Zeitschrift: Helvetica Physica Acta

Band: 42 (1969)

Heft: 5

Artikel: N/D equations in the pole approximation
Autor: Auberson, G.

DOl: https://doi.org/10.5169/seals-114088

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-114088
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

699

N/D Equations in the Pole Approximation?)?)

by G. Auberson

Institut de Physique Théorique, Université de Lausanne (Switzerland)

(30. I. 69)

Summary. One-channel N/D equations are considered. We propose a method allowing the
construction of a convergent sequence of pole approximations for the left-hand cut. Then, the
convergence of the corresponding sequence of approximate amplitudes is proved under specific
conditions. This convergence holds especially in the physical region. Finally, the physical meaning
of some abnormal cases is discussed.

I. Introduction

Since about 10 years, the partial-wave dispersion relations are revealed as a main
tool of elementary particle physics. In spite of the difficulties encountered on justifying
or applying them, they have provided the description of intermediate energy scattering
processes with a very useful frame.

Independently to the questions linked with the dynamical interpretation of the
left-hand singularities, the purely mathematical problem of deducing a partial-wave
scattering amplitude from the left-hand discontinuity and the inelastic factor is not
yet completely clarified. Nevertheless, different practical methods have been proposed
to solve this problem. The N/D formalism, whose first version is due to CHEW and
MANDELSTAM [1], has been the most used. The structure of the N/D equations has
been studied carefully by FRYE and WARNOCK [2], touching in particular the question
of existence and uniqueness of a solution, the CDD ambiguities and the inelasticity
implications. '

In most applications, the N/D equations are treated numerically starting from
some approximations of the left-hand discontinuity (and inelasticity). The ‘pole
approximation method’ consists in replacing part of the left-hand singularities by a
finite number of poles. Generally, this technique is applied to the less known distant
part of the cut, with residues at substituting poles as adjustable parameters [3-18].
If the left-hand singularities as a whole are simulated by poles, the N/D equations
reduce to an elementary algebraic problem, the solution of which is written easily in
terms of the poles parameters.

This work is mainly devoted to the study of the pole approximation in the N/D
formalism. More precisely, a scheme of successive approximations is built which

1) Work supported by the Fonds National de la Recherche Scientifique.
%) Part of a Thesis entitled ‘Equations N/D et approximation par des poles’, submitted in fulfilment
of the requirements for the degree of Docteur és sciences, Université de Lausanne, 1967.
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amounts to replace the left-hand discontinuity by a sum of Dirac contributions, the
number of which grows indefinitely with the order of the approximation. In this
manner, the spectral integral over the left-hand discontinuity is represented by a
sequence of meromorphic functions generating, by pure algebraic manipulation, a
corresponding sequence of approximate (though unitary!) amplitudes. These mero-
morphic functions are determined univocally by their identification with successive
approximants (Padé approximants) of some continued fraction. Then, the convergence
properties of these approximants in a cut plane allows to establish (in a sense which
will be made clear) the convergence of the sequence of approximate amplitudes to the
exact solution of N/D equations.

The existence of a convergent method of this kind seems to us interesting for three
reasons:

1) It gives a reliable frame to the numerous pole approximations used up to now,
and specify their validity conditions (though the only case where all the left-hand
singularities are replaced by poles will be treated, the procedure clearly applies, with
some minor changes, to the more fréquent situation in which only a part of these
singularities is subjected to the approximation).

2) The method in itself constitures an effective procedure of resolution by succes-
sive approximations, the practical convergence of which may be faster than that of the
customary procedure (using Fredholm method) [19].

3) It may be easier to establish certain properties of the amplitude when the left-
hand singularities are reduced to a finite number of poles [20]. The convergence
theorem allows then to extend them to the general case (on condition however that
the asymptotic behaviour of the amplitude is not involved). This gives some hope to
understand the qualitative relations between the left-hand discontinuity (the ‘forces’)
and the physical scattering amplitude in a clearer manner.

In Section II we formulate our basic assumptions and state the N/D algorithm in
the convenient form. In Section III we present the method which allows to construct
a convergent sequence of pole approximations for the left-hand cut contribution to the
amplitude (the ‘potential’). The convergence of the corresponding sequence of
approximate amplitudes is established in Sections IV and V, with a particular
attention paid to the physical region. The conditions in which this proof is valid are,
roughly, those that assure as well the equivalence of the N/D equations with a
Fredholm equation. Section VI is devoted to the interpretation of exceptional cases
where the method apparently fails to work. Also, a necessary condition for the
occurence of narrow resonances is given. Our conclusions are finally summarized in
Section VII, and some technical points are referred to the Appendices.

II. N/D Formalism and Fredholm Equation

We consider the elastic scattering of two spinless equal mass particles. Let T',(z)
be the set of partial wave amplitudes, expressed in terms of z = g%, the squared
center-of-mass momentum (the mass of the particlesis set equal to1). These amplitudes,
as functions of the complex variable z, satisfy the following well known conditions
(as resulting for example from the MANDELSTAM representation):
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a) Amnalyticity

T,(z) s a meromorphic function in the z-plane with the two cuts [— oo, — a],
[0, oo] (a > 0). Its possible poles are real (on the physical sheet).

The physical amplitude is boundary-value of T,(z) for z=x +¢0 (x > 0).

b) ‘Reality’

Ty = THz).

c) Unitarity

. r+1l 1 i 8 (x
Ty +10) = [/ 705 o fpye) &

S ~1] (x>0
where:  d,(x) real

(%) =1for 0 <x <<z withz; > 0

0 <) <1lforx > 2

(we assume the existence of an elastic domain).

d) Threshold behaviour
T)(z) = 0(z) .

z—>0

In our problem, the left-hand discontinuity:
1 . ; .
bi#) = 5 [T +i0) — T, (x—i0)] = ImT,(x+40) (v <—a)

is assumed to be known, as well as the inelastic factor, i.e. the ratio of the total and
elastic partial wave cross sections:

Otot, 1 1—#;cos2d;
R = o= .
() Cel,l z 1—-21,c0820,+n}

Clearly, the information about the inelasticity given by #,is not equivalent to that given
by R,. The former possibility, systematically used by FrRyE and WarRNoOCK [2, 21],
is not suitable for our purposes and we choose the latter. There is no reason which
prevents R, to have infinite values at points x where ¢,; ; = 0, , = 0. Yet we exclude
this eventuality and take for granted that R,(x) is bounded on [0, oc].

Now, the unitarity condition can be written:

: %
&) Im [T, (x +£0)] = — ',:.1 R,(x) (x>=0)
where: R(x)=1for0<x <z, 1<Rx) <, forx> 2.

We introduce the N/D representation in the form:

Ni(2)
Dy(z)

T =% (IT.1)

where N,(2) is a ‘real’ holomorphic function in the z-plane with the left-hand cut and
D,(z) a ‘real’ meromorphic function in the z-plane with the right-hand cut. Conditions
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a), b) and d) are then automatically satisfied. In order to assure the unitarity condition
c¢’) and that 7',(z) produces the given left-hand discontinuity, one has only to impose:

Muxu+im=~xﬂﬂilzummu)fmx>o,
Im N, (x +10) = x~¢ ¢,(x) D,(x) for x < —a.

The resulting N/D equations are, when ignoring subtractions and CDD poles:

( —a
1 D
M@}jﬁwﬁ%ﬂﬁ, (I1.2)
Dﬁhﬁb»%fMﬂJV:L_Rmyﬁg. (I1.3)
0

(for convenience, we have normalized the function D,(2) to 1 at the point z = 0).
If the first integral above converges, clearly lim |z N(z)| = const. + 0 or oo for
Z—>00

a wide class of functions ¢,(x). This causes the second integral to diverge as soon as
! = 2, and subtractions are then necessary. In order to avoid inessential complications
due to additional parameters, we shall deal explicitly only with the P-wave (/ = 1),
free from CDD poles, refering to Appendix 1 for the treatment of partial waves / > 2
and / = 0 (as usual, the S-wave must be considered separately).

In the following, we shall have to require the equivalence of equations (I1.2-3)
with a Fredholm integral equation. This forbids subtractions in the P-wave N/D
equations too (see Appendix I). Thus, suppressing the index / = 1:

( N
ﬂﬂ:zﬁg, (IL.4)
1 ¢w D@
N@‘;fMTEqﬁ (IL5)
m@:1—§f¢wuyi2, (1L.6)
0

where:

e
o) = |/ 21 R
is a known continuous factor which, according to ¢’), satisfy the following conditions:

0 <plx) <I forx>0,
s (I1.7)

[ o(x) ~ ]/x

x—0

Later on, another (weak) assumption will be made about this ‘kinematical’ factor
(see Section V).
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Introducing (I1.6) into (II.5), one obtains the integral equation for IV:

N(z) = B(z) + f 2 K(z, 2) N(z') , (I1.8)
0
in which the inhomogeneous term:
1 T"’ (I1.9)
o x (% +2) )
and the kernel:
n_e&) [, $=%  _ ol#) [zB()—2 Bl
K@ 2) = & ‘/dx o ) 2P (I1.10)

are now given.

The function B(z), holomorphic in the z-plane with the cut [— oo, — a], will be
called the ‘potential’.

The asymptotic behaviour o ¢(— x) must be compatible with the convergence of
the integrals contained in equations (I1.9-10). But we have to impose a stronger
condition: the discontinuity ¢(— x) must be such that equation (I1.8) is a Fredholm
equation, 1 the strict sense. Only in this case our approximation scheme has been
proved to be convergent. We assume the following conditions on ¢(— x) (with some
obvious integrability properties):

A) ¢(— x) has a finite number of changes of sign on [a, co],
B) ¢(— «) is finite for all x € [a, oo],
C) oé(— x) ,= const. x~%(Log x)~F

>0

Then, the necessary and sufficient condition for equation (I1.8) to be a Fredholm
equation is:

{ a > 0 (any f) (L11)

ore=0, f>1)2

The proof of (II.11) is almost straightforward and will be omitted. It consists in
verifying the properties [22]:

i K e £2[(0, 00) x (0, 00)]: | K| Efdz iz |K(z, 2) |? < oo

(K 1s a kernel of Hilbert-Schmidt type),

ii) dz |K(z,2) |2 <oo V2, [dZ |K(z,2) |2 <oV 2z,
/ /

iii) Be£2(0,oo):“BH2§fdz | B(z) |2 < oo.
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As a result of the restriction (IT.11), the solution(s) N(z) of equation (II.8) belong(s)
to the class £3(0, co). Moreover, it follows immediately from Schwarz’s inequality
that the integral (I1.6) defining D(z) converges for z ¢ [0, oo].

III. The Potential as a Sequence of Meromorphic Functions

When the left-hand discontinuity reduces to a finite sum of Dirac contributions:
P

p—x) =Y 1,0(x~z) (3>a, (LIT.1)
n=1

the potential is a meromorphic function:

B(z) = 2 Ep I I11.2
(Z)—";ntlz(znm” k4
and K a Fredholm kernel of finite vank:
K no__ Q(z,) Ep' Iy
: (Z! Z) g — (zn+z) (zn+z’) . (1113)

The integral equation (I1.8) is then equivalent to an inhomogeneous system of #
linear equations [22] which results as well directly from equations (I1.5-6) and (III.1):

( P
N =5 3 2

2, (2,+2)

< , . (LIL.4)
- z Iy D(— zy) o(#)
D(Z)—l—&a— 21 ‘. fdx Gt (=2 "
"= 0

Actually the functions N(z) and D(z) are completely determined by the p coefficients
D(— z,), solution of the system:

Zp’(énm — L f.)D—2z)=1 (m=12...,9) (IT1.5)

n=1

where:

oo
mfﬂj;/ e
fun = Zn  m? an (2,+#) (z,+2) °
0
Our purpose is now:

a) to construct a sequence of meromorphic functions B,(z) (p = 1, 2, ...) of the type
(II1.2) converging to the potential B(z) (Section III),

b) to show that the sequence of amplitudes T,(z) = z N,(2)/D,(z) calculated from
B,(z) by means of equations (III.2-5) converges to the amplitude 7(z) resulting
from the potentiel B(z) (Sections IV-V).

The way we choose the sequence of B,(z) is to consider them as the successive
approximants of a continued fraction. Under some conditions, such approximants are
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known to converge in a cut plane [23], generalizing then in a sense the partial sums of
Taylor series, whose convergence is effective only in a circle. This is the very general-
ization we are looking for, since the sequence {B,(z)} has to converge within a domain
containing the physical region.

More precisely, let H(z) be a ‘real’ function, analytic at the origin, given by its
Taylor expansion:

H(z) = Y a,2*  (a, real) . (I11.6)
n=0
We can construct a sequence of approximants:
Hyz)=__ b (p=1,2..) (II1.7)
14 ﬁl Z
14 .
_Pep—z
1+fB2p—-12

uniquely determined by requiring that the 2 # first coefficients of the Taylor expansion
of H,(z) at the origin coincide with the 2 p first coefficients a, of the expansion (I1II.6).
An algorithm which allows to calculate the g, [starting from the coefficients o, (#n =
0,1,...,2p —1)] in order to carry out this identification is given in Appendix 2.

It is remarkable that the §, are independent of p, the order of the approximant
H,(z). So one is lead to consider the H,(z) as the successive approximants of some
formal continued fraction. But if one wishes to make sure that {H,(z)} forms a
convergent sequence, additional restrictions must be imposed to H(z) (e.g. a sufficient
condition is that H(z) belongs to the Herglotz class). Due to these restrictions, the
direct identification of H(z) with our potentiel is not possible and a further step is
needed.

Before undertaking it, we give an alternative explicit form of H,(z) in terms of the
coefficients «,,:

Xp(2)
H,() Yplz) *
|
% oy oy oy,
%y ®o %3 %p+1
Xylz) = '
%y 1 &%y %p+1 Kap—1
p—1 p—1
0 og 221 E %ipia? . Zdi i (I11.8)
i=p--2 i=0
%o oy o,
%y %2 %p+1
Y,(2) =
24 =1 1

45
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In this form, the rational fraction H,(z) is known as the Padé approximant [p, p — 1] ()
of the function H(z) [23, 24]. It is easy to extract from (IIL.8) the 2 p equalities
between derivatives at the origin:

HP(©0) = H®0) (k=0,1,...,2p—1), (I11.9)

which in fact determine entirely (except for a common constant factor) the poly-
nomials X, (z) and Y (z). The unicity property then implies the equivalence of definitions
(IT1.7) and (ITI.8).

We now write the potential as:

*3

B(z) = L] ax 222 _ L R (I11.10)

2
fd .
x+3

co
Such a decomposition is possible only if [ dx ¢(— x)/x converges.
This limits the asymptotic behaviour of ¢(— x) to:

with:

( « >0 (any f)
(ITI.11)

or =0 fg>1,

a condition slightly more restrictive than (II.11), which we assume to be satisfied
from now on.

On the other hand, the assumption A) of Section II induces the (non unique!)
decomposition of ¢(— x):

= Zgi é;(— x)  (finite sum) ,

where:
8;‘ = :I: 1 ]
&,(— x) is a non negative function with support [b;, ¢;]
(IT1.12)
(@ <b; <c¢; <o0).
Likewise:
F(z) :Zgi H(z)
(ITI.13)

f ix S

Our approximation scheme will be applied separately to each function H;(z). Thus,
consider one of them and suppress the index +:

H(z) :fdx ies (IT1.14)
b
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isa ‘real’ function, holomorphic in the z-plane cut along [— ¢, — &]. Moreover, it belongs
to the Herglotz class in the sense that, from (I11.12), Im H(z)/Imz < 0V z&[— ¢, — b].
This property is essential for the validity of the following argument.

Let H ,(z) be the approximant of order p of H(z) constructed by means of equations
(I11.6) and (IIL.8).

Theorem I11.7: The sequence {H ,(z)} converges uniformly to H(z) over every

compact domain D whose distance from the cut [— ¢, — b] is positive.

To establish this theorem, we need an important lemma. It asserts that the
functions H,(z), do not only approximate H(z) arbitrarily well in the neighbourhood
of the origin, but also enjoy the same ‘degree’ of analyticity in the whole z-plane.
Its somewhat lengthy proof is postponed to Appendix 3.

Lemma 111.7: The approximants H,(z) have the form:

~

i IIL.15
Hye) =2 WILLS)
with:
bt st
Vp=1,2...n=12..,p. (IT1.16)
re=o0 |

Proof of the theorem:

From analyticity properties of H(z) and Lemma I1I.1, the expansions:

oo
H(2) :Zocn &
#w=0
2p—1 o0

Hyz) = D a2+ > of 2"
n=0

n=2p

converge in a (closed) circle C centered at z = 0 with radius R < b (Fig. 1).
The function H(z) is bounded over C:

|H@) | <M
and the sequence {f,(z)} is uniformly bounded there:
|H | <P (p=12..).

Indeed, for z € C and using (I11.15-16):

H | T & R B 4 b
winl=| £ 2] <s | £ - 2
| xelb, el | ¥

Thus, we can write the Cauchy inequalities:

M
o] < L o] < p=1.2,.)
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and deduce:

= P M
H)e) = H@) | < X (gapew + apew) 1257 V2eC.

Let C’ be a circle centered at z = 0 with radius R’ < R. We get:

|Hye) — HE) | < (P+ M) = () VzeC.

Hence {H,(z)} > H(z) uniformly over C'.

MR

Figure 1
Proof of Theorem III.1.

The distance of D from [— ¢, — 4] being positive, the sequence {H,(2)} is uniformly
bounded over D too:

|Hy2)| <Qay VYzeD (p=1,2,..),

‘ 1
Q=Sup |——| <oo.
zeD | 1+i

x€e[b, c] ‘ X

1f the domain D is connected and if its intersection with C’ contains an infinity of

points, we meet the hypothesis of Vitali’s theorem [25]. It follows that {H,(z)} - H(z)

uniformly over D. The extension to an arbitrary compact D is trivial. q.e.d.
Refering to the decomposition (I1I.13), equation (III.15) becomes:

I & . .
H,(2) = Z —";";ZP;i (B < 28" =5, TE* > 0,
=] n

and we can define the approximant of order p of the complete function F(z) by:
() = Ye H, )
(3

Therefore, by changing the meaning of the index p:

E o1
g = 3
P
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with:
Fge)(o) = F®0) (k=0,1,...,2P 1),

#>0 Vpn=12..,p. (I11.17)

In (ITI.17), P is an integer growing indefinitely with $, which depends on the decom-
position (IT1.13) and the distribution of the poles of F,(z) between the various H, ;(z).

According to equation (II1.10), the approximants B,(z) of the potential will be
defined by:

o @]

1 — 1
B)) = — [ax ?=2 _ L F, (II1.18)

which gives, taking (II1.17) into account (for 2 = 0):

B =L 3 T8 (II1.19)
p(Z) —-?nil zi(zﬁ—l—z)_ (zn>(1). .

Definition (IT1.18) implies the validity of Theorem III.1 directly when the unctions
H,(z) and H(z) are replaced by B,(z) and B(z) respectively, and the cut [— ¢, — b] by
[— oo, — a].

Thus we have achieved our first goal: the construction of a sequence of rational
fractions of the type (II1.2) converging to the potentiel B(z) over the whole cut plane.

IV. Convergence of the Functions N and D

From the convergent sequence {B,(z)}, two related sequences, {N,(2)} and {D,(2)},
are computable by means of equations (II1.4) and (IIL.5). The functions N,(z) are
meromorphic in the z-plane with poles lying on [— oo, — a], whereas the functions
D,(z) are holomorphic in the z-plane cut along [0, oo]. The approximate amplitudes
T,(z) = 2 N,(2)/D,(2) are thus meromorphic in this cut plane with poles given by the
poles — 24 of N,(2) (‘force’ poles) and the zeroes of D,(z). Each amplitude satisfies
exactly the unitarity condition. ,

To go over from the convergence { B,(z)} - B(z) to that of the amplitudes, some
technical points have first to be investigated. Actually, this section contains essential
preliminaries to the proof of Theorem V.3. First we set (for real positive z, 2’):

b(z) = Jeolz) B(2),
— (IV.1)

k(z, Z’) — l/__&l(i K(Z, Z’) _ % l/Q('T) z B(z2)—2 B(&) ]/Q(Z’)

e(z) z—4

n(z) = Yolz) N(z), (IV.2)

in order to obtain from equation (II.8) an integral equation with symmetrical kernel:

n(z) = b(z) + f a7 k(z, 7) n(7),  kz 7)) = k(7. 2) . (IV.3)
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By virtue of properties (I1.7) of p(2), equation (IV.3) is a Fredholm equation, too
(be L2, ke 3.
Hereafter, we frequently write equations such as (I1.8) or (IV.3) in operator form:

N=B+KN, (IV.4)
n=b+kn. (IV.5)

Notice that equations (IV.4) and (IV.5) (as well as their homogeneous version) are
strictly equivalent since, as easily seen: n € L2« N € L2

The kernels K and & bzing compact operators acting in the Hilbert space £2(0, oo),
the set of their characteristic values is at most countably infinite [22, 26]. Furthermore
they are real since K(z, ') is real and %k hermitian. We denote by {1,; x,(2)} the
characteristic system of %, i.e. the set of characteristic values (spectrum) and associated
orthonormal characteristic functions, defined by:

Ak x,) = 6L (=12,

Xy

Xy % fdzx = 0,4

(a degenerate characteristic value with rank 7 is counted 7 times).

According to the Fredholm theorem [22], equations (IV.4) and (IV.5) have a
unique (real) solution in £2if 1 does not belong to the spectrum of K (respectively %).
The corresponding homogeneous equations have at least one non trivial solution in £?
if1 belongs to this spectrum. From the remark following equation (IV.5), an exhaustive
set {4,;x,(2)/o(2)} of characteristic values of K and related (non orthonormal)
Characterlstlc functions corresponds to the characteristic system {4,; x,(2)}. The
spectra of the kernels K and % coincide.

Now we put:

) o) 2 Bpl =2 Bple) _ o) §o  T%
Kﬁ(z, z) - e zi_' = - 57;2 1;: (2’—[—25) (Z,+Z£) . (IV.6)
Let:
T ok T
N = e (v
be the solution of the equation:
N,=B,+ K, N,. (I'V.8)

This solution results as well from equations (1I1.4) and (III.5). Equation (IV.8) is
then equivalent to the system for the 'y P

P ==
2(6,”,% — It NIt =" (n=1,2,...,9), (IV.9)
moe=1
where:
£ 1 ~
p _ 1 o)
Fam = 2 ﬂzj aa (x+25) (x+25)
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The symmetrized equation (IV.8) reads:

My = b, + k, 1, (IV.10)
with:
by(z) =Veld) B,(2),
N (IV.11)
n_ /e g N =k (2, 2),
Ble 2) = |/ 28 Kyfa 2) = k6.2 ‘
—Vola) N, . (IV.12)
The spectrum {2} (n =1, 2, ..., p) of the kernels K, and %, is made up of the p
characteristic values of the matrix with elements I'2 f?, (n,m =1, 2, ..., p). The
system (IV.9) is regular when 1 ¢ {A£}.
Finally, let us introduce kernels without kinematical factors:
~ — 7 4 B ’
k(z, Zr) - l/()l(j k(z, Z/) — 71? ZB(ZL—Z’ (Z) ,
Z g
eee (IV.13)
5 1
Ry(2,2") = —————— k(2,2 .
! Ve etz) *

These are analytic functions in the topological product of z- and z’-planes cut along

[— o0, — a].

Theorem IV.1:Let Dand D’ be any compacts whose distances from the cuts [— oo, — 4]
in the z- and z’-planes are positive. Then {ky(z, 2')} > k(z, 2) uniformly over DX D".

Proof:

After superposing the z- and z’-planes, consider a simple contour C surrounding D
and D', whose distance from the cut [— oo, — ] is positive and whose distance from
DUD isd > 0.

Since B(z) and B,(z) are holomorphic within C, one gets:

= _---w5£d B(w) VzeD,

29m

g , 1 w B(w) ; §
Kz, ) = = fdw e we  WieDFED,
C

and similar formulas for B,(z) and k (% z’).

Hence:
J o , * w[Bpw) B(w)]
|By(z, 2') — k2, 2) | = zﬂz 56d ] b
But: ’w—z|>
VYVweC, 2D, 2D,
lw—2'| =6

and, as a consequence of Theorem IV.1:

|w [By(w) — B(w)]| <e(p) (lim ¢(p)=0).

p—>00
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Thus, if L, is the length of the contour C:

|yle, 2) — ke, #) | < s €B)

which completes the proot. q.e.d.

We also need the strong convergence of vectors b, and operators %, in L2 It is
stated, with other useful properties in:

Theovem IV .2:
&) ﬁlirrio |o,— 8| =0,
B) plifg) | &y — E| =0,

y) [dz |k~p(z, 2) — k(z, 2) |2 converges to 0 uniformly over D,
0
o ~

0) [dz' |k,(z, 2')|?is uniformly bounded with respect to p and z€ D.
0

As the proofs of the different parts are very similar, we sketch here only the most
difficult one f).

Putting:
S ARy(z, 2') = Ryl2, 2') — (2, 2') = Ak,(, 2) ,

we have:
L z foo] z
| Ak, = 2fdzfdz' |Aky(z, 7) |2+ zfdzfdz' |Aky(z, 2) |2 .
0 0 L 0

But, from Theoiem IV.1:
|Aky(2, 2') | < e (p) for 0<s <z<0L,

and from Minkowski’s inequaiity:

dz dz |Ak,(2, 2') | dz dz|kzz 2—]— dz dz' |k(z,%2) 2%2.
*={l / ’

Moreover, since & € £2:

fdz/dz’ k(z 2) |2 = (L) >0 when L > oo.

z)]z]% }2.

| dky|2 < L2 &3 (p) + 2{ (L) + [ [ de
T
To avoid inessential complications, we shall assume here all the /™ to be positive
(i.e. ¢(— x) = 0 ¥ x = a). Then, owing to equations (IV.6), (IV.11) and (I1.7).

Hence:

z

5 o dz az’
fdzfdz | Ry, 2) 2 anmf (z+28) (s 28) Gf(z'+z,r;) (2 +25) °
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A weaker form of this inequality is obtained by using Schwarz’s inequality in order
to factorize successively the two last integrals with respect to the indices # and .
This gives:

dz/dz |22, 2) <—~[2 Vzﬁizp r

The proof could be achieved easily if one could secure:

- FP ] 1V.14)
lim Lim —| =0. .
L—soo p—o0 [MZ: ]/z L+ZP) ] (

This property is by no means evident, for the convergence to 0 of the bracket when
L — oo is not necessarily uniform with respect to 4.

To establish (IV.14), we use the set of equations for 2 and I resulting from
equations (II1.9), (IT1.14) and (II1.15):

P b 0
S - [ ¥ =01, 2p-1). (IV.15)

n=1
a

Let us introduce the variable ¢ = 1/x, and set:

According to the assumption C) of Section II, with (ITI.11):

i
p(¢) < const. /dt’ gt (Log zi) ,

and p(f) is a positive non decreasing function over the closed interval [0, 1/a]. (There
is no loss of generality to take a > 1.)

As a consequence of equations (IV.15), y,(t) is solution of the reduced ‘Hausdorff
moment problem’ [27, 28]:

fd%(t) t’“:fdy)(t) t (k=0,1,...,2p—1).

1/a ——

otz‘:!/zﬁ(uzﬁ) Opr() L.
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to the integral:

1/a

[ e )i

by means of the problem of ‘approximate quadratures’ considered by SHOHAT and
TAMARKIN [27]. As easily seen, all assumptions of Theorem 4.6 (Loc. cit. p. 120)
hold true, so that:

1/a

f @ [,(t) — p(f)] I/ 1:—;

< 6.(p) (Him 0.(p) =0),

or:
b re I/a g
Z m ] ( ) 1/1:1—; =0,(p) + (L) (— (IV.14)).
Hence:

|Ak,|* < L2e}(p) + 2 [(L) + 5 0.08)]
lim |4k <Y2w(L),

and finally, as L is arbitrary:
lim |4k, =0 q.e.d.

P—o0

Now we derive the strong convergence of the sequence {#,(z)}. For this, two lemmas
are required which hold only if 1 does not belong to the spectrum of K. In the remain-
der of this section (as also in the next one), we shall assume this condition to be

fulfilled; the case 1 € {4,} will be discussed in Section VI.
Lemma IV .1:
Let y, = n:{l,‘l,,f,,p A2 —1].
Then: :
ﬁfligf%ﬁ >0if 1¢{4,}).

Lemma IV.2: Let 7, be the resolvent of the kernel &, [22]. If 1 ¢ {4 }, there is a positive
integer P such that the sequence:

{nly =P P+1,..)
is bounded.
The proofs are not very instructive and we omit them.

Theorem IV.3: If 1 ¢ {2}, lim |n, —n|=0.
p—o0
Proof:

According to Lemma IV.1, 1 ¢ {i%} when p > P, and from the definition of the
resolvent 7,, equation (IV.10) has the solution:

npsz+7pbp.
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Likewise, an equivalent form of equation (IV.5) is:

n=(b+ Ak, n) + k,n,
and the ‘solution’ reads:

n=(b+ Ak, n) +r, (b + Ak, n) .
Hence: :

n,—n=(1+7,) (b, — b+ Ak, n) .
Then, using Minkowski’s and Schwarz’s inequalities:
[, = 2 <@+ 7)) (2, — 8] + [ =] [ 4%]) -

At this stage, the theorem results from Theorem IV.2 «), f) and Lemma IV.2. q.e.d.
Now we are in a position to deduce the local convergence of the sequences {N,(2)},
{D,(2)} (p = P, P+ 1, ...). Obviously the functions D,(z) are defined by:

s [ Ny(#) s &TL [ o
- fdx o) 2. 1 2 ,;: o fdx e S SR A
y -

the system (IV.9) which provides the fﬁ being now regular for p = P
Theovem IV . 4:

@) {N,(2)} > N(z) uniformly over any compact D whose distance from the cut
[— oo, — a] 1s positive,

) {D,(2)} > D(2) uniformly over any compact O whose distance from the cut
|0, oo] is positive.

Due to the similarity of the arguments, we give the proof of f) only. One deduces
from equations (IL.6) and (IV.16), when using equations (IV.2) and (IV.12):

D,#) — D(z) = — = / dx |f olx) 220
so that:

[ Dy(z) — D(z) | < lle VI|n,—n ] dxz|2 1
But:

Todx 7 —
./|’°’—z!2 = |z| sxrjlq\sng] where gﬁ .l (—,77: \<\¢ <7,
0

and the proof is complete if we take Theorem IV.3 into account and observe that
0 <¢y<|¢| <z when ze Q. q.e.d.

V. Convergence of Scattering Amplitudes in the Physical Region

The convergence of the approximate amplitudes T,(z) to the exact one 7'(z) is a
trivial consequence of Theorem IV.4 for regular points z not on the cuts [— oo, — a],

[0, oo]. We have now to show how this convergence can be extended to the physical
region [0, oo].
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In order to give a general form to the final result, we first produce a statement
which exhibits the connection between possible dynamical poles of 7T'(z) and those of
approximations T,(z). This theorem may be of some use for the locating of bound
states, ghosts and even resonances (see the remark following Theorem V.3).

Theorem V.1: Let O be any compact whose distance from the cut [0, o] is positive,

and let z, ..., z, be the zeroes of D(z) within O (we suppose O to be such that its
boundary does not meet any zero of D(z2)).
Then the zeroes of D,(z) within O have the points z, ..., 2, as limitpoints, and

only these, when p - co. Moreover there exists a p, such that D,(z) has the same
number of zeroes as D(z) within O when p > p, (multiplicities included).

This proposition is a variant of a theorem due to Hurwi1Tz [25] and its proof will be
omitted.

General arguments suggest that the singularities of partial-wave scattering
amplitudes lying on the positive real axis form a discrete set without accumulation
point, namely the set of branch-points corresponding to the various production
thresholds [29]. If the amplitudes actually have to be analytic almost everywhere in
the physical region, this must reflect in some regularity property of the inelastic
factor g(x). So we can expect that the sequence {T,(z)} will converge over [0, oc]
as well.

Because of the almost phenomenological context of our study, we do not intend
to derive specific conditions about g(x), but shall be content with the following
plausible assumption, compatible with the threshold behaviours:

The factor o(x) fulfills the Lipschitz condition.:

lo(%;) — 0(%a) | < A %, — x5 |* V¥ %, %,€[0,00] with 0 <p<<1. (V.1)

Let us now introduce:

o0
o) = = / dx x(‘;(f’z) (V.2)
0
which is a ‘real” function, holomorphic in the cut z-plane, such that:
Img+i0)]=ox (x=0). (V.3)
We next define:
G(2) = D(2) + 0(2) 2 N(z) , G,(2) = D,(2) + p(2) 2 Ny(2) . (V.4)

From equations (I1.3) and (V.3), these auxiliary functions are holomorphic in the
z-plane cut along [— oo, — a]. Using the property:

lo(z) |z <Bp V zeD= compact whose distance from [— oo, — a] is positive (V.5)

which results from (V.1), (V.2) and from a theorem due to MUSKHELISHVILI [30],
we can deduce the following lemma, the proof of which is given in Appendix 4.

Lemma V.1: {G,(2)} - G(z) uniformly over any D.
This allows to strengthen Theorem 1V.4 §):

Theorem V.2: The sequence {D,(z)} converges uniformly to D(z) over any compact.
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Proof:

First, the theorem is true for a compact D whose distance from [— oo, — a] is
positive, as resulting from application of Theorem IV.4 «), Lemma V.1 and bound
(V.5) to the inequality:

1Dy(z) — D(@)| < |Gpla) — G() | + [(2) 2| | N,(z) — N(2) | .

Next, it is also true for any compact, because of Theorem IV.4 §). q.e.d.

Now we can assert that the sequence of T,(z) = z N,(2)/D,(z) converges uniformly
to T(z) = 2 N(2)/D(z) over any compact £ whose distance from [— oo, — a] and from
the zeroes of D(z) is positive (Fig. 2). This follows from Theorem 1V .4 o), Theorem V.2

and from uniform lower boundedness of D,(z) over £ for p = P (as a consequence of
Theorem V.1 and V.2).

@

-:,,Q

Figure 2

Example of a domain where the sequence of amplitudes Tp(z) converges uniformly.

Two further comments may be useful to state our result precisely:

1) The convergence {7 ,(z)} - T(z) extends automatically to the second sheet of
the elastic right-hand cut [0, z;]. This comes from the simple explicit form of the
analytic continuation 7;(z) of the amplitude onto this sheet:

N{2)
D) +2iz)zz+1 N(g)

T(z) ==z

2) Convergence difficulties could arise if D(z) would vanish at some real positive
point z,, due to the unboundedness of 7,(z) in the neighbourhood of z, (even though
T(2,) < o0, as required by unitarity). In fact there is no reason to worry about such,
a phenomenon, for we shall see that D(z) cannot vanish on [0, co] when 1¢ {2}
(Theorem VI.1).

Thus, the following statement summarizes our results:

Theorem V.3: Let R be the Riemann surface made up with the physical sheet and the
second sheet of the elastic right-hand cut [0, z;].

When 1¢{4,}, the sequence of amplitudes {7,(z)} converges uniformly to 7'(z)
over any compact C whose distance from the ‘dynamical’ singularities of 7'(z) (cuts
[— o0, — a], [— oo, — 1] and poles) is positive.

Moreover, T,(z) and 7(z) have the same number of poles within C for p large
enough, and the poles of T,(z) tend toward those of 7'(z) when p - co.
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We can still notice that {T,(z)} actually converges to 7'(z) over any domain in
which T(z) and T,(2) have a continuation, as a consequence of Vitali’s theorem (cf.
proof of Theorem III.1). This is particularly the case for the continuation of 7'(z) and
T,(z) (if allowed) onto the unphysical sheets connected with the various inelastic
thresholds. Therefore, the T ,(z) may be suitable approximations for the research of
‘inelastic’ resonances too.

VI. Poles at Subtraction Point and Extinct Poles

Now we have to deal with the situation where the spectrum {4} of K contains the
value 1. We choose to go over continuously from the normal case 1¢{1,} to the
pathological one 1 € {1,} by multiplying the discontinuity ¢(— x) with a ‘coupling
constant’ 4 and inspecting the behaviour of the solutions N(z; A), D(z; A) in the limit
A—>1

When substituting 1 ¢(— x) for ¢(— #) in equation (IV.3), one gets the usual form
of a Fredholm equation with parameter A:

LA Tlfdz Bl 5 2L, (VL)

The kernel k(z, 2') being continuous for z == 0, 2’ > 0, its resolvent is given by the
relatively uniformly absolutely convergent series [22]:

u(2’)
(Z 5= /1) == (Z Z -+ l;_ﬂﬁ__—_l_) ().¢ {j',u}) s (VIZ)
and the (unique) solution of equation (VI.1) by:
. l 3
"R b + 2 f 47’ r(z, 7' ) b(z) . (VL.3)
0 :
Let 7 be the rank of the characteristic value 1. We order the 4, so that:
M=l=..=4=1 @A,+1ipu>r),
and denote by x,(z), %,(2), ..., x,(2) » orthonormal characteristic functions belongmg

to the value 1.
We deduce from equations (VI.2), (V1.3) and (11.6):

N(z2) = A B(z) + 22 fdz' K(z, #) B(z)

1/9"(.? [1 p me"m +Z : x“ } (V1.4)
D(z; A) = Dy(z; 4) — l Zb fd : V@i)_x;n )

, ) %u(#)
E it for 280
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where.

o
b, :./ dxx,(2) b(z) = (x,,8), bp=..,
and where the function:

Dl B = 1o A2 /d o)

’ /Q II
2_3- fd [dz T, 2% BlAY

1s the second order perturbative solution of the integral equation for D(z; ).
Let us first assume that not all b, vanish. Then, according to equations (VI.4) and
(VL5), N(z; 4) > o0 and D(z; A) - oo for A > 1, while the amplitude remains finite:

0

j b Xm(2)
Tz 1l) = ——=- e

/o(z '
Vet mefdz Vel&) #m(=)] (=" = 2)

Besides, equation (VI.5) shows that a zero z,(4) of D(z; A) reaches the origin when
A—>1:
m(1-24)

Zb fdzl/g

2() = 01— 22,

This holds when the origin is chosen as a subtraction point for D(z; 4) (as done for
convenience from the very beginning). More generally, for an arbitrary subtraction
point z, it is easily seen that D(z; A) produces a zero z,(A) such that:
w(d) = 2+ 0(1—2).

Thus, it appears generally that a pole of the amplitude (a bound state) goes through the
sublraction point of the D-function when A takes the value 1 € {2,}. This allows to reduce
the research of a possible bound state with energy 2 ]/z + 1 to an eigenvalue problem
for the operator &.

Concerning our approximation scheme, the difficulties of convergence which could
arise from the presence of a bound state at z = 0 (cf. Theorem VI.2) will be removed
by a shift of the subtraction point eliminating the characteristic value 1.

A more interesting situation occurs when b, = b, = ... =5, = 0.

The functions:

N(2) —}11—>m1N( A, D2 :Pﬂr?nlD(z;l)
ore then well defined and determine a particular solution of the N/D equations. Other
solutions can be obtained by adding to N(z) the general solution of the homogeneous
version of equation (II.8). It results in a multiplicity of N- and D-solutions which does
not disappear with a shift of the subtraction point.

Nevertheless, it can be shown explicitely that such an ambiguity for N(z) and
D(2) does not affect their quotient: the amplitude T (2) is always determined uniquely.
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The reason for this is that the arbitrary parts of N and D can be factorized and cancel
out. The appearance of coincident arbitrary zeroes in N- and D-functions is a possible
mechanism for such a delusive undeterminacy [20], as shown by the following
proposition.

Theorem VI.1: If the functions N(z) and D(z) both vanish at a point z = z,, then
le{l,}
Proof:

Assuming for definiteness that z, is real, we can introduce a family of new N- and
D-functions:
e LET% o SE T :
N =252 NE, Dyt =222 D), (VL6)
where o is a real parameter.
The new functions (VI1.6) are ‘real’, regular at z = z,, and have the same analyticity

properties as the old ones (in particular D,(z) is free from CDD poles). Moreover:

Nel2) _ T(2)

Dylz) 2 !

N, (2) ! |: a N(2), D,(2) f |z xD(z) (o & 0),
Z|—>00 Z|—>o0

D,(0) =

Accordingly, N,(z) and D,(z) are solutions of the same N/D equations as N(z) and
D(z) for every non vanishing value of .
Furthermore:

N(z) e 2= N, (z) e 2,

so that the solution of equation (II.8) cannot be unique in this case, which implies
Le{A,}. q.e.d.

Notice that the occurence of coincident zeroes in N- and D-functions (i.e. ‘exctinct
poles’ for 7'(z)) has been claimed as a possible way to resolve the difficulties encoun-
rered if the Pomeranchuk trajectory crosses the zero angular momentum line at a
negative value of center-of-mass energy [31].

Going back to our approximation scheme, we find it fails to work any more. This
appears clearly from some specific examples [32], and also from the theorem quoted
below, which is a counterpart of Lemma IV.1.

Theorem VI.2: If 1€ {A,}, it is possible to extract from the sequence of spectra {2}
a sequence of characteristic value Afjp. (p=1,2,..) such that plim A2 = -
)

We omit the proof.
Then the canonical representation of the resolvent kernel 7, [22]:

e o]
, ’ . xbz) xP(z
(2, &) = ky(z, 2) + fdz” kylz, 27) ky(2", 2') + 2 AP)2 AP — 1
0
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shows that plim ¥y(2, 2') = co. This produces the vanishing of the determinant of
—> 00

system (IV.9) in the limit p - oo, and causes our approximation scheme to be
practically useless in that case, even if the sequence:

nale) = bya) + 3 20

converges, because the solutions of a linear system with nearly vanishing determinant
are very instable with respect to variations of the coefficients. ,

As a matter of fact, the presence of a characteristic value equal or near to 1 in the
spectrum of K will be revealed, above some order p, by the appearance of characteristic
values A2 = 1, resulting in a nearly vanishing determinant:

Det (8, —I?f2 ) ~0. (V1.7)

In so far as its ‘accuracy’ can be estimated, the approximate relation (VI.7) may be
useful, as being a necessary condition for the occurence of a narrow resonance. This must
be so because a slight modification of the left-hand discontinuity ¢(— x) suffices to
shift the pair of conjugate zeroes of D(z) exactly onto the positive real axis, in such
a way that the spectrum of the perturbed kernel contains the value 1.

Observe however that the relations (VI.7) are only necessary conditions: They can
result from resonances, but also from antiresonances, extinct ghosts or extinct bound
states.

VII. Summary

Recently, the Padé approximants technique has become of frequent use in several
physical problems, particularly as a tool supplying the failing perturbation method
with a consistent extension [33-36].

In this work, we showed in the frame of N/D equations how this technique applies
to the construction of convergent sequences of approximate (but unitary) partial-
wave amplitudes. These amplitudes involved Padé approximants referring to the
‘energy’ variable. The starting point consisted in replacing the left-hand singularities
by a growing number of poles, a procedure used many times within purely physical
contexts, 1.e. without attending to its mathematical aspect.

Sufficient conditions for the convergence of the method have been given. These
are slightly stronger than those insuring the equivalence of N/D equations with a
Fredholm equation (compare the required asymptotic behaviours of the left-hand
discontinuity, respectively equations (IT1.11) and (II.11)). For the intermediate case
(0=0,Y,<p<1if ] >=1), we did not succeed to prove the convergence, nor its
failure.

Even under the general conditions (I1.11), we have displayed special cases where
the convergence is bad. We have found at the same time that the oscillatory behaviour
of the solutions may be an indication for a narrow resonance.

Turning now to the so-called ‘marginal case’ (« = § = 0), it can be shown that our
pole approximation method does not converge any more [32]. This comes from the
very different nature of the mathematical problem: the fact that the N/D equationsdo
not lead to a Fredholm equation results in a multiplicity of acceptable solutions|[37-39].
We shall deal with this somewhat pathological case in a subsequent article.

46
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We do not discuss here the various extensions of our method to more complicated
realistic descriptions (different masses, inclusion of spin, many-channel formalism).
These generalizations are mostly straightforward.

At the time this work was completed, two papers appeared, due to CommoN and
SWEIG, dealing essentially with the same subject [40, 41]. Although the proofs given
by these authors follow different lines, their pratical scheme of approximation coincide
with ours, as well as their main conclusions.

It is a great pleasure to thank Professor G. WANDERS for his advice and encourage-
ment during the course of this work.

Appendices
1. The Partial Waves withl + 1

When introducing an arbitrary number of subtractions, the equations (I1.2-3) and
(I1.8-10) take the form:

N " D
Nfd) = Byyl) + 5 [ an B2

7 - (A1)
1 [ s 4+ N
Dife) =1+ 2 Qu_d) = o~ [ dx o) #7122,
0
N,(2) = B,(2) +fdz' K,z ) N,(&) (A.2)
(1]
v ®
B&) = Pyyla) + (- ) fan S BE 1 - 20y (- 0], (A3
! 3! b ’ r]—M— N Cp —N— == X
K (2, 2) = (= 1)HN+MHL g () 1M1 fﬂ? / A AM-N-1+1 (xf;() g (A.4)

where Py _,(z) and Q,, _4(2) are arbitrary ‘real’ polynomials of degree N — 1 and

M — 1 respectively. In equations (A.1), the possible CDD poles have been ‘absorbed’

by subtractions [42]. It follows from (A.3) that B,(2)/z¥ ! is generally not bounded

when z - oo (whatever the asymptotic behaviour of ¢,(— x) may be). Thus the

condition B, € L?requires N = 0 and Py _,(z) = 0. Likewise K, € L2 implies M = — 1.
From now on, we have to distinguish the S-wave from the higher waves.

a) I =1

We put M =17 — 1 in order to secure at best the convergence of the integrals
contained in (A.3) and (A.4). Then:

B, (2)

[1—xQ,_o(— %),

f 4=
Je

Kl ) = 9*2*)

x+z) x—Lz) ’
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From these expressions, we can infer:

1) forall/ > 1, equation (I1.11) applied to ¢,(— x) gives the necessary and sufficient
conditions for equation (A.2) to be a Fredholm equation,

i1) if these conditions do not hold, the convergence of (A.3) and (A.4) can still be
maintained by an inciease of N-M, i.e. by introducing ‘CDD subtractions’ [42]
or by choosing M </ — 1. But in that case, equation (A.2) (even symmetrized)
is not a Fredholm equation,

1ii) when ¢, (— x) fulfills conditions (II1.11), the contents of Sections ITI-VII remain
plainly valid, provided that one applies the pole approximation method of
Section III to the function:

o0
Fie) = [ an 222,

from which the potential can be reconstructed by using:

B = 2 | 5 [ (@ + 5 0,9 ) z’i-*[1+201_2(2)]F:(2)}

AL 1" =0 n!
and by keeping the arbitrary coefficients of Q,_,(z) constant during the whole
process.

b) I=0
The optimal value of M is now M = [ = 0, giving:
L[ g IR T
1 Bol=7) N — @) 1 _ El=7)
Bo(z) = T / dx x+z '’ Koz, ') = 2 a? ./ o (t+2) (v+27) "
a a

The conditions on ¢y(— #x) insuring K,(z, z') to be a Hilbert-Schmidt kernel are,
instead of (II.11):

«>0 (any ) or «=0,8>2.
The pole approximation method will apply to the function:

X+ 2

Fold) =z Bols) + [ duh(—2) = [ dx ZHZE,

provided that « > lora=1,4 > 1.
The conclusions of Sections III-VII are then unchanged.

2. Recurrent Construction of the Continued Fraction
Starting from the expansion (II1.6), one can construct step by step the represen-
tation (II1.7) by means of the following rules [23, 43].
Let {V,(#)} be a sequence of polynomials defined by the recurrence:

Volw) =1, Vy(u) =u— ==,
%o

Vn+1(u’) = (u a3 5271 + ﬁ2n+1) n(%) - 62n71 ﬂ2n Vn—l(%) (M’ = 1! 2’ "') s (AS)
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Introduce a linear form F on the polynomials, defined by its value on the monomials:
Tt =o, H=0,1,...). (A.6)

The coefficients g, are then given by:

’

ﬁO“aO’ﬂl _&‘i‘

1 Ban = ;iiuj ; 13;} ;3;, 1 n=1,2.) (A7)

ﬁ _ 3{“nvn~1 u) } _ J{unJrl Vn(ur)y}__ . 1'3
2l e V)] T e Valw) P

Once 8, m =0,1,...,2n—1) and V () (m =0,1,..,,n) are known, formulas
(A.5-7) clearly allow to compute f3,,, fs,.; and V,_ ,(u), as long as F{u? V,(u)} + O
(p = n — 1, n). These last conditions happen to be satisfied when:

do 0(1 cee O,

@ Ly ey 2 B, oei)s

an O(n+1 coe Uay

3. Proof of Lemma I11.7

We have to show first that all the poles of H,(z) are simple, or that Y ,(z) has p
distrincts zeroes — z%. Then obviously H,(z) is reducible to the form (ITI.15).

Let us proceed ‘ab absurdo’ by assuming that Y ,(z) has a zero — z, of order = 2.
If z, is real, this means:

Yy(2) = (2 + 2)* Z,_(2) ,

where Z,_,(z) 1s a polynomial of degree p — 2.
Then, from (I11.8):

Og O ...

Oy Op .- Opyy 1
L =t u O (w= ), (A.8)
apﬁ]_ G’.p e 0(.2{,_1
1 u... ub
with
p—2
Qp—2(u) - 2% u* (qn real) 2
n—0

By using (A.8) and the linear form defined in (A.6), one gets:

Fuk (w4 ug)? Qp_y(w)} =0  (R=0,1,...,p—1),

F{(0 + ug)* Qp_oft)} — zqksc{u it ug)? Oy _glt)} = 0.
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Now, according to equations (I11.6) and (I11.14):

o, =5 l)kfdx?%—fl (k=0,1,...) .

But the last equality is incompatible with the property (111.12). The eventuality of a
complex zero is ruled out in a analogous way.

We next prove the inequalities (I11.16) for ¢ = oo.

Take equation (IV.15):

b e @© B
Z(Zp):"i:/‘dx%’af_ (kzoxla---,Zﬁ—l), (A.9)
n=1 \"n ;

and put:
g B(—by)
Qﬁzzﬁ:y—z,'VZZ?—l k’(pﬁ(y):biyfz%

For a fixed p, we have to show that the relations:

0

P
2 Thehyr= =fdy D,(v)y* (=0,1,...,29—1) (A.10)
n=1 i
imply:
0 <pf <1 It >o (m=1,2,...,9) (A.11)

if @,(y) is a non negative function with support [1, co].
Let us put further:
' t=y—1, o,f)=D,0t+1),

and introduce the moments:

(v o]
,u,,:fdtap(t)t” w=01,..,2p—1).
0

We see that g,(f) is solution of a reduced ‘Stieltjes moment problem’ [27, 28]. Both
quadratic forms:

Zﬂi+j5z'§j» 2#:‘4-¢'+1§i§j v=0,1,...,p—1)
i,7=0 i,7=0

must then be positive definite. On the other hand, by using (A.10):

o p
= [ dy Byly) (y — 1)" = 3 T2~ (1 — @b’
6 n=1
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Hence, for any vector &;:

prgnzpz (’1_?_1)“1' £i§;>0,

hg=d »=0,1,...,p—1)
i+j+1
er zpz( ) EE > 0.
1,1=0
Choosing » = p — 1, one obtains:
211, (@) (@3)* >0, )_?Ff’ (1) >0, (A1)
oh
where
a5=2(~p-w1) £ m=1,2...,9). (A.13)
1=0 Qn /

Let A be the p x p matrix with elements 4,,; = [(1/p%) — 1].
As 28 + 22 for n =+ m:
Detd = JJ (1,5— 1)4:0

n=2,...,p On Qg@

m<n

Thus foreachm = 1, 2, ..., $, a vector &, can be found (by solving the system (A.13))
such that a? = §,,,. For this particular choice of §;, (A.12) gives:

; 1
The)** >0, Ty ( ;= 1) >0,
from which inequalities (A.11) follow.
When ¢ < oo, the argument can be reduced to the preceding one by a simple
change of variables and functions. q.e.d.
Notice that the (non linear) system (A.9), which has the 2 p quantities 22, I'% as

(unique) solution, is equivalent to the equation:
Yy(z) = 0
giving the 22, and to the linear system for the I'2:

4 ry
T =% E=01...2-1)
n=1

with non vanishing determinant.
As a consequence of the Lemma, Y,(0) + 0. This is precisely the condition we
required at the end of Appendix 2. In fact:

Og O .. 0

n

O &g e %y | >0 (n=0,1,..),

%y Opty ... oy
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since the quadratic form:

n ¢ _ n Ei 2
1,j=0 b i=

<

1s positive definite,
4. Proof of Lemma V.1
Referring to the proof of Theorem IV.4, we can write for ze D, y = Im 2+ 0:

N,(z) — N(2)| < ) ¢
77~7(P) A-tel pe

@] < l/Iy

Thus, according to (V.4) and (V.5):

|Dp(2)

|Gyle) — G(2)| < | D) — D() | + |0z) 2] [ N,(2) — N(2) | < Vil (A.14)

Next, a contour C enclosing D can be drawn such that:
1) it contains the segment ‘2 4’ (Fig. 3),
1i) its distance from the cut [— oo, — a] is positive,

ii1) its distance d from D is positive.

(8
U

Figure 3

l2d

U

Proof of Lemma V.1.

Then
1 g i G (v+
Gyl2) — G(2) = 2im [ /dz _P(Z____ +/d x+;i/zy ,(: 2 (€ D).
C—2d
But:

|2 — 2| =6 for 26 D, 2 €C,

YolB) o we — 22,

|G,(z) — G(2) | < Vp) (from (A.14))
@ for ze24d.

Vivl
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As a result:
v
|Gp(z)—G(z)l<—2%-(V_+4]/d) V zeD,
and P1i_)n;D |G,(2) — G(2)| = 0 uniformly over D. q.e.d.
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