
(3) ¢¢ S, I €S for every state S .
(4) For any x € L, x = ¢ there exists at least one state S such that x€ S .

The meaning of the least property is that a proposition x is different from ¢ if there
exists at least one procedure which gives to the system the property x.

From the above it follows that for every state S, e = (] « is also contained in S
xeS

and that it is an atom. Indeed if y C e and v + ¢ then there exists a state S, such that
v € S,. It follows then that S C S, so that S could not be a state. This contradicts the
hypothesis. We have thus proved the

Theorem: For every state S, ¢ = [] x is an atom and e € S.
x€S
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From this we obtain the

Corollary: Every a + ¢ contains at least one atom e. In order to verify this it suffices

to consider a state S such that ae S. The proposition ¢ = [] xis thenan atomand e C a.
xe S

A lattice with this property is said to be atomic. Thus we have motivated the

Axiom A,: The lattice of propositions is atomic.

The preceding considerations show that every state may be represented by an
atom e. The set of all the atoms is identical with the set of all the states. The state S
associated with the atom e is the set

S=1x |8 C x}:

In the analogy to the classical systems and the phase space, the atoms of L may
be considered as the ‘phase space’ of the quantal system.

It is seen that the analogy to the phase space suggested here brings this new
definition of states of quantal system much closer to the classical notion of states. In
fact one of the essentially non-classical aspects of the states of quantal systems
appears now if we consider the evolution of states in time. Classically the evolution
of states is given by a transformation of phase space which maps every point of that
space into another one.

This type of evolution may also occur in quantum mechanics and it is that
evolution which is described in the Hilbert space formalism by a Schrédinger equation.
We shall call it Schrodinger-type evolution of states. In the lattice-theoretic formula-
tion a Schrodinger-type evolution is generated by a continuous automorphism of the
lattice.

However in quantum mechanics one encounters other types of evolutions which
play an equally important rdle. They are in fact at the root of most of the paradoxes
in quantum mechanics. A state of a quantal system may also evolve according to a
stochastic process. As we know from the examples studied in connection with the
measuring process this always occurs if such a system is part of another quantal
system with which it interacts. The unavoidable occurrence of probabilities in quantum
mechanics is entirely due to this stochastic evolution of systems in interaction.

6. Ideal Measurements

A measurement a is said to be ideal if every true proposition compatible with a
is also true after the measurement.

A measurement of a is called of the first kind if the answer yes implies a true
immediately after the measurement.

We shall suppose that for every proposition a there shall exist ideal measurements
of the first kind.

Consider now a system in the state S defined by the atom e and let a be any
proposition. We consider an ideal measurement of the first kind of 4 and ask what the
state 1s going to be after such a measurement.

We consider the proposition v = ¢ U a’. Since e C vy we have y € S. Furthermore
y <> a. Since y <> a’ (Axiom P) it follows y «» a by the definition of compatibility.
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The set S, of propositions which are true immediately after such ideal measure-
ment, in the case of answer yes, is therefore the set that is implied both by y = eu a’
and by a. Thus we are led to the conclusion that

S,={x|(eva)naCux}.

Now two possibilities may a priori arise. The first one is (e ya’) D a = ¢. But
this contradicts our hypotheses because this implies e C a’, which means that the
proposition a’ is true and then that the answer yes, as result of the measurement a,
1s impossible. The second possibility is (e U a’) O a = ¢. The state after the measure-
ment of a is then this set S, which is maximal if and only if

e,=(eVa)Na

a

1s an atom. Thus we are led to the following conclusion:

For every a € L and every atom e e L the proposition (e U a’) N a is either ¢ or
an atom.

It is now easy to show that this result is equivalent with the covering law. Consider
an element b € L and an atom e€ L. Let x be such that

bCxCeUb.
It follows from this that
dCxnb C(eUd)ND.

Since x is compatible with b, as well as &', ¢ = x 0 &’ implies x C b thus x = b.
Hence if x + & then x N b" % ¢. Since (e U b) N b’ is an atom we have then x N 0" =
(e Ub) N b’ from which follows e U b = (eLb) NI )Ub= (xND)Vb=x.

Thus we have established

Axtom A, (covering law):
For every proposition &€ L and any atom ee L, b C x C ¢ U b implies either
¥ =56 ¥=éllb
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