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Linearisierte Enskog-Gleichung
fir Boltzonen mit abstossendem Potential endlicher Reichweite

von K. Appert
Institut fiir Theoretische Physik der Universitit Ziirich, Zirich?)

(16. XII. 68)

Zusammenfassung. Ausgehend von der Kuboformel fiir einen Transportkoeffizienten werden
reduzierte Zeitkorrelationsoperatoren fiir ein quantenmechanisches Gas mit Boltzmannstatistik
eingefithrt, die die BBGKY-Hierarchie erfiillen. Mit einer Methode von ERNST wird ein Funktio-
nalansatz y,{y,} gefunden, der, in die erste Hierarchiegleichung eingesetzt, die linearisierte Enskog-
gleichung fiir Boltzonen ergibt.

Vor einiger Zeit haben ERNsT et al. [1] mit der Korrelationsfunktionenmethode in
der klassischen statistischen Mechanik Transportkoeffizienten berechnet, die im Falle
von harten Kugeln gleich denen sind, die man mit der linearisierten Enskoggleichung
[2] bekommt. Die Methode von ERNST soll nun soweit in die Quantenmechanik iiber-
setzt werden, als es nétig ist, um den linearen Stossoperator fiir ein abstossendes
zentralsymmetrisches Zweiteilchenpotential endlicher Reichweite zu bekommen. Es
wird sich zeigen, dass dieser Operator in erster Ordnung in der Teilchendichte der
linearisierte Boltzmannoperator mit dem quantenmechanischen Wirkungsquer-
schnitt ist. |

Der Ausgangspunkt ist die Kuboformel [3] fiir einen Transportkoeffizienten A:

. e L
A= ,6‘ dtvli)ngo ~ S(0) - (1) (1)
_ 0 NV-n
wo f# = 1/kT, T die Temperatur, % die Boltzmannkonstante, I’ das Volumen, N die
Teilchenzahl, § ein Strom und = *dein Gleichgewichtsmittelwert ist. § lasst sich

aufspalten in einen kinetischen Teil K und einen Teil, der von den Stéssen herriithrt
(collision transfer). K ist eine Summe von 1-Teilchenstrémen k(p;), wo p; der Impuls
des ¢-ten Teilchens ist:

N
K = )k(p) . (2)
i=1
Sei
s 1 K00)-K(-+K(-t) - K©0)
() = lim 2 - 3)
NIV =n

dann ldsst sich (1) fiir den kinetischen Teil schreiben:

b= B[t 200 @

1) Gegenwirtige Adresse: Physikinstitut der Universitit Fribourg, Fribourg/CH.
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690 K. Appert H.P. A.

Die spezielle Anordnung von K(0) und K(— #) in (3) garantiert ein reelles y(¢), falls K
hermitisch ist. Hier ist also schon der Ubergang zur Quantenmechanik gemacht. Wir
wollen x(¢) nur fiir Boltzonen diskutieren. Bildet man den Mittelwert = “Imit
der grosskanonischen Verteilung, so schreibt sich (3):

1 o 2N 1
x(2) “1;1_1?1007]\1 MNIQ‘}gr Tr 7
N[V =n
=L : i 30 s
x (K-¢ TNV GTNY L TN RGN R PN (5)

Hier ist z = ¢f# die «absolute» Aktivitit, u das chemische Potential,

e ZN —ﬁHA,'
= E W T?' €
o IN Y

die grosskanonische Zustandssumme fiir Boltzmannstatistik,

21’ HN“ZP@ —}—2'{)”

1<

der Hamiltonoperator, m = 1/2 die Teilchenmasse, v;; = v (|q; — q;|) das Zwei-
teilchenpotential, das iiberall abstossend und von endlicher Reichweite sein soll.
Dank der Spureigenschaft 7 AB = Tr BA kann man (5) wie folgt darstellen:

£ b4 N

20 = Jim & Nrg, T Ko (6)
NV =n =
WO
1 —iH —pH 1Hprt
wylt) =5 ¢ Ve N Kl e " (7)
mit
[A,Bl.= AB + BA . (8)

Der Dichteoperator »y(¢) ist beschrankt und, da K = Kt ist, hermitisch, zudem
erfiillt er, wie man aus (7) sieht, die Liouville-Gleichung:

0 )
”3;(” i [y (), Hyl- . (9)

Deshalb kann man mit »#y(¢) zeitabhingige reduzierte Dichteoperatoren ¥ (1,...,s;)
definieren, die die BBGKY-Hierarchie erfiillen:

. - zN
@r*n (1, sit) = im o Y g e v () (10)
NWV=n*"

WO

tr

1
s+1,... v4d= 2 2<Ps+1 ?NlA‘?s+1'--ibN>und <‘1}P>=71‘/§”epq

Ps+1

mit periodischen Randbedingungen. Indem man die Spur #r,,,  » und die Summe
itber alle NV in (9) bildet, erhdlt man die BBGKY-Hierarchie [4]:

o, ; \ >
32 z[ws’ Hs]-— £k Z(2 j7:)3 n trs-!—l [lzbs—i-l’g:vis—t—l}"' (11)
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Da K nach (2) nur Operatoren p, enthilt, ist sy(f) translationsinvariant, und es gilt
die Relation: .

-1 |-
Mit der Definition (10) schreibt sich nun (6)

2 = lim T b, k(py) y(134). (13)

V—cw
NIV =n

Die Zeitabhingigkeit von #,(1; ¢) wird durch die erste Hierarchiegleichung
,‘l‘h;tlki’) — i n(27)3 try [Ws(1, 2;8), vys] (14)

bestimmt. Fiir ¢, wird eine geeignete Niherung in Ausdriicken von ¥, mit Hilfe der
Clusterentwicklung (siehe Anhang) gefunden. Der Ausgangspunkt ist die folgende
Form fiir (10):

3s s - — 1 . ,,ZN .1
(23) n lps (1: ,S’t) *VILIEO ;\;:(N_S)!'ﬂgr 2 trs+1,...,N
NiV=n"""
x e "N LW 3Tk(p) + (N — ) LY R(p,,y)| - (13)
i=1 +

Hier wurden die Gleichungen (2) und (7) benutzt, und es wurde fiir L™(1, ..., N)

gesetzt:

L(N)(l, ,N) OP zHNt Oﬁ +ﬁHArt (16)

L™ wird mit (A1) entwickelt. Das ist erlaubt, denn (A 1) ist eine algebraische Identitét.
Die Fragen werden wie im klassischen Fall sein, ob es erstens der Natur entspricht,
wenn man in erster Ndherung bei nicht zu grossen Dichten nur Zweierstdsse be-
trachtet, und zweitens, ob die vollen Entwicklungen im Limes N, IV - cc konver-
gieren. Die erste Frage kann auf Grund der Resultate bejaht werden. Die zweite kann
nicht beantwortet werden.

Das erste L) in (15) wird nun mit » = s, das zweite mit » = s + 1 entwickelt
(vgl. Anhang). Die Operationen

ergeben zusammen mit der Spur 1, und es ist

LN=D@+1,...,N)k(p,) — k(p,) fir i=1,...,1. (17)
Dann steht fiir die rechte Seite von (15):

: = zN 1 NN —s
- 2 (Nms)iﬁ;?”ﬁ“l»---ﬂz(z _s>

l=3s

X [e‘f’HN, U, ..cpss+ 1., L8) D k(P)

+ (=) UQA,...,s+1|s+2,...,5%) k(P11 | - (18)
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Das zweite U im Antikommutator ist fiir / = s nicht definiert, es wird dann aber mit

Null multipliziert. Jetzt werden die Summen iiber / und N vertauscht und die Spur
aufgespalten:

y = N ; —BHN
VEEOZ(Z_S1775+1 ..... l J\Z( _1)1,9 o T, N ¢ ’

NIV=n B

UQ,...,s|s+1,....58 3 k(p)
i1

+(@—s)UQA,...,s+1|s+2,....050 k(P 1) - (19)

+

Mit dem Gleichgewichts-Dichteoperator R.(1, ..., s), definiert durch

0 N —BH
2a)*sns R(1,...,s) = NZ (_N__Z—S)_!-;?g_ Wosg, . g8 (20)
=8 T

ergibt sich dann

Y(1,...,s;f) = lim

X |R(1, ..., ), UL, ...,s|s+1,....,58 Y k(p,)

1=1
+ (= UQA,....,s+1|s+2,....5) k(p,.1)]| - (21)
+
Speziell fiir s = 1, 2 lautet die Gleichung mit (A3) und (A4):
. 1 . 2 m)3
Y(l;8) = lim 5 [Ry(1), kp)], + Jim Z520
NIV =n N[V =n
X try [Ry(1,2), ™" (k(py) + k(py)) €™ — k(p)], + {3,4, ...} (22)

Yo(l, 2;) = Tim 5 [Ry(1, 2), € ((py) + k(po) €70, + 3,4} (23

o 2
NV =n

{3,4, ...} bezeichnet den Beitrag von Stossen, an denen mehr als zwei Teilchen
beteiligt sind, den wir vernachldssigen. In erster Ndherung ist dann, wenn wir den
Limes von jetzt an meist weglassen, aber immer daran denken, dass alle Resultate fiir
V' > oo ausgewertet werden, nach (22):

1
Pu(158) = 5 [Ri(1), k(Py)]- - (24)
Da fiir R(1, ..., s) die (12) entsprechende Relation gilt:
s), 2, pi| =0 (25)
-1 -

ist

Pi(1; 1) > k(py) Ry(1) . (26)
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Fiir Zeiten ¢ viel grosser als die mittlere Stossdauer wird das exakte y;:

(15 8) = §(p1, ) Ri(1) (27)

mit (26) identifiziert; also
§(py) = 8(p1, %) = k(py) . (28)
Dann ist der gewlinschte Funktionalansatz fiir ¥,(1, 2; ¢) mit (23) und (28) gefunden:
Wal(L, 2; ) ~ - [Ry(L, 2), € (£(py) + E(pa) 6707, (29)

und damit die Zeitabhidngigkeit von ¥,(1; ) bzw. &(p,) durch (14) bestimmt:
Ri(1) 5-(p) = i n(2 ) try [ 3 [Ro(1, 2), €75 (§(py) + §(PD) ¢, vag] . (30)

Diese Gleichung ist translationsinvariant und deshalb diagonal in p,. Schreibt man
das Diagonalelement hin, so kann bei v;, noch die kinetische Energie hinzugefiigt
werden, weil sie keinen Beitrag gibt.

0§

Ry(p) 5 (P1) = Mim i n(2m)°

N[V =n

x 3PP [5 [Ra(1, 2), 6 (8(py) + E(P0) ¢1,, Ho|_|pipw (31)
It’z

wobei die linke Seite jetzt c-Zahl ist:

Ry(py) 22 () = <pu | Ru(1) 25 (p) | P> (32)
(31) ist die quantenmechanische Form der linearen Enskoggleichung fiir allgemeinere
Potentiale. Um das Resultat besser verstehen zu koénnen, ist es angebracht, den
Gleichgewichts-Dichteoperator R, in der gleichen Ndherung (~ #), in der wir (31)
bekommen haben, zu berechnen. Dazu ist uns die Clusterentwicklung aus dem Anhang
wieder eine grosse Hilfe. Es wird in (A1)

LW, ... By =¢

gesetzt und (20) mit » = s entwickelt:

,,,,,

N=
y N_ - 7 ceay
Xt NZ( s) UL, oo, s | s+ 1,...,0 ¢ PEN=H o8] 0 ag

,,,,,
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o0}
Die Summe J ergibt gerade 1 und man hat das Resultat:
N=1

!
(27-6)351%5125(1,'”’3):Z(T';,i.tys+1 ..... [U(l,...,SIS—|—-1,...,Z). (36)
Die Entwicklung in der Dichte erhidlt man wie iiblich [5], indem man die Dichte nach

der Aktivitdt entwickelt, von dieser Entwicklung das Inverse nimmt und dann in (36)
einsetzt.

—BHy
W= :VZN 1'19 e ' (57)

o0
n= Zl b; 2t (38)
=1
wo b, das iibliche Clusterintegral ist
1
bl = 717' t?’l _____ 1 U(]_ ’ 2, ceey l) (39)
Die inverse Reihe o
z= 2 a, n’ (40)
hat die Koeffizienten v=1
1
b
ay=—2 5 (1)
b, und a, lassen sich sofort angeben:
1 _ - B
b=t e = [ - (42)
2
a = (%) (43)
wo B = (7/8)32. Es ergibt sich dann in der Niherung ~ #:
Rl ...,s) =55 € "t mel,....s) (44)
mit den fiir hier wichtigen ¢,(1) und 82(1, 2):
a _ — 2 2
e (1) = Ef‘.ﬁ Ot | 21 1 2@2‘ p~BH, _ ~B(Di+DY (45)
2a,ay _ o _ B2
gyl )., 2} = 72;%?‘% AH: (2'91': E<p3| ¢ Pt gFH: 76D | p (46)

Nun definieren wir noch einen Zweierkorrelationsoperator G,(12) durch die

Gleichung Ryl 2) — Ry(1) Ry(2) Gol12) )
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und setzen ihn in einer Dichteentwicklung an:

G5(12) = GO(12) 4+ = G(12) + ... (48)
Setzen wir (48) und (44) in (47) ein, so erhalten wir durch Koeffizientenvergleich:
Géo)(12) = Ppitpd) ,—FH, (49)

Gé”(lZ) — B2 Ai+pl) &5(1,2) — B (eﬁpﬁ & (1) + P 81(2)) BDI+DEY) —BH: (50)
Mit (47) schreibt sich jetzt (30):

(P1) (Pl) = hm 1 n(2m)3 2<P1P2|

— 0
N/V n b

X [% [R:(1) Ry(2) G,(12), &7 *1! (g(Pl) + &§(p2)) kg P Hz]H | PLP2> - (51)

Man kénnte nun in Analogie zum klassischen Fall erwarten, dass sich (51) fiir die O-te
Néherung von G,(12) (49) als die Boltzmanngleichung herausstellt. Leider scheint sich
das, in dieser formal befriedigenden Form, nicht beweisen zu lassen. Man muss viel-
mehr auch fiir R, zur O-ten Niherung f, (44) zuriickgehen:

(P 55 (P) = Jim i n(2)?

N[I_;oon
i 1 iH,
< X Pyl [ [ 8(p) + S(PL € B | 2ipe> (62
WO 1 _pp
olp) = = PP (53)
Die rechte Seite von (52) kann jetzt als Zeitableitung geschrieben werden:
s n(2
folpw) 5 (p) = Jtim "2
NV =n

D1 P2 (54)

0 - - )
X ﬁpzyplpzl g7 ek [ B, §(py) + g(Pz)heJr Byl

Diese Form der Gleichung ldsst sich nun wirklich auf die linearisierte Boltzmann-
gleichung zuriickfiithren [6]. Es ist interessant zu bemerken, dass man (52) statt (51)
bekommt, wenn man

LW, ... k) Op—¢

anstelle von (16) in (15) setzt.

Fiir den Beweis, dass aus (54) die Boltzmanngleichung resultiert, wollen wir zu-
ndchst in (54) die Zeitachse verschieben: ¢ = 7 + #'. Wir haben bei (27) die Bedingung
gestellt, dass ¢ sehr viel grosser als eine Stossdauer sein soll. Dem tragen wir jetzt
Rechnung, indem wir 7 - co gehen lassen und ¢ endlich oder nachher speziell = 0
nehmen. Dann schreibt sich die rechte Seite von (54):

n(2 n) 0
31,“30 VILOO 2B ot Z
NiV=n D

X <Py P M g2l B, BOB ) o ElPoi], G |pip2>  (56)

iR 0p ¢ iRt (55)
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wobei K = p} + p3 der Operator der kinetischen Energie ist. Zu welchem Zweck die
Operatoren e~ *X?, ¢**X! eingefiihrt worden sind, wird bald klar werden. Schreiben wir
noch weiter um, indem wir an geeigneter Stelle Zwischenzustidnde einschieben und
wieder Operatoren der freien Bewegung dazuschreiben:
n(2m)?® 0 / /
1,11330 Vlgrgo 2 B2 0f ZZZ(g(Pl) + g(Pz))
N/V=n p: p1 P2
X ({PyPa| e P g LT KT p b Py Py
< 6“” e%in(H—z) giKr ]P; P2’ >* + C.C.) . (57)

Schauen wir den rechten Teil eines der Skalarprodukte an: X7 |p; p,> ist der
Schrodingervektor zweier freier Teilchen zu einer Zeit — 7. Die Teilchen werden einer
Wechselwirkung, gegeben durch H,, iiber eine Zeitdauer ¢+ 7 unterworfen. Es
interessiert die Anderung in der Zeit. ¢=##:(+7 (K7 | p p’ > oszilliert aber in der Zeit ¢,
weil man den Vektor ¢'X7 |p; p.> exakt zur Zeit — v der Transformation e~ *#:(+7)
unterwirft. Nun ist es aber gleichgiiltig, wann das passiert, d.h. wann ein einzelner
Stoss beginnt. Aber wir wollen vor dem Stoss scharfe Energie haben. Wir schmieren
also den Anfang der Wechselwirkung iiber eine grosse Zeitdauer aus. Diese Zeitdauer
lassen wir am Schluss sogar unendlich werden. D.h. wir ersetzen

¢ I | plpy> — f dv e BT | pipy> (58)
0
Wi ¥ ! r ’ ' 19
K |pips>=E"|p;ps>, = P+ Py° (59)

und 1/n die Zeitdauer, iiber die ausgeschmiert wird. Wir ersetzen dann den Limes
T - oo durch den Limes n - +0.
Gehen wir in die Koordinatendarstellung und definieren:

%p = <q1 G| P1 P2> (60)

o0
v(n) =n{qy qz‘fd'f pHE A | Py P> (61)
0

so ldsst sich (57) schreiben:

s Vligz*gr 222 (P) + &(PY)

NIV=n p: D1 D:
X { (€7 xp, € P e by () ) (€75 g0 € By () ) + 0} (62)

Hier haben wir uns ganz an die Notation in GOLDBERGER und WATSON [7] angelehnt.
Wir verweisen im folgenden laufend mit (G ..) auf Gleichungen in diesem Buch.

In (G44) wird gezeigt, dass im Limes n - + 0 y,.() Eigenfunktion von H, zum
Eigenwert E' = p;2 + p;2? wird, wie man es aus seiner Konstruktion erwarten kann.
Deshalb kann man ¢ ##: aus dem Skalarprodukt entfernen mit dem Resultat:

nl_i}rEO Vlirrgo n(2 ) ZZZ (py) + g(Pé))

NV =n p: DI Di

X folP1) fo(Pz) -y ( e Xp> e_iﬂ“wp'(n)) |2 . (63)
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Mit (G11), (G33) und (G39) (optisches Theorem) ergeben die Summen iiber p; und p,
im Limes V' - oo, > 4 0:

Qnrt

7 | @01 2% {(§(P1) + §(p2)) fo(PD) fo(PY)
— (§(P1) + §(P2)) fo(P1) fo(P)}0 (P — P) 0 (E — E') | T |2 (64)

wo P = p, + p, der Gesamtimpuls und 7,, die auf der Energie-Impulsschale
definierte Streumatrix ist. Beachtet man noch, dass }'im Limes V/(2 7)® [ d3p, wird,

D:
und weiter, dass wegen der Invarianz des Hamiltonoperators gegen Zeit- und Ort-
spiegelung «detailed balance»

[ Tppr| = |Tp'f>| (65)
gilt, und dass dank der §-Funktion in der Energie
fo(P1) fo(P2) = fe(Pi) fo(P:;) (66)

ist, so erhdlt (64) die Form:

n [ @by [ @b @b Fo(21) fo(po) (5(P0) + §(PY — 5(P) — §(p2)
X8 (P —P)8(E—E)|Ty,*. (67)

Mit (G37) ist das sofort auf den differentiellen Wirkungsquerschnitt do,_, ,- zu be-
ziehen, was aus (54) die gesuchte lineare Boltzmanngleichung ergibt:

fo(P2) 22 (p)

=n f d3py f oy oy 2 | P2 — P1| fo(Py) fo(P2) (§(P1) + §(P2) — §(P1) — §(Py)) - (68)

Folgerungen

Nachdem sich (51) in O-ter Naherung fiir G, und R, als verniinftige Gleichung
erwiesen hat, kann man erwarten, dass sie in erster Ndherung im Sinne Enskogs
bessere Resultate ergibt als die Boltzmanngleichung. Einen direkten Nachweis des
Enskogfaktors, wie es klassisch méglich ist, l4sst sich hier kaum geben. Der Grund
ist der, dass sich der Enskogfaktor 1 + % a® 5 /12 (a: Durchmesser) [1, 2] auf harte
Kugeln bezieht, die sich in der Quantenmechanik nur mit Partialwellen einigermassen
gut behandeln lassen. Will man aber die quantenmechanischen Resultate mit den
klassischen vergleichen, muss man zu grossen Temperaturen gehen, um das Boltzonen-
system zu einem klassischen werden zu lassen. Das wiederum bedingt, dass man eine
grosse Anzahl Partialwellen mitnimmt. Ein indirekter Nachweis der Enskog-
korrektur ist hingegen denkbar, wenn man die Modifikationen des Boltzmannschen
Stossoperators, die sich im Falle von «weichen» Kugeln aus (51) ergeben, mit den
entsprechenden klassischen vergleicht. Fiir die «weichen» Kugeln ist dann in der
Quantenmechanik die Bornsche Niherung verwendbar, die einen Ubergang zu grossen
Temperaturen erlaubt.

Es soll noch bemerkt werden, dass der Korrelationsoperator G, (12), (47), (48)
bzw. die Matrizen {pj| & (1) | p,> und <p; p;| es(1,2) | py Py > fiir harte Kugeln in der
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s-Wellenapproximation z.B. mit der «binary kernel expansion» von YANG und
LEE [8], Pars und UHLENBECK [9] berechnet werden kénnen [10].

Ich méchte vor allem Herrn Prof. J. A. McLENNAN fiir seine weitgehende Hilfe
danken. Dank gebiihrt auch Herrn Prof. A. THELLUNG und Herrn Dr. K. WEIss fiir
wertvolle Hinweise.

Anhang
Verallgemeinerte Ursell-Entwicklung [11]

Sei L™(1,...,N) ein N-Teilchenoperator. Dann seien Clusteroperatoren
Uvla,...,r|r+1,...,0),1 <r<!< N durch tolgendes Gleichungssystem definiert

LW, ... k) = Zk' (};::) ig

I=7r r+1,.,

firallel <r<< k< N.
Hier bedeutet

UQA,...,r|r+1,..., ) L6-D1+1,...,k
k

l—7r 1

S =iy
r+1,..,k( )

l—v

Z(ﬁber alle Kombinationen zu (/—7)-Zahlen aus den Zahlen »+1,..., 4. (AZ)
Die Kombinationen werden als Argumente rechts in U verwendet.

Damit sind fiir L™(1, ..., N) mit # = 1, ..., N N verschiedene Entwicklungen ge-
geben. Die Operatoren U(1,...,7 |7+ 1,...,[) erhdlt man durch sukzessives Losen
von (A1) mit festem » und & =7, » + 1, ..., N. Wir brauchen speziell:

r=1 Ul ) = Lo) Ul |2) = L™, 2) — LO(1) L®(2) (A3)
y=2 U@l,2|)=L9(1,2). (A4)
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