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Unitary Sum Rule and the Time Evolution of Neutral K Mesons

by L. P. Horwitz and J.-P. Marchand

Departments of Physics and Mathematics, University of Denver
Denver, Colorado 80210

(3. IV. 69)

Abstract. The consequences of the unitary sum rule for the decay of neutral K mesons are
investigated without assuming the usual semigroup property (Wigner-Weisskopf equation with
constant complex Hamiltonian). A much wider class of motions in the K meson subspace then
becomes possible. In particular, there may exist evolutions which do not admit any states with
pure exponential decay laws. In a CP-invariant theory, however, the unitary sum rule alone
implies exponential decay for the CP-eigenstates.

I. Introduction

The phenomenological description of K meson decay, widely used in current
practice [1], consists of the application of a generalized Wigner-Weisskopf equation

in the K° KO subspace to describe the evolution and decay. This equation is supple-
mented by the unitary sum rule of BELL and STEINBERGER [2], connecting the two-
dimensional subspace with the space of all final states for the decaying system.

It is well-known, however, that the projection of the time evolution into a subspace
cannot, in general, have the exact semigroup property if the evolution of the full space
is unitary; the Wigner-Weisskopf equation with constant (non-Hermitian)
Hamiltonian, on the other hand, assures the semigroup property for the solution.
The assumption of constant decay rates as they arise in the unitary sum rule is also
not justifiable in an exact sense in general. In this paper, however, we shall assume the
general validity of the unitary sum rule in a generalized form (which is applicable to
arbitrary states p [3]) but relax the restriction of the Wigner-Weisskopf equations.

This more general viewpoint, in which we do not insist on the semigroup property,
allows for a great variety of motions in the K° meson space. In particular we find that
there are evolutions possible for which there does not exist any state g with exponential
decay law.

If the unitary sum rule is supplemented by the requirement of CP-invariance, we
find that even without the semigroup property the CP eigenstates decay exponentially.

II. Unitary Sum Rule

Let ¥ be the Hilbert space of the neutral K mesons together with all their decay
products. We consider the K mesons as particles, and write

ysz@:”f (1)
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where H is the 2-dimensional K meson space and 3, the space of the ‘final states’.
Let Py, P; (Px -+ P, — I) be the projections of # on Hg, H,. The evolution of the
entire system is defined by a semigroup of unitary operators in H:

Vt - e—z'Ht (2)

where H is the total self-adjoint Hamiltonian of the system. Let {f} be a set of final
states forming an orthonormal basis in H;, and choose, for instance, the CP-eigenstates
K,, K, as an orthonormal basis in #,. Then we have the completeness relation

Zl(Kﬂftw)l“erI(f,Vtw) 2= Vewl® = [w[® (3)

Suppose now the initial state to be in Hx: Let p = Py v and introduce the reduced
evolution U, = P V, Pr in . If we take the time derivative of (3) we obtain

d d
ir o0 (Ko, P Ve Pry) |2 = d; U= — 4 (L Ve Pry) | ()

It is at this point where BELL and STEINBERGER [2] make the farreaching as-
sumption that the transition probability per unit time between K- and f-states is
given by the T-matrix

;thf‘l(f’ VtPqu)[Z:;’}(f,TUtw)]?. (5)

We do not attempt here to investigate the precise validity of this assumption
(some remarks will be made later), but instead consider the exact mathematical
consequences of (5) for the reduced evolution U, of the K meson system.

From (4) and (5) we get Bell and Steinberger’s unitary sum rule for pure states:

— 4 Ul =X T U, ©

i.e. [2], the transition probability from U, y into the final states (per unit time) equals
the ‘depletion’ of the state U, v in .

Let us reformulate (6) for arbitrary states in # which can be described by a
density matrix p. We denote by P, the projector on the 1-dimensional subspace of #
spanned by y; then

Fe = Uy I BT (7)
and therefore

\Up|2=Tr U, P, U =Tr U U P,.
Furthermore, for the rlght hand side of (6),
2()‘, TUY @ U'T )=Tr(PRTU,P U TY=TrU T " PR, TG P) . (8)
-

Combining these results and replacing P, by an arbitrary state (which can always be
constructed as a convex combination of pure states of the form F,), we obtain

—~ & THUF Ug) = THUF T* B, T Uy ©)

as the extension of the unitary sum rule to arbitrary states.
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The result (9) can be written conveniently, without reference to the final states
H, if we introduce in Hy the operator y = Py T+ P, T Px with 2 x 2 self-adjoint
matrix elements:

Yie =2, (Ki, T /) (£, T Ky) . (10)

!

Equation (9) then appears as
d
r{(UFy U+ 4 (U.UD) of =0, (11)
and since this is to hold for arbitrary states p = p*, we obtain the operator equation

d
Ury U+ 7 (U Uy = 0. (12)

ITI. Time Evolution of the K* Meson Systems Under the Unitary Sum Rule

Every evolution U, in Hy can be considered as the solution of a Schroedinger
equation with time-dependent Hamiltonian H (¢

Uy=—iHelt) Uy; He) =iU, U™, (13)

Hi(?) 1s in general neither self-adjoint nor normal.
Inserting this into the unitary sum rule (12) we obtain

y+i(Hy —Hg) =0 (14)
and conversely, (14) together with definition (13) implies the unitary sum rule (12).
So the anti-Hermitian part of Hy is time-independent and Hy has the general form

Hylt) = M() — 7, (15)

where M ((t) is an arbitrary Hermitian operator.

There are several cases to consider:

A. In case Hg(f) = M(¢) — 7y/2 is a normal operator, or, equivalently, if M(t)
and y commaute, then the orthogonal basis {¢,} diagonalizing y also reduces M () and
we obtain an evolution

0 (16)

¢
0 exp | — ¢ [ My(t)dt — 2 £
P 2 2

0

g t
exp (— ifMl(t’) dt’ — 3{; t) 0
U sy

: =

where M,(t), y;, are the eigenvalues of M(t), y. Although U, does not satisfy the semi-
group property (unless M (¢) is constant), the decay laws for the eigenstates remain
of the form

pilt) = Tr (U B, Uy =& . (17)
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B. It Hy 1s not normal but time-independent, then U, has the semigroup property
and there i1s a non-orthogonal basis diagonalizing U,. The eigenvalues of U, are
¢ "' where h, are the eigenvalues of Hy (the real and imaginary parts of %, do not,
however, correspond to the eigenvalues of M and y). This is the case usually considered
1] for the K-decay, where two non-orthogonal states (denoted K, Ks) have a pure
exponential decay
2Imh;t

pilt) = ¢ (18)

C. An interesting possibility arises it Hg(t) 1s not normal and 1s time-dependent.
Here the time evolution U, may not satisfy the semigroup property and no pure state
may exist for which the decay is exponential. As an illustration consider the particular
case where Hy(f) is diagonalizable for all times by a non-orthogonal system {g,}.
If we denote by 4,(¢) the time-dependent eigenvalues of H(f), the evolution and the
decay laws of {g,;} read

exXp | — ¢ )zl(t') dt’)) 0
U, = ( Of t
0 exp ( — / hylt') dt’))

p.(t) = exp < [2 Im byt dt’). (19)

0

’

Clearly {U,} is not a semigroup and p,(¢) is not exponential except for the case where
Im h,(t) is time-independent.

As a more general illustration, we consider the evolution generated in Hg by the
Hamiltonian

ml . ,'i_yl_ £ it

Hy(t) = ' 1 (20)

written in the basis for which y is diagonal. This operator clearly satisfies the unitary
sum rule (14), and has the property that it cannot be diagonalized in any time-
independent basis for any ¢, w + 0. The differential equation (13) for U, can be solved
exactly in this case, and yields

t

({2 ot 2) _ i ier g DE
e sinh (%JV 5 1e sinh 5

0 52 it 0 ” e ne
—ge WA etginh. - g~ iRetginh (X— Tt)
with
D=y—4et; =27 _im—mytw); coshy=,. (2

The quantity D is defined uniquely by the requirement that D - { for ¢ - 0.
We remark that (21) does not have the semigroup property. To show that in this case
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there does not exist any state g for which the decay law is a pure exponential, we
consider the decay law to second order in (small) ¢:

p,(t) = 011 e 4 ggg 677

L .TT_C_‘T_: {f:y't"h e L it o (my — my — ) i

S~ i

2 g e - > .
-+ “!'C:?"“"' {Re@m [(my — My — ) (67728 — g Vt) 4 72t (o)) ) sin (1, — 11y — ) £]
I Y17 Ve it vt —(tval2)t o, s e ) | (23)
+ Mgy | T ok (vs — 1) COS (g — My — ) &

It is easy to see that the cancellation of all terms proportional to either of the two
possible pure decay laws (for, e.g., y, > 7,) is inconsistent with the condition 77 9% < 1,
Le., |012]% < 011 022 In this model the decay of an arbitrary state takes place in a
way which involves both lifetimes as well as oscillatory contributions.

We note that (20) cannot be constructed in a CP invariant theory. This follows
immediately from the fact that y would be diagonal in the CP basis, but Hg(?),
according to (20), is then not diagonal. In the next section we discuss the effect of
symmetries and CP invariance.

IV. Symmetry and CP-Invariance

A symmetry is mathematically dsfined as a self-adjoint operator A in # which
commutes with the time-evolution V, at all times. If such a symmetry commutes also
with the projection Py of | into Hy (as does e.g. CP), then Ay = Py A Py commutes
with U, at all times and is thus a symmetry in Hy . This means that the eigenspaces of
A g reduce the operators U, and if A is non-degenerate (which we may assume since
in the 2-dimensional K°space Hy all degenerate operators are trivial) its eigenvectors
@, diagonalize U, at all times. Hence the unitary sum rule (12) reads, in the basis ¢,,

d
U ¥ir Un + 4y (U 6 Up) = 0 (24)
and we have, for 7z + k:
UJ Yir Upp =0 vir="0. (25)

So the operator y = Py T+ P, T Py in i commutes also with the symmetry 4.
For 7 = %k equation (24) yields the first order differential equations

)
Vi |Usi|* + dr U |? = (26)

for the square of the modulus of the diagonal elements in the U,-matrices. Together
with the initial condition U, = I, (26) has the unique solutions | U,,|* = exp(— v;; )
and the evolution

’

I (]lll 61, al(t) O / 6_ (Vlllz)t g'l oy (?) ()
Ut = . = N 'e (27)
0 |Ups | €% 0 o aal2)t i aslt)

¢ ¢
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1s determined up to the real phases «,(¢). With this U, the eigenstates ¢, of the sym-
metry operator 4, have the pure exponential decay laws

— e f

pilt) = 7

It is easy to see that if two pure states have pure exponential decay with different
life-times, no other state p, pure or mixed, can have pure exponential decay. Hence we
have found that in the presence of a symmetry Ay the eigenstates @, of Ag decay ex-
ponentially withrespective life-times 1]y, ; and these are the only states with pure exponential
decay.

If, in particular, the symmetry is CP, we conclude that in a C P-invariant theory
satisfying the unitary sum rule the two states with pure exponential decay are exactly the
C P-eigenstates K, and K,, and the decay constants are [2]

,l’i:y,-izgy(]‘,TKi)P. (28)

The unitary sum rule in its strongest form (12) thus rules out any attempt of
saving CP-invariance for the decay of neutral K-mesons, although it provides
possibilities for evolutions which are more general than those usually considered.
In particular it does not imply that U, is a semigroup nor that it is generated by a constant
phenomenological Hamiltonian Hy as commonly postulated in the Wigner-Weisskopf
scheme for K%-decay.

V. Some Possible Alternatives to the Unitary Sum Rule

The unitary sum rule depends on the validity of equation (5), which links the
transitions K — f per unit time to the scattering amplitude 7. It depends on the
detailed properties of the S-matrix and should be verified whenever an explicit model
1s considered.

In particular, the situation may arise where (11) holds only for certain states p.
Since we do not have available a complete theory of K-meson decay, we have no
way to decide whether this situation occurs. Nevertheless, we may pose the following
converse question: Suppose we want a C P-invariant theory of K-decay compatible with
the main experimental fact that the long-lived K produces 2 m-states at times comparable
to 1/I'y . For what states ¢ does the unitary sum rule (11) still hold?

In the CP basis K, the CP-invariant evolution U, is diagonal. Writing equation (11)
out for this case we obtain the first order differential equation

d | d
(711 | Onl2+ 4 | Un |2) Oun + (7’22 | Upa |2+ 4, | U 2) 022 = 0. (29)
If this equation were to hold for arbitrary states py;, @2 = 1 — 04, 1t would im-
mediately decouple as in (26) with the solutions |U;;| = exp(—v,,/2?), and for large
times ¢ ~ 1/y,, the K;-component would have decayed so that no long-lived 2 n-
production could occur. So let us assume solutions of a more general type

|UiiP=o; e+ (1 — &) e 7 0<a; <1 (30)
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compatible with U; = I. (Note that | U;;|? remains positive for all times.) Inserting
this into (29) we find

G _l-en ve-Dy . 11—y l-gn Yn-{y (31)
Oy enn ru—1I17 1-o, 011 Yu—1%

Again this can hold for all states p if and only if /', = y,, and either a; = 1, oy = 0
oroy = 0, ay = 1, in which cases (30) is trivial. If, on the other hand, (29) is postulated
to hold just for one fixed state, (31) gives nontrivial possibilities for the choice of a;
and the I';’s in terms of y, uniquely fixing g;. According to (30) the decay of the CP-
eigenstates K; would then not be purely exponential and the 2z production at large
time could be adjusted to experiment.

It is amusing to note that the form (30), consistent with the existence of a long-
lived 2z mode, does not admit any states gg, o, with pure exponential decay laws
even if we abandon the unitary sum rule altogether. Long-lived 2z production
implies that 0 < ¢; < 1 in (30). The decay law for arbitrary g is
—I'pt

= e
Tr UtQ Ux+ = (o1 o+ (1 — 0yy) 5] € ! + [04s (1 —ag) 4 (1 ~—gg) (1 —o)] e

For pure decay laws for pg and g, , we therefore require

(0s)11 (1 —og) + (1 — (0g)11) (1 — ap) =0 (o)1 % + (1 — (o)1) 2 = 0.
Solving for gg, o, we find

L

‘<~‘:1; 0 < (o= ——= = 1 s

al_az ag““ml

0< (95)11 =

But these inequalities contradict 0 << g; << 1.

We wish to thank G. MosaN and H. NEUMANN for helpful discussions.

References

[1] See, for example: T. T. Wu and C. N. YangG, Phys. Rev. Lett. 73, 501 (1964); T. D. LEE,

R. OenME and C. N. Yang, Phys. Rev. 706, 34 (1957); T. D. Lee and C. S. Wu, Ann. Rev.
Nucl. Sci. 77, 513 (1967).
For applications of the unitary sum rule, in addition to reference [2], sce: G. CHARPAK and
M. Gourpin, Noles of Lectures given at Madras, 1967 (CERN 67-18, 11 July 1967) ; M. GOURDIN,
Nucl. Phys. B 3, 207 (1967); S. L. GLasHow, Phys. Rev. Lett. 78, 524 (1967); Y. AcHIMAN and
L. P. Horwitz, Nuovo Cim. 57 4, 863 (1968).

(2] J. S. BELL and J. STEINBERGER, Oxford International Conference on Elementarv Particles,
September 1965.

(3] J. M. JaucH and C. P1roN have considered the possibility of mixed states for the K% meson
decay (private communication).



	Unitary sum rule and the time evolution of neutral K mesons

