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N/D Equations with Marginally Singular Kernels?!)?)

Institut de Physique Théorique, Université de Lausanne (Switzerland)

by G. Auberson
(30. 1. 69)

Summary. The singular N/D equations which arise in the case of partial-wave dispersion
relations with an asymptotically constant left-hand discontinuity ¢(z) are investigated. It is
proved that the resolvent (considered as an analytic function of the ‘coupling constant’ 4 =

lim ¢(z)) has a non polar singularity in the A-plane. The location of the singular point is controlled
2—>00

by the rate of inelasticity at infinite energy. This singularity gives rise to a multiplicity of solu-
tions.

I. Introduction

When partial-wave dispersion relations are solved by the N/D method, it is
generally assumed that the distant part of the left-hand discontinuity does not affect
appreciably the scattering amplitude for not too high energies. This ‘nearby singu-
larities hypothesis’ is supported by the idea that the short range forces are of little
weight in the low energy region. Actually, this is known to be true if the asymptotic
left-hand discontinuity tends to zero rapidly enough. Then the N/D equations are
equivalent to a Fredholm equation with a Hilbert-Schmidt kernel. More precisely,
if T,(z) is a partial-wave amplitude for the elastic scattering of equal mass, scalar,
particles (z = ¢?, the squared center-of-mass momentum) and if its left-hand discon-
tinuity ¢,(z) satisfies: b(2) ~ const.|z|-* (Log|z])*,

Z2—>—00

the Hilbert-Schmidt condition requires [1]:
1
«a>0 or a=0, ,8>~2~.

Then we can compare the N/D solution T,(z) with the perturbed amplitude 7', ,(z)
resulting from the truncated left-hand discontinuity ¢,(2) 6 (z + Z). As the cut-oif Z
goes to infinity, one obtains for / > 1:

0[Z*Log Z)F] (x> 0)
Ii(2) = T, 4(2)

Zox

" l 0 [(Log Z)~F+12 (oc =0,8> —-12—) .

where £(z) is bounded over any compact domain of the z-plane whose distance from the
left-hand cut is positive.

Entirely new features appear when ¢,(z) does not decrease asymptotically. This
happens for instance if the left-hand discontinuity is approximated by the Born
contribution of a vector meson exchange [2, 3]. Already in the so-called ‘marginal

1) Work supported by the Fonds National de la Recherche Scientifique.
%) Part of a Thesis entitled ‘Equations N/D et approximation par des pdles’, submitted in fulfilment
of the requirements for the degree of Docteur és sciences, Université de Lausanne, 1967.
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case’ (¢,(z) = 4 Q)!(z),zgriloo@l(z) = 1), an incompatibility with the unitarity condition

(via the Phragmén-Lindelof theorem [4]) reflects in some pathology of the N/D
solutions. The resolvent of the Fredholm kernel (meromorphic in A when the Hilbert-
Schmidt condition holds) exhibits now non polar singularities in the A-plane. As shown
on solvable (but unrealistic) examples [1], these singularities appear to be generally
branch points, producing a multiplicity of inequivalent solutions.

The purpose of this workis to prove a similar result in the general marginal case. This
problem has been treated in a different way by ATkinsoN and CoNTOGOURIS [5]. Their
method is more constructive than ours, but their assumptions are more restrictive.

Our problem and our results are stated precisely in Section II. In Section III
some inequalities are derived. They are used in Section IV for the proof of the singular
behaviour of the N/D solutions.

I1I. Statement of the Problem and Results

We restrict ourself to the P-wave elastic scattering of two spinless, equal mass,
particles. The higher waves can be treated in a quite analogous way and the results
are the same (only the S-wave scattering requires some modifications).

The P-wave amplitude 7'(z) with a given left-hand discontinuity ¢(x) and a given
inelastic factor R(x) has the usual representation (for details, we refer to [6], Section II):

N(z)
D)

17 4w D
J N(Z)_;_/ dx x (¥—2) ?
__1—r-/]i V”

o) = |/ 55 R
0<p(x) <I for x>0, (IL.1)

[ T() =2

where:

o), )7 -

This leads to the integral equation for N:

= B(z) +fdz’ K(z,2'Y N(z') (N = B+ K N in operator form) , (I1.2)

where:

fd_ng, (I1.3)

o) [, $(=)
=82 o .
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As we consider the marginal case:

lim ¢(— x) = 4. (I1.5)

X—>00

We can regard A as a multiplicative ‘coupling constant’ of the left-hand discontinuity
and extend it onto the complex plane.

Another basic assumption we need is the existence of lim R(x). For definiteness,
we take: X

R(®) = Re+0 (_j;-) (Ro > 1), (IL6)

X—>00

we wish to show that the equation (I1.2) has a solution N(A) which is meromorphic
in the circle | 4| < 1/Rw, with a non polar singularity at the point A = 1/ R (Whatever
the rapidity of the convergence ¢(— x) - 4 may be).

To do this, we use a ‘variable cut-off’ technique which consists in splitting the
left-hand discontinuity into a ‘long range’ part @, and a ‘short range’ part @g:

I ¢(— %) = A Dy (— %) + A Dg(— x) ,
| 20— ) =0(x— 2)$(— %) .

The abscissa Z of the cut-off is variable and can be chosen arbitrarily large (generally
this variable will be implicit in the notation). From (II.5) and (I1.7):

lim @y(—x)=1.

x—00

(I1.7)

Hence, for Z large enough:
A < D(—x) < A" (xe[Z,00]), (I1.8)
with: IO<A’<1,A”>1,
(I1.9)

| Jim 4'=lim 4"=1.

Z—>00 2—>00

The decomposition (I1.7) involves, via equation (I1.4), a similar decomposition of the
kernel K: K(Z, ZI) — &KL(ZI Z’) 23 le(z, zr) , (1110)

with obvious definitions of K; and K.
One deduces easily from (II.1), (I1.3-5) and (11.10) that:

Be £20,00), K, e L£2[(0,00) x (0,00)],
KS ¢ EZ[(O, OO) x (0’ OO)] y

Therefore, K is not a Hilbert-Schmidt kernel. Instead of (I1.10), we shall use a

decomposition where the more singular part K, does not contain the factor g(x)
(this is possible by (I1.6)):

K(z,2) = A Kz, 2') + 4 Ky(z, 7)),

Ki(z,2')=K,(2,2) + [@};io) - 1] K,(z, 7)),

< . (IL.11)
K2(2', Z,) . E?—fdx ¢S(_x)

m* . (x+2) (x+2)°
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Now equation (II.2) is equivalent to the set of coupled integral equations:
N=B+AlK/ N, (I1.12)
N=N+1K,N. (I1.13)

In order to establish the announced singular behaviour of N(4) (and quoted as a
theorem in Section 1V), we prove that the singular equation (I1.13) (K, ¢ £?) has a
perturbative solution of the form: e

N=N+ R4 N.

The resolvent R,(A) presents the same singular behaviour. Furthermore, the remaining
equation (I1.12), now equivalent to:

N=[B+ Ry() Bl + A[K, + Ry() K] N, (11.14)

has a Hilbert-Schmidt kernel.

Once a non polar singularity of the solution N(4) (and hence of the amplitude
itself) has been exhibited, the next problem is to determine the type of this singularity.
Unfortunately, it seems quite hard to do this. Actually, our method does not allow
to decide between an essential singularity, a branch point, or a limit point of isolated
singularities. Probably more informations are needed, as the answer appears to
depend on the asymptotic behaviour of ¢(— x) — A. However, assuming that the
convergence ¢(— x) - A is fast enough and using elastic unitarity, Atkinson and
Contogouris have been able to show that 4 = 1 is a branch point of N(4), this function
being meromorphic anywhere else. As a matter of fact, the analytic continuation of
the resolvent R,(A) outside the circle || = 1/R is an open question in the general
case.

Furthermore, the existence of R,(A) for some A > 1/Ry does not imply directly
the existence of a solution N(4), as nothing prevents the kernel of equation (I1.14)
from being singular when |4| > 1/R. Nevertheless, the assumptions of [5] produce
essentially the same analyticity properties in A as a constant left-hand discontinuity
¢(— x) = A. In such a case, the continuation of the solution N(4) onto the second sheet
of the branch point 4 = 1 is feasible and allows the construction of two independent
solutions for A > 0. On the other hand, one has, at least in this example, solutions which
are not continuations of a solution holomorphic in the neighbourhood of 4 = 0 [3]. It
seems that the various solutions may be distinguished according to their asymptotic
behaviour in the z-plane. Their physical relevance is still ambiguous.

II1. Proof of Some Inequalities
Let us introduce the iterated kernels:

Ké”):K2K2...I{2.

n

Our method is based on the following inequalities:

. i -1 "
i) Bz 2ty = (A fteo )% fudd” Heo

72 (4 Z) i (& + Z)1—n (0 <p<1)

sin®z u
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1 1-2pn
C#:(;;—“l) 4

ii) KMz, 2) = (4" Beo) = [ — ———— COS (15 log Zq‘nz—) :

where

ViE+nZ) (2 +nZ) Chz’”” ztnZ
1 (A" R \7 " 1 (A" R\
iii) v (“’nz‘m) G, < K0, 0) < 5 ( ﬂzﬁ) G,
where:
dy, dy dy
G :f 1 2 - 2n—1 - =1 2 .
T 04 Dkt (yzn 2t Vep—1+1) Wapm1t1) =1, Bysan)
iv) G,,>2:Gk_1 bz, & (=12, s Gy=1]
E=1
Proofs
1) From (I1.8) and (IL.11):
) A" Reo [ dy
Bole ) < =2 i] +E+2)] v+ +2)]
Using Hoélder’s inequality [7]:
(o 0] d o0 o0
¥ ay 1L dy 1L ; 1 1
. —— : ik e =1
Of TN [0 (HE)P]P [0/ (y+$)4]q & >0ipg>1s p T )
one gets (1/g > p): A" Reo a

Koo, ) < pizm e zin

which is the inequality i) for # = 1.
Now, supposing that i) is true for some #:

(n+1) Atoo " Dg(— ) ( A" Reo ) - c’{ﬁfiﬂ,,_}&?_g,_._
K ) < /d /dx (¥ +2) x+z) sin2s p (" + 2k (Z+Z)1-n

& (A" Roo)"" Cu A" Roo
st sin2n—27 y ( z+71 H x+z (z”+x z”+Z

But:
o0 o0
Ay 4
(z"+x z”+Z v+ (% < T+ @x-2)yr  (x—Z)usingu
0 Z 0
so that: 0
iy, o AT R AR [ dx
Kz (Z, <z ) e 3 sin2n—1g gy (2'+Z)1—u (x42) (x—2)r
— (_A' Roo )” cu A" Ro q.e.d.
sin?m w2 (e+ 2 (7 +Z)1—n
ii) From:

o
AR dx
Koo, #) > 202 [
zZ
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we deduce: -
Ké’”(z, 7) > (A'lz?oo "/ dx, dx’g...dxz,z_l ’
T J (g4 2 (v+2g) ... ().2"_2+x2n_1) ("2,,_1"‘3)
1 (A'Roo)"
—_ Fy a0y,
where: 2 e "
(e o]
8 ay, dyy ... dy
o % :j,,i,f_,,_ 1772 2n—1
2a-1(%, V') J oA 0yt Oareat Yoy 1) Gan s k7 D)
z 27 X;
¥ =5 y’_}‘ (yz':"“ZL_l)

In order to reduce F,, _,(y) (we forget the variable y’ for a moment), we shall use the

obvious recurrence formula;
o0

Fp, ,y—1)= Fy, o (y1)

written in the form:

C‘odt 1
Fopa(y—1) = fT =1 Fan-e (3)- (IIL.1)

0

The right-hand side of this relation can be factorized by performing a Mellin trans-
formation [8]. The Mellin transform of a function f of the real variable y is the function
M(f] of the complex variable s defined by:

M) 6) = [ dy =" f ) -

Then the right-hand side of (ITI.1) appears as the analogue of the Fourier convolution
of 1/(yv + 1) and F,,_,(v). Hence:

1

ME;,_y (y — 1)] (s):‘m[y“] () MFy, o (¥)] (s) = M(Ey, s (V)] (s), (IIL.2)

where 0 < R, s < 1, in order that the integral representing M[1/y + 1] (s) = zz/sinz s
converges.
By using (III.2) repeatedly, one obtains:
MFrr (v — )] () = (5as) O + )

simagr s

sinm s

which gives, when using the inverse Mellin transformation:

c+ico
P 1 ' ds y' 4+n \s—1
s 0.Y) = S 11 | sy ) @0 <c<1).
c—100

Finally, by choosing ¢ =1/, (s = 1/, + 1 8):

o ¢]

nen dt

1
G+m) ' +m) m ] chnat

cos (t Log 2 +n)

F2n-1(y’ y,): V y+n
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iii) These inequalities follow directly from (II.8) and from:

b 2y (%y+ %) oot Hopn_1) Fop_a Z n?

Z

r Bs [~Z (5, +1)] Bs [~ Z (¥3+1)] ... BS [~ Z (Vgn_y+1)]
# fdyl @Yy« AYan- (1+1) (11 +¥2+1) ... Wag_2t+¥ay_1tl) (e,—1+1) s

iv) We begin by performing (n» — 1) integrations in G,:

o0 oo o
G, f dy, @Yy ... @Yy [ ay, ; Y3p—2
(¥1+1) Vo, — 1+1)(.; 1 +ye+1) (Vo+ys+1) d (Vop—atVop_otl) Wap_ot¥e,—1+1)
y+1 A Yap—3tl
et Log Log —=2—>
Ay, @Yy - Way_1 ya+1 Yan—1t1

(1+1) o1 +1) Yi=%:  Yapg—3—Yag—1

which becomes, with y; = 1/(¢; — 1):

1
— t2 tS tﬂ
G,,—fdtldtz...dt,, e
0

An equivalent form of G, is obtained if we put ¢, = (1/a) %;, where « is a new real

variable: {
Gn = o In(“) )
with:
=fdu1...du,, —4 — s —
d Uy— Uy  Ug— Ug Up_1— U,

Then (in a shortened notation):

1 1 1
al
Gom G| = fon=1+ [m=D+ .t [ =1)
0 0
1 it R L n—1
Log u, gua & n
= du2 n
Ug—1  up—uy Up1™ Uy
.+fdu v du,_du, ... du ... k=1
] 1 k-1 0¥ 11 T — g Up_g— Uy
u u
Lo k+1 LOg n—1
= (Loguk_1 Loguk_H) 5 Up i u,
R T A TS Sl e Upg1— Uy
u : u
1 Log X Log =%
g Uy 8 Up—1 Logun—-l
A duyodu, 7
g Uy — Uy Upa—Uy_1 Uy 1~
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so that, as Logu/(# — 1) = 1for 0 < u < 1:

G, >26k_1 G . (Go=1) q.e.d.
k=1

IV. Proof of the Singular Behaviour in 2

We proceed step by step and establish three lemmas.
Lemma 71: Assuming N to be a known (and well-behaved) function, the singular
equation (I1.13) has a solution which is holomorphic in a neighbourhood of 4 = 0.

This solution is given by: N— N+ RN (IV.1)
1Y = 2 ) '

where the resolvent R,(4) is the power series with positive coefficients:
o(2, 23 A) ZK”)z NI (220,72 =0). (IV.2)

The radius of convergence A, = A4(z, ') of this series is such that:
1 ) 1
A" R < Aoz, 2) < A R (IV.3)
Proof
The expression (IV.1) is the iterative solution of equation (I1.13). It is well defined
as long as the series (IV.2) converges. The radius of convergence A, is given by:
! = lim sup ]/K(” (2, 2') -

70(3 z) 7 — 00

Introducing the bound 1) with 4 = 1/,, we obtain the first of the inequalities (IV.3).
Besides, for [A| < (sin?z u)/A" R, one deduces from i) and (IV.2) the bound:

’. GﬂA Reo |}| 1
IR2(2’211)| €~ 2 (1_ AHR H'l (Z+Z)l“ (2’+Z)I_P‘ (O<lu’<1) (IV'4)
- (  sin?mu )

which will be used later on.

Next, according to the inequality ii):
oC

1 L 1 ) dt Z+nZ
Az, )_ =4 Roonh—r>noo [an-l—nZ) (z"+n Z) b/ chingt cos (tLO z+nZ )]
, ) Fa 1
0
where we have used the strong decrease of (chzm#)—%" with ¢ for large #, and
lim cos(t Log[(z" + n Z)/(z + n Z)]] = 1. The second part of (IV.3) then follows from
n—>00

the property [9]: -
2 1
lim [/uud—t*]n = Sup S BBt

% —> 00 chingmt 0<t<oo ch®mt
0

As a consequence of (IV.3), the series (IV.2) is uniformly convergent with respect to z
and 2’ over every circle of the A-plane with radius |1| < 1/A" Re.
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Lemma 2: Equation (II.14) is a Fredholm equation with a Hilbert-Schmidt kernel
when || < 1/A" Re.
Proof
o) K,e (2.
From (II.11):
Ko 2) | < | Kpfe 2)| + 80 1 | Kyfe 7).

o

Obviously, K, is a Hilbert-Schmidt kernel. More precisely:
z

; _f 1 Q)L(—x) 2 B .
}KL(Z,Z) ’ = I?/‘dx '—(}*_I_z) (x+ ) | < const. W‘:G) (Z ;0, 2 20) i

a

On the other hand, by assumption (II.6):

o) JL_
R 1 < const. 7

Thus, taking into account the inequahty 1) for w = 1:

const, Z const, ¢y A" Z

B < g v T wrap iz O<r <. {@VS)
Hence K, € £?, as we can choose for example v = 2/3.
B) Ry(4) Be?.
According to equations (I1.3) and (IV.4):
const. ¢y A" |A] r / dv
1B BE) | < 2Tl 3 S / ) e
- sin?au
Now:
o0 o0 o0 oo
C_ e [ ax / ax f 4%
| iz f orm < 5 wimeTars
0 a [t}
dx cio dy i 11 2 n—1
= f ] B+ e—alya (;n‘mz)
Thus:
|R (1) B(2) ‘ < Cu A M _ const. B M‘ < _sm T (IV.6)
% sinmp— A" Roo|ﬂ| (z+Z)m A" Ro -~ ’

Once |A| < 1/A" Ry is given, a positive ¢ can be found such that [4] <
sin?[z (/5 + €)]/A" Rw. Then it suffices to choose u = 1/, + ¢ to conclude from (IV.6)
that Ry(1) B e L2
y) Ry(A) K e 2. q.e.d.
This property can be deduced in the same way from the bounds (IV.4) and (IV.5)
by putting u =1, +¢,v=1—¢.
Collecting «), ) and y), we see that:

[B+ Ry(4) Ble L, [K,+ Ry(4) KiJeL?.

47
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At this stage, the radius of convergence 4, depends on z, 2’ and Z. The coefficients
K{"(z, ') of the series (IV.2) being positive (for z > 0, 3’ = 0), Ry(2, 2’; ) is necessarily
singular at 4 = 4,(z, 2').

Before we show that A, does not depend on z, 2’ and Z, we establish that the point
A = Ay(2, 2') cannot be a pole of R,(z, z'; 4) (as a function of A only).

Lemma 3: The resolvent R,(z, 2’; A) presents a non polar singularity at 4 = A4(z, ).
Proof

As the generalization makes no difficulty, we consider the resolvent for z = 2" =0
only. We want to show that the presence of a pole of R,(0, 0; 4) at A = 4,(0, 0) is
incompatible with the inequalities iii) and iv).

Starting from the coefficients G, defined in iii), let us construct a function G of 4
(and of Z) by means of the power series:

A" Reo A \7
G = Y6, ()" (G=1). (V.9
n=0
According to (IV.2) and iii):
G(A) <1+ Z R,(0,0; l) , (IV.8)

G) > 1+ Z Ry(0,0; 22, (IV.9)

) A A
for real positive 4 (not too large).
On the other hand, by multiplying both sides of iv) with (4" Re 4/7%)" and summing

over 7, one gets:
G — 1> T2t Gy,

which gives:

2
GA) < Grraa (IV.10)

The bound (IV.8) insures the convergence of the series (IV.7) in the circle 4| < 44(0, 0).
Thus the inequalities (IV.9) and (IV.10) hold when 0 << 4 < 4,4(0, 0). They imply:

4 2 ’ >0
0<ZRy0,0, 55 4) <o —1 Vi, (IV.11)
* | <4(0.0
A resolvent presenting a pole at 1 = 1,(0, 0) could be written in the form:
Q
Z Ry0,0;4) =} I'O_O)_—TM r(4), (IV.12)

g=1

where ( is some positive (but finite) integer and #(A) a function holomorphic in a
neighbourhood of 4 = 4,(0, 0).

Comparing (IV.11) and (IV.12) in the limit Z - oo and taking (I1.9) into account,
we obtain:

0<21_ L lim o) <" -1 0<d<d), (IV.13)

Z—00 ROOZ'

where 4, = lim 2,(0,0), R, = lim 7

Z—>00 Z—>00 7
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Now the R, are not all vanishing, since lim Z R,(0, 0; 4) cannot be regular at
Z—00

A = Ay (this would contradict the inequalities ii)). Thus (IV.12) is impossible, and the
proof is complete. g.e.d.

As a consequence of Lemma 2 and of the Fredholm theorem, the only singularities
of the resolvent of equation (I1.14) lying in the circle {A| < A4(2, 2’) are real poles
without limit points (their meaning has been given in [6]). This result, when associated
to Lemmas 1 and 3, establishes the existence of a solution N(z; 4) meromorphic in the
circle |1] < 44(2) = }gfo Ao(z, 2') with a non polar singularity at 4 = 44(z) (we do not

discuss the possibility for this singularity to be cancelled by the integrations over 2’
which equation (I1.14) contains). Now, since the function N(z; 4) does not depend on Z,
it must be so for 4y(z). Furthermore, the parameter Z being arbitrarily large, (I1.3)
and (IV.3) imply:

To summarize, we can assert the:
Theorem.: WhenXlim é(— x) = A, the integral equation for N has a solution N(z; 4)

which is meromorphic in the circle |A| < 1/R«. This solution presents a non polar
singularity at 4 = 1/R.

I am grateful to Professor G. WANDERS for initiating this work and for helpful
comments.
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