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Linearisierte Enskog-Gleichung
für Boltzonen mit abstossendem Potential endlicher Reichweite

von K. Appert
Institut für Theoretische Physik der Universität Zürich, Zürich1)

(16. XII. 68)

Zusammenfassung. Ausgehend von der Kuboformel für einen Transportkoeffizienten werden
reduzierte Zeitkorrelationsoperatoren für ein quantenmechanisches Gas mit Boltzmannstatistik
eingeführt, die die BBGKY-Hierarchie erfüllen. Mit einer Methode von Ernst wird ein
Funktionalansatz V2{Vi) gefunden, der, in die erste Hierarchiegleichung eingesetzt, die linearisierte Enskog-
gleichung für Boltzonen ergibt.

Vor einiger Zeit haben Ernst et al. [1] mit der Korrelationsfunktionenmethode in
der klassischen statistischen Mechanik Transportkoeffizienten berechnet, die im Falle
von harten Kugeln gleich denen sind, die man mit der linearisierten Enskoggleichung
[2] bekommt. Die Methode von Ernst soll nun soweit in die Quantenmechanik übersetzt

werden, als es nötig ist, um den linearen Stossoperator für ein abstossendes

zentralsymmetrisches Zweiteilchenpotential endlicher Reichweite zu bekommen. Es
wird sich zeigen, dass dieser Operator in erster Ordnung in der Teilchendichte der
linearisierte Boltzmannoperator mit dem quantenmechanischen Wirkungsquerschnitt

ist.
Der Ausgangspunkt ist die Kuboformel [3] für einen Transportkoeffizienten X:

1

NjV-n

X ß j <# lim -y 5(0) • S(- t) (1)

wo ß — IjkT, F die Temperatur, k die Boltzmannkonstante, V das Volumen, N die
Teilchenzahl, S ein Strom und eq ein Gleichgewichtsmittelwert ist. S lässt sich

aufspalten in einen kinetischen Teil K und einen Teil, der von den Stössen herrührt
(collision transfer). K ist eine Summe von 1-Teilchenströmen k(p(), wo p, der Impuls
des i-ten Teilchens ist :

N
K ZkiPi)- (2)

i-l
Sei

%{t) hm A K(0).K(-t) + K(-tllK(0± (3)
V—>oo V 2
N/V-n

dann lässt sich (1) für den kinetischen Teil schreiben :

hin ß [dt x(t) ¦ (4)

x) Gegenwärtige Adresse: Physikinstitut der Universität Fribourg, Fribourg/CH.
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Die spezielle Anoidnung von K(0) und K(— t) in (3) garantiert ein reelles %(t), falls K
hermitisch ist. Hier ist also schon der Übergang zur Quantenmechanik gemacht. Wir
wollen %(t) nur für Boltzonen diskutieren. Bildet man den Mittelwert eq mit
der grosskanonischen Verteilung, so schreibt sich (3) :

Xit)-}^~Z-NAhf-Tr^
NIV-n "*"

x (K ¦ e~iHNt K eiHNt + e~'HN' K e"*' ¦ K) e~ß"N (5)

Hier ist z e^ die «absolute» Aktivität, pt das chemische Potential,

v
®Sr=Zw[Tre -ßHN

N-0
die glosskanonische Zustandssumme für Boltzmannstatistik,

n i, hn=Zp2ì+Zvh
i 1 i < j

der Hamiltonoperator, m 1/2 die Teilchenmasse, y- v (j q( — qj \) das

Zweiteilchenpotential, das überall abstossend und von endlicher Reichweite sein soll.
Dank der Spureigenschaft Fr AB Fr BA kann man (5) wie folgt darstellen :

1 °° ZN
Z« =Ä -vE-nV»- TrK-KN(t) (6)

NjV =n
WO

HN(t) \e-iHN\e-m\K]+eiHNt (7)

mit
[A,B]± AB±BA. (8)

Der Dichteoperator xN(t) ist beschränkt und, da K K+ ist, hermitisch, zudem
erfüllt er, wie man aus (7) sieht, die Liouville-Gleichung :

dxN(t)
dt i [xN(t), HN]_ (9)

Deshalb kann man mit ttN(t) zeitabhängige reduzierte Dichteoperatoren ips(l,...,s;t)
definieren, die die BBGKY-Hierarchie erfüllen :

00 N
(2n)*°n*xps(l,...,s;t) Shm £ {NJs), K+x NxN(t) (10)

NjV-n N~s

trs+i na =Z---Z<Ps+i ¦¦¦Pn\ A \ps+x ...pN> und iq |p> -^Ps+i Pn

elpq

mit periodischen Randbedingungen. Indem man die Spur trs+Xi N und die Summe
über alle N in (9) bildet, erhält man die BBGKY-Hierarchie [4] :

'

^ i[tps,Hs]_ + i(27i)Sntrs+x tPs + l,ZVis + l (11)
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Da K nach (2) nur Operatoren p, enthält, ist xN(t) translationsinvariant, und es gilt
die Relation:

tps(l,...,s;t),ZPi =0. (12)

Mit der Definition (10) schreibt sich nun (6)

x(t) lim <^-ntrxk(px)-tpx(l;t).
V—»-00 *
NjV-n

Die Zeitabhängigkeit von tpx(l ; t) wird durch die erste Hierarchiegleichung

d%Pf',t] *" n(2 nf tr2 [ip2(l, 2; t), vX2]_

(13)

(14)

bestimmt. Für tp2 wird eine geeignete Näherung in Ausdrücken von ipx mit Hilfe der
Clusterentwicklung (siehe Anhang) gefunden. Der Ausgangspunkt ist die folgende
Form für (10) :

K+i,(2n)3s ns tps(l, s; t) lim Y
N/V-n'

(N-s) \êgr 2 ¦ ,-V

e~P"N, F^Zk(Pi) + (N-s) £<"> k(ps+x) (15)

Hier wurden die Gleichungen (2) und (7) benutzt, und es wurde für L<iV)(l, N)
gesetzt : .„ „£^(1, ...,N)Op e~l"Nt Op e+tHN' (16)

L(JV) wird mit (A1) entwickelt. Das ist erlaubt, denn (A1) ist eine algebraische Identität.
Die Fragen werden wie im klassischen Fall sein, ob es erstens der Natur entspricht,
wenn man in erster Näherung bei nicht zu grossen Dichten nur Zweierstösse
betrachtet, und zweitens, ob die vollen Entwicklungen im Limes N, V -> oo konvergieren.

Die erste Frage kann auf Grund der Resultate bejaht werden. Die zweite kann
nicht beantwortet werden.

Das erste L(iV) in (15) wird nun mit r s, das zweite mit r s + 1 entwickelt
(vgl. Anhang). Die Operationen

r+l,...,N
ergeben zusammen mit der Spur 1, und es ist

ÜN~l\l+l,...,N)k(Pl) k(Pt)

Dann steht für die rechte Seite von (15) :

V2! ZN 1

N/V n
r

-ßHN

4(1-.

für

X

1,

U(l,...,s\s + l,...,l;t)Zk(Pt.

+ (l-s) U(l,...,s + l\s + 2,...,l;t)k(ps + x)

(17)

(18)
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Das zweite U im Antikommutator ist für I s nicht definiert, es wird dann aber mit
Null multipliziert. Jetzt werden die Summen über l und N vertauscht und die Spur
aufgespalten :

00 1 1

v^ZaT-TsA^K + i t

NjV=n
z-*=z^-<>!^ "l+l,... ,N e

-ßHN

U(l,...,s\s+l,...,l;t)Zk(PÙ
i-l

+ (l-s) U(l,...,s+1 \s + 2,...,l;t)k(ps + x

Mit dem Gleichgewichts-Dichteoperator Rs(l, s), definiert durch

(2nrnsRs(l,...,s) Z A^ trs+x
N-s y ' ' gr

ergibt sich dann

ßHN

(19)

(20)

xps(l,.-.,s;t)= Hm Zy—*-oo ir
°° «'-'M„|S('-'I

N/V-n '

n'~s(2n)
(1-8) \ 2 "s + l,...,l

R,(l,...,l), U(l,...,s\s+l,...,l;t)Zk(pA

+ (l~s) U(l,...,s + 1 \s i;t)k(ps+x) (21)

(22)

Speziell für s 1, 2 lautet die Gleichung mit (A3) und (A4) :

tpx(l; t) lim | [^(1), k(px)]+ + lim -^f-
NfV=n NjV=n

X tr2 [R2(l, 2), e->H>' (k(px) + k(p2)) eiH*f - k(px)]+ + {3, 4, ...}

ipJA, 2; t) Füm \ [R2(l, 2), «-'*•' (k(px) + k(p2)) eiH>% + {3, 4, ...} (23)
N/V-n

{3, 4, ...} bezeichnet den Beitrag von Stössen, an denen mehr als zwei Teilchen
beteiligt sind, den wir vernachlässigen. In erster Näherung ist dann, wenn wir den
Limes von jetzt an meist weglassen, aber immer daran denken, dass alle Resultate für
V -> oo ausgewertet werden, nach (22) :

tpx(l;t)~-A[Rx(l),k(Px)]+.

Da für Rs(l, s) die (12) entsprechende Relation gilt:

0

ist

Rs(l, ...,s),ZPi

rpx(l;t)~k(px)Rx(l).

(24)

(25)

(26)
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Für Zeiten t viel grösser als die mittlere Stossdauer wird das exakte y>x :

rpx(l;t) Ç(Px,t)Rx(l) (27)

mit (26) identifiziert; also

lift) I(Pi-1) - HPi) • (28)

Dann ist der gewünschte Funktionalansatz für tp2(l, 2; t) mit (23) und (28) gefunden:

xp2(l, 2;t)~\\ [22,(1, 2), e~^' (§(px) + §(p2)) e'"'% (29)

und damit die Zeitabhängigkeit von tpx(l; t) bzw. £(px) durch (14) bestimmt:

Äx(l) ^"(Pi) *' «(2^)3 fr, [| [22,(1, 2), ^' (l(Pi) + UPè) <?"*%, »»]_• (30)

Diese Gleichung ist translationsinvariant und deshalb diagonal in pj. Schreibt man
das Diagonalelement hin, so kann bei vx2 noch die kinetische Energie hinzugefügt
werden, weil sie keinen Beitrag gibt.

Ri(Pi) 4? (Pi) i™ iw(2^)3

x2;<P,P21 [y [Ä,(l, 2), «-««' (§(px) + §(pa)) ^<]+, 222] JPlp2> (31)

wobei die linke Seite jetzt c-Zahl ist:

*i(pi) -§- (pj <pi i *iw 4f (ft) i ft > (32)

(31) ist die quantenmechanische Form der linearen Enskoggleichung für allgemeinere
Potentiale. Um das Resultat besser verstehen zu können, ist es angebracht, den

Gleichgewichts-Dichteoperator R2 in der gleichen Näherung (~ n), in der wir (31)
bekommen haben, zu berechnen. Dazu ist uns die Clusterentwicklung aus dem Anhang
wieder eine grosse Hilfe. Es wird in (A1)

I<*>(1, ...,k) e~ßHk

gesetzt und (20) mit r s entwickelt :

(2Ä)-— Ä,(l «^—^,
xfrltl ^:;)p(i *i*+i n«-'^1 n). (34)

Dann werden die Summen vertauscht:

*t
(2w)»'n'A,(l,...,s)=2^ïraTfr.(/-*) | *'s + l,...,

OO

X {17(1, ,s \s + 1, ...,l)ZiWZ7^g-trl+i Ne~ßHN-l\- (35)
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oo

Die Summe £ ergibt gerade 1 und man hat das Resultat :

N-l
oo

(2*)" n'22,(1,..., s) Z -7f!^rtrs + i,...,iU(l,...,s \s + 1, ...,/). (36)
t-s *

Die Entwicklung in der Dichte erhält man wie üblich [5], indem man die Dichte nach
der Aktivität entwickelt, von dieser Entwicklung das Inverse nimmt und dann in (36)
einsetzt.

n
N

~V

¦eq
1 w ,-v

(N-1) ¦
Fr e

JV-0 v"' *' ' Sr

Das wird mit r 1 entwickelt mit dem Resultat :

n Zlhizl
wo b, das übliche Clusterintegral ist:

1
h i\ v

Die inverse Reihe

hat die Koeffizienten

trx_,U(l\2,...,l)
OO

Z Z avn"
v-1

1

~ßPi

«„

bx und ax lassen sich sofort angeben :

«l - B

wo B (njß)312. Es ergibt sich dann in der Näherung ~ n:

Rs(l,...,s)=^e'ßHs + nss(l,...,s)

mit den für hier wichtigen ex(l) und e2(l, 2) :

f (2y 2/ <Pal e e I2>2>^"We"
fi2Ì1'/j_ (2»)«

e
a\ y-i+ "72"^«"2/ <Ps -/S-Sfs _ „-/^2 ,-/9j>I

(2n) P3>-

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

Nun definieren wir noch einen Zweierkorrelationsoperator G2(12) durch die
Gleichung

R2(l, 2) 22^1) 222(2) G2(12) (47)
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und setzen ihn in einer Dichteentwicklung an :

G2(12) 6f>(12) + n G£\12) + (48)

Setzen wir (48) und (44) in (47) ein, so erhalten wir durch Koeffizientenvergleich :

G20)(12) eß{Pi+p') e~ßH° (49)

G2X»(12) B2 ePW+i® 8,(1, 2)-B (eßp' ex(l) + eßp° ex(2) ««*+»» r""'. (50)

Mit (47) schreibt sich jetzt (30) :

Ri(Pi) -y (Pi) i™ * n(2 n)*Z <pxp2 \

Ol V—>0O nN/V-n p°

[| [22x(l) 22,(2) G2(12), «-«¦' (|(Pl) + |(p2)) eiH<%, Ha]_\plPt> (51)

Man könnte nun in Analogie zum klassischen Fall erwarten, dass sich (51) für die 0-te
Näherung von G2(12) (49) als die Boltzmanngleichung herausstellt. Leider scheint sich
das, in dieser formal befriedigenden Form, nicht beweisen zu lassen. Man muss
vielmehr auch für Rx zur 0-ten Näherung /0 (44) zurückgehen :

/o(Pi)^(Pi) Hm in(2n)*
NjV=n

xz<pip21 YiHtt 2
W [e~ßH°> ^ft) + ^(ft)]+ e'H°''H]-1 ft ft > (52)

Pa

WO 1

U(P) \e-ßp\ (53)

Die rechte Seite von (52) kann jetzt als Zeitableitung geschrieben werden:

/o(Pi) -dJ (Pi) hm -jr^r
N/V-n

X l27<PiP2| e-iH>1 [e~ßH\ |(Pl) + §(p2)]+e+iH^ \PiP2>- (54)
1>2

Diese Form der Gleichung lässt sich nun wirklich auf die linearisierte Boltzmanngleichung

zurückführen [6]. Es ist interessant zu bemerken, dass man (52) statt (51)

bekommt, wenn man

Ü»\l, ...,k)Op e~ßHk e~iHht Op e+tHkt (55)

anstelle von (16) in (15) setzt.
Für den Beweis, dass aus (54) die Boltzmanngleichung resultiert, wollen wir

zunächst in (54) die Zeitachse verschieben: t r + f. Wir haben bei (27) die Bedingung
gestellt, dass t sehr viel grösser als eine Stossdauer sein soll. Dem tragen wir jetzt
Rechnung, indem wir r -> oo gehen lassen und t' endlich oder nachher speziell 0

nehmen. Dann schreibt sich die rechte Seite von (54) :

lim hm Igg-* Y
t^oo k^oo 2 B2 dt Zj

N/V-n pa

x <Plp2I ««',-«.<'+*> [e~ßH\ §(pj + l(p2)]¥etH^e-iKt\pxp2y (56)
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wobei K p\ + pi der Operator der kinetischen Energie ist. Zu welchem Zweck die
Operatoren e~'Kt, e+,Kt eingeführt worden sind, wird bald klar werden. Schreiben wir
noch weiter um, indem wir an geeigneter Stelle Zwischenzustände einschieben und
wieder Operatoren der freien Bewegung dazuschreiben :

JS» v1™ fw- i ZZZiïip'i) + §cpö)
N/V-n p* pi pi

x «Plp2| eiKt e-ßH> e-iH>^ eiK^\p'xp'2y <p1p2|

X eiKt e-iH'{t+T) etKr \px p2 >* + c.c.) (57)

Schauen wir den rechten Teil eines der Skalarprodukte an: elKr \p'xp'2y ist der
Schrödingervektor zweier freier Teilchen zu einer Zeit — r. Die Teilchen werden einer
Wechselwirkung, gegeben durch H2, über eine Zeitdauer t + x unterworfen. Es
interessiert die Änderung in der Zeit. e~iH'{t+x) eiKT \p'x p'2 > oszilliert aber in der Zeit t,
weil man den Vektor e'Kr jpîp2> exakt zur Zeit — x der Transformation e~tH^t+x)

unterwirft. Nun ist es aber gleichgültig, wann das passiert, d.h. wann ein einzelner
Stoss beginnt. Aber wir wollen vor dem Stoss scharfe Energie haben. Wir schmieren
also den Anfang der Wechselwirkung über eine grosse Zeitdauer aus. Diese Zeitdauer
lassen wir am Schluss sogar unendlich werden. D.h. wir ersetzen

CO

e-iHlt e-i{Bt-E')r \p'p:2> _> ß'^1 rj fdx e"1* e~i{H^E'] T \p'xp'2> (58)

0

K\p'xp2> E'\p'p'>, E' p'2 + p'22 (59)

und ljr] die Zeitdauer, über die ausgeschmiert wird. Wir ersetzen dann den Limes
x -> oo durch den Limes -q ¦> + 0.

Gehen wir in die Koordinatendarstellung und definieren :

Xp <9l42|Plp2> (60)

00

vM=V<4i4*\ fâxW-W» \pxp2> (61)

so lässt sich (57) schreiben :

lim lim
»)->+0 F->oo^Q^^-ÎZZZiïiPïAïiPl)

N/V-n p* p> p'-

x { (e~iKt Xp, e-ßH° e-iH*'wAy)) ie~Œt Xp. «~'ff,Vfo))* + c-c-l ¦ (62)

Hier haben wir uns ganz an die Notation in Goldberger und Watson [7] angelehnt.
Wir verweisen im folgenden laufend mit (G auf Gleichungen in diesem Buch.

In (G44) wird gezeigt, dass im Limes rj -> +0tpp,(rj) Eigenfunktion von H2 zum
Eigenwert E' p[2 + p22 wird, wie man es aus seiner Konstruktion erwarten kann.
Deshalb kann man e~ßH' aus dem Skalarprodukt entfernen mit dem Resultat :

Ä J™ ^^ZZZiïiPï) + l(Pi))
N/V-n p* p'> pi

X /o(Px) /o(ft) |r I i^iKt Xp.e-^VM) I2 • (63)
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Mit (Gil), (G33) und (G39) (optisches Theorem) ergeben die Summen über p'x undp2
im Limes V -> oo, rj -> + 0 :

¦^fd*p'x d?p'2 {(i(p'x) + wò)U(p'i) Up',)

- iîiPi) A f(pa)) h(Px) f0(p2)}ô (P - P') ô (E - E') I Fpp, \2 (64)

wo P px + p2 der Gesamtimpuls und Fp p. die auf der Energie-Impulsschale
definierte Streumatrix ist. Beachtet man noch, dass 27 im Limes Vj(2 ti)3 f d3p2 wird,

und weiter, dass wegen der Invarianz des Hamiltonoperators gegen Zeit- und
Ortspiegelung «detailed balance»

\Tpp'\=\Tp'p\ (65)

gilt, und dass dank der <5-Funktion in der Energie

/o(Pi) /o(P2) foiP'i) /o(P2) (66)

ist, so erhält (64) die Form:

nfd3p2fd3p'x d*p'2(2 ti)* f0(px) /0(p2) (f(pi) + f(pi) - |(px) - §(p2))

x ô (P-P')ó (£-£') |7^|2. (67)

Mit (G37) ist das sofort auf den differentiellen Wirkungsquerschnitt dap^p, zu
beziehen, was aus (54) die gesuchte lineare Boltzmanngleichung ergibt :

/o(Pi)#(Pi)

nfd3p2Jdap^p, 2\p2-Px\ f0(px) /0(p2) (|(pi) + |(p£) - Ì(px) - f(pa)) (68)

Folgerungen

Nachdem sich (51) in 0-ter Näherung für G2 und Rx als vernünftige Gleichung
erwiesen hat, kann man erwarten, dass sie in erster Näherung im Sinne Enskogs
bessere Resultate ergibt als die Boltzmanngleichung. Einen direkten Nachweis des

Enskogfaktors, wie es klassisch möglich ist, lässt sich hier kaum geben. Der Grund
ist der, dass sich der Enskogfaktor 1 + n a3 5 7t/12 (a: Durchmesser) [1, 2] auf harte
Kugeln bezieht, die sich in der Quantenmechanik nur mit Partialwellen einigermassen
gut behandeln lassen. Will man aber die quantenmechanischen Resultate mit den
klassischen vergleichen, muss man zu grossen Temperaturen gehen, um das Boltzonen-
system zu einem klassischen werden zu lassen. Das wiederum bedingt, dass man eine

grosse Anzahl Partialwellen mitnimmt. Ein indirekter Nachweis der Enskog-
korrektur ist hingegen denkbar, wenn man die Modifikationen des Boltzmannschen
Stossoperators, die sich im Falle von «weichen» Kugeln aus (51) ergeben, mit den

entsprechenden klassischen vergleicht. Für die «weichen» Kugeln ist dann in der

Quantenmechanik die Bornsche Näherung verwendbar, die einen Übergang zu grossen
Temperaturen erlaubt.

Es soll noch bemerkt werden, dass der Korrelationsoperator G2 (12), (47), (48)
bzw. die Matrizen <p'x\ e3(l) |py und <p'xp2\ e2(l, 2) \pxp2> für harte Kugeln in der
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s-Wellenapproximation z.B. mit der «binary kernel expansion» von Yang und
Lee [8], Pais und Uhlenbeck [9] berechnet werden können [10].

Ich möchte vor allem Herrn Prof. J. A. McLennan für seine weitgehende Hilfe
danken. Dank gebührt auch Herrn Prof. A. Thellung und Herrn Dr. K. Weiss für
wertvolle Hinweise.

Anhang

Verallgemeinerte Ursell-Entwicklung [11]

Sei /JB)(1, N) ein iV-Teilchenoperator. Dann seien Clusteroperatoren
[7(1, ,r\r + 1, l),l <r < / < .ZV durch folgendes Gleichungssystem definieit

LM(l,...,k)=Z(l_l) S U(l,...,r\r+1,
l-r x ' r + r,..,k

,1) Dk-»(l+ l,...,k)

für alle 1 < r < k < N.
Hier bedeutet

t — rSA yt/über alle Kombinationen zu (l — r)-Zahlen aus den Zahlen r+1,... ,k.\ „,
Jk — r\Zj \Dre Kombinationen werden als Argumente rechts in U verwendet./

' '

\l-rj
Damit sind für FN\1, N) mit r 1, N N verschiedene Entwicklungen
gegeben. Die Operatoren [7(1, ,r \ r + 1, ,1) erhält man durch sukzessives Lösen
von (AI) mit festem r und k r, r + 1, N. Wir brauchen speziell:

r 1 [7(1 |) I<«(1) [7(1 | 2) L<2>(1, 2) - L(1»(l) 2.<«(2) (A3)

r 2 [7(1,2 j) Z.W(1,2) (A4)
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