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Singular Domains of Space

by Petr Hajicek
Institute of Theoretical Physics, Sidlerstrasse 3, 3012 Berne, Switzerland

(14. IV. 69)

Abstract. A generalization of a definition of cosmological singularity is proposed, which allows
to formulate singularity theorems so that they refer only to a finite domain of space-time. In this
way, two theorems due to Hawking are sharpened, by means of what it can be shown that our
Universe cannot be singularity free, unless the causal loops violating the strong causality required
by Hawking entirely lie in an explicitly indicated compact region of our past.

1. Introduction

In the papers [1-6] on singularities of the solutions of Einstein’'s equations, a
number of criteria have been found for a space-time to be null and time-like geodesically
incomplete (i.e. there exists at least one time-like or null geodesic which cannot be
extended to arbitrary length within the space-time). The incompleteness implies a
singularity (of a certain kind [7]) only under some additional conditions. Usually, the
so-called Postulate of Inextendability of the space-time is mentioned [5]. There are
ways, In principle, to define the inextendability, to establish that a given space-time
1s extendable, and to extend it [8]. But the calculations cannot be carried out except
in cases of highly symmetric spaces. Inextendability is, therefore, difficult enough to
check mathematically. Moreover, the data we are able to measure always refer to a
limited domain of the Universes; so, it we wish to draw experimentally meaningful
conclusions, we must use the properties of a finite, and accordingly extendable, space-
time patch only. The following is an attempt in this line.

2. Notation

The following symbole and conventions will be used: NM s a closure of the set N
in the space M. >, >, <, <p, ¢> etc. characterize the chronologic and causal relations
between points and sets as they have been introduced in [9], see also [5].

T M, is the tangent space at p to the manifold M.

Lorentz metric g on a manifold M is a symmetric bilinear form of the signature
+ — ——, and of class at least C2 given in tangent space of every point of 1. Covariant
differentiation compatible with the metric is indicated by a semi-colon. For the
corresponding Riemann and Ricci tensors, the equations

_ P : . ¢
va;bc 7 va;cb + Rabc v;’) ) ‘Rab - abc

hold, where v, is a vector field of class C2
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3. Singular Domain of Space

Definitron 1. A four-dimensional connected differentiable manifold of class at least C3
with a Lorentz metric g is called domain of space, if for each » € M and each time-like
vector v*e T M, the following inequality is satisfied

Ry;viv/ =0.
Definition 2. Two domains of space M and M’ are equivalent, if there exists a
homeomorphism ¢ of M on M’ which is an isometry with respect to g and g’.

Definition 3. Extension of a domain of space M is a domain of space M’ such that
there is an open subset of 1’ which is equivalent to .

Definition 4. Given any set 1 C M which has a property in N, say, Pm, then, if U
has the property pPM i every extension M’ of M, PM is called extendable.
Examples:

1. Every local property 1is extendable.

2. The property of being compact in M is extendable.

3. The property of being a Cauchy surface in M (for the definition see e.g. [3]) is not,
in general, extendable: Define the submanifold L of Minkovski space with co-
ordinates ¢, x, v, z and metric

ds? = di? — dx® — dy? — dz®
by inequalities
E>0, 2 —x2—9y2 —22>0.
The hypersurface given by

2 — x% — y% — 22 = const

is a Cauchy surface in L, but it is a partial Cauchy surface only in Minkovski space.
(The domain of space L satisfies all conditions of Hawking’s theorem 1 in [3],
is obviously not null and time-like geodesically complete, but it is regular.)

4. The property of a point » € M that every causal curve in I passes through p not
more than once is called M-causality at p. M-causality at a point p is not, in
general, extendable.

5. The property of a point p that every neighbourhood of  open in M contains an
open neighbourhood which no causal curve in M passes more through than once
is called M-strong causality at $. I-strong causality is not extendable.

Definition 5. A domain of space I is singular, if it has no null or time-like geodesically
(or bounded acceleration) complete extension.

There are domains of space having both singular and regular extension. As an
instance, we take the submanifold ¥ of Minkovski space defined by the inequalities

t>0,——k<§<k,k<1, —00 <Y <Loo, —o0 <Lz <00,

The Minkovski space is one of its regular extensions. Its singular extension 1 is
obtained by adding the set to ¥ whose elements are the pairs of points (¢, —% ¢, v, 2),
(t, Rt y,2), where 0 <{ —oo <y, z< co. The segments f= const, y = const,
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z=const, —kt = x = k't are then closed curves. The following mapping of ¥ into
the five-dimensional space 4 of coordinates T, X, Y, Z, U and metric

dS% = dT?% — dX® - dY? - 42% — dU?

given by @
= e yo -,
_ v s s (I/i*zﬂ I+
& V1o &2 — 2 cos T2 87 )
v 7 ' ’ ]/1—&)2 i+
L=y, =g,
where

. arctangh £
} a2+ arctangh? &

has, as can be proved, the following properties:
a) 1t 1s one-to-one,
b) it is continuous on Y, and has a continuous inverse there,
¢) it is an isometry on U, if the metric on the image of W is induced by that of 4,
d) the image of W is the hypersurface K in 4 given by the relations:

27— X2 - Y2=0, T=>0.

The properties b) and c¢) may be, per definition, extended on the set W, which is then
topologically and metrically equivalent to K, i.e. ¥ is an extension of ¥ and is clearly
singular.

Theorem 7. A domain of space M is singular, if it fulfils the conditions:
1) There is a compact, space-like, three-dimensional, imbedded submanifold 3.

2) The contraction of the second fundamental form of H is either everywhere
positive or everywhere negative. (Cf. [5], Theorem 1.)

Proof. H{is a compact, three-dimensional, imbedded submanifold of M, if there exists
a compact, three-dimensional manifold, 3,, and a mapping ¢: H, > H with the
properties:

a) d(Ho) = H,
b) ¢ is of rank 3 everywhere on H,,

c) if the topology of  is that induced by the topology of M, then ¢ is a homeo-
morphism H, on H. (Cf. [11], p. 42.)

Let M’ be any extension of M. Call 7: M — M’ the identity injection of N into M.
¢ 1s a homeomorphism of M onto (M), where the topology of (M) is induced by that
of M’. This implies that the manifold #, and the mapping 4, ¢ satisfy conditions
a), b) and c) in ’. The property of being a three-dimensional imbedded submanifold
of M 1s, therefore, extendable.

~ To be space-like and to have a second fundamental form S;; with Si>0 or
S; <0, are both extendable properties (they are local).
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Now, it is clear that the set ¥ fulfils both conditions of the Theorem 1 in every
extension of 1. Hence, every extension of 1 has all properties required by Theorem 1
in 5] and cannot, therefore, be null or time-like geodesically complete. Thus, M is

singular.

Theorem 2. There is no domain of space M with the following properties:
1) A point p € M, a past-directed time-like unit vector w?e T°M,, and a positive
constant b exist such that on every past-directed time-like geodesic through
either 6 = v?, becomes less than — 3 ¢ 4~! within the distance b ¢~! from p or

bfe
) a, b g WES 72 ¢
jRab'uvsm 53 48 > =,
where ¢ = w? v, p and v, is the unit tangent vector to the geodesic.
2)let NCT ‘mp be defined in ortho-normal co-ordinates x°, x!, 22, x3, where
=1, o' = w?=w?=0 by
=0, (292 — (#1)2 — (2®2 — x3)2 = 0,
(92 + (x4)2 - (x3)2 + (432 < 25 )/2.
If the mapping exp:{w} > M, w*e T M,, is well-defined everywhere on Y, then
the M-strong causality holds on Gﬁ;m (Cf. [5], Theorem 2.)
Proof. Letexp C M; as exp is continuous and M is compact, exp N will be compact.
Raychaudhuri’s expansion equation [12] together with condition 1) imply that, on
every past-directed time-like geodesic through p, there is a conjugate point within
exp M [3]. Then, the past-directed time-like geodesic joining p with any point outside

of exp M cannot be of locally extremal length [3].
Seyfert’s theorem [13] states that the geodesic joining two given points p and ¢

is extremal, if (g, j)>m is non-empty, compact, and P-strong causality holds in all

its points. Let C be the set of all points ¢ with the property that <g, p>m satisties all
three conditions of Seyfert’s theorem and ¢ <€ p. Then C C exp H. As M is Hausdorf,

the compact sets are closed, so that Cm C expM and is compact.

At each point of Em the M-strong causality holds, because C C ( jJ>m. Thus, each
point of Em has a local causality neighbourhood whose closure is compact [5]. The
neighbourhoods yield an open covering of Em with a finite subcovering, say,

Uy, Uy, -, U,
Let p € U,. Choose an arbitrary point g € U, O (p>>m. Every causal curve in M
from ¢ to p must lie in U,, otherwise U, would not be a local causality neighbourhood.

This implies <g, p>m € uzn, so that <g, p)m is compact and thus U, O (;b>>m C C.
Then, since (p> ™M C (p55 M, we have Uy 0 (p5™M C U, 0 (55> M C U O (po> Mso that

U (pyMc M. (1)
Now, choose a piecewise smooth past-directed causal curve y,(f) through ¢, »,(0) = 2.

Because of (1), there is #; << 0 such that y,(t) € cM sor an ¢ satisfying #; = ¢ < 0.
The set of all such £, has a finite negative minimum, 7, say, since Cm is compact and
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M-strong causality holds on it. Let y,(7;) € U;. U, is open; there must be, therefore,
t << T,suchthat p, =9,(6) e Uy, 1 ¢ Em All causal curves in M from p, to p cannot

lie in | J U;, because then <p,, p>m should be compact and p, € CM. Let Ya(t), 72(0) =
i 0
P, ys(—1) = p;, denote a piecewise smooth causal curve in 1 not lying entirely in

|J U;. On y,, we can perform a construction similar to that on y, and find a point
i=0

PsEM, o (Pr, Po it Em ps€ Us, (Uy = U,). Then, there is a curve from p, to p

not entirely lying in |J U, etc. In this way, a causal curve y in M through points
iZo

P1, Pa, --. 1s constructed so that, between $, and p, ., it is identical to y,; and lies,

therefore, in (p>m. The succession {p;} cannot be finite, but, for every ¢, p, liesin U,

and {U,} is finite. We have a contradiction, which proves the theorem.

4, Comment

By comparing HAWKING's Theorem 2 in [5], which has been used in [14] to show
that the Universe contains a singularity with our Theorem 2, we see that they both
do not exclude that a breakdown of strong causality might save the Universe from
the singularity. However, whereas the former restricts in no way the kind of the
breakdown, the latter requires the closed causal curves (or partially closed causal
curves) to lie entirely in the compact region exp of our past. Thus, HAWKING's Theorem
would let open a physically interesting possibility, namely, that there might be a great
unknown portion of the Universe over which some causal curve could be closed (what,
by no means, would hurt the causality of our experience. Unfortunately, it can not be
the case, as we have proved.
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