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Fonction de portée effective et déplacement en énergie des états liés
en présence d'un potentiel coulombien modifié1)

par E. Lambert
Institut de Physique, Université de Neuchâtel

(27 XII 68)

Abstract. We first recall some properties of the confluent hypcrgeometric functions then from
these we build the usual Coulomb functions paying special attention to their analytical properties.
An irregular solution of the Coulomb problem, entire in A2, is then built for all I. From this solution
an effective range function, meromorphic in A2, is established when a finite range additional
interaction is present. We simply connect the energy shifts of the bound states, produced by this
additional interaction, to the scattering length.

I. Introduction
Afin d'éviter au lecteur de fréquents retours à la littérature, nous résumons au

début de ce travail quelques propriétés, analytiques pour la plupart, des fonctions
hypergéométriques confluentes. Pour l'essentiel cette partie est extraite de [1].

Ensuite nous passons au problème de Coulomb en traitant simultanément le cas

répulsif et le cas attractif et nous restreignant à des / entiers. Nous définissons les

fonctions coulombiennes Fj et Gl [2] à partir de la solution régulière <f>l et des solutions
de Jost/j^ de l'équation de Schrödinger radiale. Les propriétés analytiques en k de

ces solutions sont données ainsi que quelques comportements limites. D'autre part,
une solution Ql irrégulière en f à l'origine et entière en k2 est construite explicitement
pour tout /.

Introduisant ensuite une interaction additionnelle de portée finie nous construisons
de façon simple une fonction de portée effective Zc(l, k2) méromorphe en k2 généralisant
ainsi la fonction de Bethe-Landau-Smorodinsky [3].

Dans la dernière partie de ce travail nous lions ce développement de portée
effective au déplacement en énergie des états liés dans un potentiel coulombien modifié

par une interaction de portée finie (atomes mésiques) généralisant à tout l le résultat
de Trueman [4] par une expression sans bois mort [5].

II. Fonctions hypergéométriques confluentes
Ces fonctions sont les solutions de l'équation hypergéométrique confluente:

où a et c sont des paramètres complexes.
C'est une équation linéaire du 2ème ordre possédant deux singularités régulières

en 0 et oo. Cette équation provient de l'équation hypergéométrique:

z(l -z) -g- + [c - (a + b+ 1) z] -g- - aby 0 (2.2)

x) Ce travail a bénéficié de l'aide financière du Fonds National Suisse de la Recherche Scientifique.
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(2.2) possède 3 singularités régulières en 0,1 et oo. C'est par confluence de ses singularités
en 1 et co à l'infini que l'on obtient (2.1).

1) Solutions du premier type

Pour autant que c $ Z {...,— 2, — 1, 0,1, 2,...} on a deux solutions linéairement
indépendantes de (2.1) notées yx et y2 et données par:

yx 0(a, c; z) (2.3)

y2 z1-* 0 (a - c + 1, 2 - c; z) (2.4)

ou
0(a, c, z) > -=y ' r (2.5)\ i ^j p^ p(c + n) ni v '

Si c — 2, — 1, 0 yj n'est pas définie
si c 1 Vi v2
si c 2, 3, 4, y2 n'est pas définie.

On peut cependant introduire les solutions du premier type modifiées

v - -**- et v - Viyi~ r(c) et y2~ r(2-c)
définies pour tout c e C et coïncidant pour c e Z.

Mentionnons maintenant quelques propriétés de ces solutions :

a) On a l'importante relation de Kummer

0(a, c; z) ez 0(c - a, c; - z) (2.6)

b) Considérée comme fonction de « ou de z la fonction 0(a, c ; z) est entière. En tant
que fonction de c elle est méromorphe avec des pôles simples en c 0, — 1, — 2,

Il s'ensuit que v^ est une fonction entière en ses 3 variables.

c) Les propriétés d'analyticité de y2 découlent de celles de yx. En particulier on
voit que y2 est une fonction multiforme en z et on définit sa branche principale en

coupant le plan z selon le demi-axe réel négatif. Alors :

y2(ze*im") e'Ztm7l{1-c] yi(z); - n < arg z <n meZ (2.7)

d) On a les limites :

lim 0(a, c;z) l (2.8)

0(a, c;z)~ j^ (e—Y + ^4- * z*-<. (2.9)
|«|-»oo r(c-a) \ z J r(a)

Pour l'application de cette dernière relation il faut prendre — ti < arg z < n (bien que
0(a, c; z) soit entière en z) et e sgn [Im(z)].

2) Solutions du 2e type

L'introduction de ce type de solutions est nécessaire afin d'obtenir une seconde
solution de (2.1) lorsque c e Z. On les obtient par une combinaison linéaire judicieuse
de yx et y2 et à l'aide de la relation de Kummer (2.6) :

y3 V(a, c; z) y^fy 0(a, c; z) + ^h zi-c0{a _C+1>2-C;z) (2.10)

y4 ez W(c -a,c;-z). (2.11)
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Ces deux nouvelles solutions sont toujours définies et linéairement indépendantes.
Elles sont en général multiformes et on coupe à nouveau le plan z selon le demi-axe
réel négatif pour définir leur branche principale. Lorsque c 1, 2, on a:

W(a, n + 1; z) lim W(a, c; z) {7rTrT i<,_„ +
v ' r(n+l)T(a-n)

f i m, -, \ V- r(a+ r)T(n + l)
X i m z 0 (a, n + 1 ; z) + > -=hr=n—-, r| v

r~u r'a' r(«4-i+r)

X [y (a + r) — y (1 + r) — ^ (1 4- n + r)]

r(n) y-i i \a — n
~"(aT Z\ r(a-n

r(a-n + s)T(l-n) zs

Fa (a-n) T(l-n + s)
n 0, 1, 2, (2.12)

expression dans laquelle la dernière somme doit être ignorée si n 0 et où ip(x)

r'(x)jF(x) est la fonction di-gamma.
Lorsque c — 2, — 1, 0 on utilisera (2.13) puis (2.12).
Voyons maintenant quelques propriétés de ces solutions :

c) A partir de (2.10) on voit que:

W(a, c; z) zl~c W(a - c + 1,2 - c; z) (2.13)

b) Pour autant que \z\ > 0, W(a, c ; z) est une fonction entière en a et c. Considérée

comme fonction de z, W(a, c; z) est en général multiforme et singulière à l'origine.
On définit sa branche principale, alors analytique, en coupant le plan z selon le demi
axe réel < 0. On a:

W(a,c;ze% xF(a,c;z) + (e~ -1) T(a) '0(a-

meT.

-I)n4

et si c 1,2,...

W(a,n+l;ze2im7l) W(a,n + l;z) + -h,v ' ' v ' ' ' T(n+1) r (a -n)
W(a, c; z) est donc entière en z si a 0, — 1, — 2,

c) On a la relation

+ 1,2-c;z)

n < arg z < ti

(2.14)

2imn0(a,n + l; z) (2.15)

0(a, c; z)
r(c)

r(c-a)
eiena W(a, c; z) + ^c\- eine(a-c) e* W(c - a, c;

1 (a)

e sgn Im(z)
d) On a les limites

¥(a, c; z)
|2|->oo

z-a
3 n 3 71-- < arg z < 2

^(a.oz)
1*1-*«

F(c-1) x_
r(a)

r(i-c)
r(a-c + l)
r(i-c)

r(a-c + l)
\nz

+ m
F(a)

Re(c) > 1

Re(c) < 1

Re(c) 1, c 4= 1

c= 1.

(2.16)

(2.17)

(2.18)
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e) Les différents ensembles de solutions parmi lesquels on peut choisir 2 solutions
linéairement indépendantes de notre équation (2.1), selon les valeurs de a, c, c — a,

sont donnés dans la figure 1.

ail
cil

c-ail
ail
cel

«=1.2,...

cil
0-0,-1,...

cil
ail

c-tf-1,2,...
ail

c-tf-0-1,...

a-1,2,...

c-aA2,..

(7-1,2,...

c-a-0,A,...

£7-0,-1,...

(7-0=1,2,...

«-0,-1,..

c-a-0,-1,...

y, %

1 • +- • ¦n • ?- 0

% •
J

• • 0 •

y, • • • •- • • f •

x • • •- • • •- • •- • •

Figure 1

Groupements de solutions de l'équation hypergéométrique confluente parmi lesquels on peut en
choisir deux linéairement indépandants.

III. Fonctions coulombiennes

L'équation de Schrödinger radiale en présence d'un champ coulombien est:

ß l(l+l)f"i(k, A + \k ]ft(k,r)=0
2 pi Zx Z2 e2

I2 '

Introduisant le paramètre de Coulomb

*=2k
m 2ikr

(3.1)

(3.2)

(3.3)

f ,(co) e""2 m-1-1 y,(k, r)

et posant

(3.1) devient
m %(a>) + [(21 + 2) - co] rp,(m) - [l + 1 - i a.] yi,(eo) 0

qui est l'équation hypergéométrique confluente avec

a l+l -ia. et c 2l + 2

1) Solution régulière à l'origine

En vertu du chapitre II, la seule solution de ce type pour chaque / est:

(f>t(k, r(2 i k r)l+1 0(l+l-ioL,2l + 2;2ikr)
En théorie de la diffusion on travaille en général avec la solution normée par

Alors

lim (ß^k, r) f-'-i 1

|r|-M>

$,(k, r) rl+1 e-ihr 0 (l + 1 - i a, 2 l + 2; 2 i k r)

(3.4)

(3.5)

(3.6)
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Nous avons :

a) (f)l est une fonction entière en r (cf. chap. II).
b) D'après le théorème de Poincaré [6], <f)l est une fonction entière en k2.

c) (2.6) nous donne:

U- k, r) 4,(k, r) (3.7)

d)

hm Mk,r)= (2?+*)!!y ù(kr) (3.8)

yz: fonction de Bessel sphérique d'ordre L

e)

f £JjîrL iß r)112 Iti+iW r)ll2i ß > 0

F{2l+2] nß\r)^Ll + x[2(\ß\r)xl2] ß<0
</>i(0, r) lim <f>l (k,r)

|*|-»o

/2; + 1: fonction de Bessel modifiée d'ordre 21+1,
J2i+i'. fonction de Bessel d'ordre 21+1.

i) D'après (2.9) on a le comportement asymptotique:

et

(3.9)

*'<*'f>|,Ft. C,M*«+i a°(*'-«l"2ftr-/ ».+ *,) Re(*)>0 (3.10)

2ia, _ -Zy+l + ia) n 1 1 \« - jn(Z+1_îa) l3-11'

ri x _2> e-«*l2[r(l+l + ioL)r(l+l-ia)Y/2 „.c((«) - r(2/+2) ^1^
C;(a) est appelé coefficient de Coulomb d'ordre Z. On a

« X« <3-14>

avec

^)-w^2!i)TÌ7(s2+a2)- (3-15)

On trouve l'expression asymptotique de <f>t(k, r) pour Re(k) < 0 en utilisant (3.10)
et (3.7). (3.10) nous conduit à introduire la fonction de Coulomb régulière habituelle,
ayant un comportement asymptotique plus simple:

F,(a, kr) C,(oc) kl+x^,(k, r) C,(a) «-"'(A r)^1 0(1 + 1 - i a.,21 + 2;2i kr)

~ sin (A r - « ln 2 à r - l\\ + a\ Re(k) > 0. (3.16)
|r|-*oo \ i

2) Solutions irrégulières à l'origine
Par analogie avec le traitement habituel de la diffusion nous voulons définir ici

deux solutions de (3.1) ayant, dans un certain domaine du plan k r, un comportement
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asymptotique analogue à e±tkr. Nous définissons, pour des raisons d'analycité en k
qui apparaîtront par la suite :

f\±](k, r) ea"12 e±,kr (+2 i k r)l+1 W± (l + 1 ± i oc, 2 l + 2; + 2 ik r) (3.17)

où W+ est la branche de la fonction W (2.10) définie en couplant le plan z selon le demi
axe imaginaire positif (resp. négatif pour WA). D'après (2.17) on a les comportements
asymptotiques désirés :

ft\k,r) ~ e±t{kr-ain2kr) -ti< ±argkr <2ti. (3.18)
| kr |—>oo

On a les propriétés :

a) Pour k e R, /[^(k, r) sont analytiques dans le plan r coupé selon le demi-axe
réel y 0.

b) Pour y e R, /',*'(£, r) sont analytiques dans le plan k coupé selon le demi-axe
réel < 0.

cl' f[±)(ke^in,r) e-a7lf{{F)(k,r) (3.19)

lim f\±}(k, r) (± i)1 k r M±>(£ r) (3.20)
|a|->0

h\^: fonctions de Hankel sphériques (Messiah).

e) On a l'expression pour notre solution régulière (3.6) à partir de (2.16) :

*» 1 " ^W^ [rfe '!"'*• " - TOW f'* 1] • <**>

On introduit la fonction de Coulomb irrégulière en formant :

G|(«, k r) [rü±i^» Çl±^'W*
x r (-»y *+)" '

f((+i-,a) t\+)ik<r)+ ry+i+i*) ^]ik'r)\

- 2"""é;,'.;'-'" [^y.-^.iH.-i^H^,,,)
- r/(2 Ì +2)g) g^ y+ (/ + 1 + « a, 2 / + 2; - 2 t^ r)] (3.22)

ayant le comportement asymptotique

G[(a, kr) \krJ~^œcos (kr — din 2 kr — l— + oA — ti < argkr <ti. (3.23)

Nous construisons maintenant une solution irrégulière de (3.1) entière en k2 à l'aide de

(3.22). Cette construction n'étant en aucun cas unique, nous nous bornerons à soustraire
de (3.22) «le moins possible» de façon à obtenir les propriétés analytiques désirées.

Pour des raisons de simplicité nous partons plutôt de la solution k' C,(a) Gt(a, k r)
qui possède comme singularité en k : une coupure le long de l'axe réel y 0 ; des pôles en
a. /3/2 k + i (l + 1 + n), n 0, 1, 2,.... Le premier type de singularité s provient
des fonctions W±, (2.15) nous permet de l'éliminer en considérant les fonctions:

a±(k, r) W± (l + 1 ± i a, 2 l + 2; + 2 i k r)

+ r(2i+2)7(^T±^0{l+1±^'2l + 2'T2lkr)
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0U I«!«=#¦ (3-24)

Les singularités de second type, provenant des fonctions r, sont aussi éliminées
simplement en considérant (2.12). On voit en effet que les fonctions

b±(k,r) k2l + xF(l+ l±iat) a±(k, r)

W+iTß+l ± ia)v(± »a) ^ x ¦ 0 0. T 0 ¦

rm+2)r(-l±iot) ^(lAl + ^c,,2l + 2, + 2x%r)

sont entières en k.
En reportant ces résultats dans (3.22) on obtient la solution de (3.1)

6t(k, r) k' C,(«) G;(«, /e r) - y^r^y *' f,(«, * r) (3.25)

entière en k et où

h(<x) [ip(i a) + f(— i a)] — ln a. (3.26)

Nous avons les propriétés:

a)
0,(- k, r) Bt{k, r) (3.27)

donc 6l est une fonction entière de k2.

hm 6,(11, r) (2,+ 1)!! krnAjkr) (3.28)

nf. fonction de Neumann sphérique d'ordre /.

c)

,(0, r) lim e,(k, r) r(2/ + 2)
2(0 r)1'2 Kïl + 1[20 r)W] ß > 0

71 >-ßV
2(\ß\ryi2Y2l + x[2(\ß\ry'2] ß<0

(3.29)

2 r(2/+2)
K2l + X: fonction de Neumann modifiée d'ordre 21+1,
Y2l + X: fonction de Neumann d'ordre 2 / + 1

3) Wronskiens, fonctions de Jost, matrice S

A partir de

W(f\~](k, r), f\+)(k, r)) 2ik (3.30)

on a successivement

W(G1(ol, k r), F,(a, kr)) k (3.31)

W{0l(k,r),t,(k,r)) l (3.32)

F(2I + 2)e«"ß
T2î'a)T(/4-1 ±*<x)

/«=>(*) W(f±\k, r), Uk, r)) -{££*£» (3.33)

par définition des fonctions de Jost.
La solution physique rp\+ï devant satisfaire aux mêmes conditions de régularité à

l'origine que (f>t, elle lui est proportionnelle. La matrice S, étant définie par

W\ + )(k, r) ~ C (e-Hkr-«lnZkr) __ y ±y g^ gi (k r- alni k r)^
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et il suit de (3.33) que:

S,(k) (- 1)< £^L rr{!,+ ] + ta\ e^ (3.34)" I v I f(+){k] r(l+l-ia) v '

IV. Potentiel coulombien modifié

Nous considérons le problème où un potentiel V(r) est présent en plus du potentiel
coulombien. Nous faisons les hypothèses suivantes :

V(r) ~ r-2+£, e > 0
r ->0

V(r) 0 si r > f0
(portée finie).

Nous avons l'équation de Schrödinger radiale

W](k, r) + [k2 -£-- -{lrt-^] Wl(k, r) V(r) Wl(k, r). (4.1)

Sous nos hypothèses quant au potentiel, nous pouvons définir la solution régulière à

l'origine de (4.1), proportionnelle à la solution physique, par:

lim r1'1 uï(k, r) 1. (4.2)
»•-»•o

°n a'
uj(k,r)=A(k)6i(k,r) + B(k)<f>,(k,r) r y r0 (4.3)

avec

A(k) Wr>ro(uj(k, r), Uk, ')) -/ V(0 uj(k, C) Uk, 0 dÇ

o

r°
B(k) -Wr, ryj(k, r), 9,(k, r)) l+j 7(C) u\(k, C) 6,(k, r) dr (4.4)

o

En vertu du théorème de Poincaré nous savons que uj(k, r) est entière en k2. A(k) et

B(k) sont donc des fonctions entières en k2 en vertu des propriétés de 6t et <^(.

Nous définissons le « déphasage nucléaire » de façon habituelle :

u,(k, r) ~ C sin (k r - a ln 2 k r - l f- + al + of] (4.5)
r—>oo \ 2 1

l'indice supérieur c rappelant le fait que ce déphasage est sensible à la présence du

champ coulombien.

1) Développement de portée effective

De (3.16), (3.23), (3.26), (4.3) et (4.5) nous tirons l'importante relation:

Z°il< k2)lAA%= C*M k*' + 1 cotS % + k*l + 1 -|f]- A(a) (4.6)

que nous pouvons encore écrire, à l'aide de (3.14) :

ZcV> *") ToyffW k2l+1 [C°(a) cotg ò° + 2 a m] ¦ (4-7)
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C'est une fonction méromorphe en k2 que nous appelons fonction de portée effective

par analogie avec le cas non coulombien.
On a en effet :

1

lim Zc(l, k2) za, k2)
101—o [(2Z+1)!!]2

k2l +xCOtgdi (4.8

qui est la fonction habituelle de portée effective.
Développons-la, en admettant que l'origine ne soit pas un pôle, de façon à faire

apparaître longueur de diffusion et portée effective :

Z% k2)

Quelques calculs conduisent à:

*j(0. r0)

_L + z\Roki + 0m.

A\=(2l+l)r\l
(2i+i)A0lel(o, y

(2l+l)r0uj(0,r0)
r0u f (0, g [(2 7+1) r\ 6,(0, r0)]2 + <(0, rQ) [- (2 2+1)2 r20l + 1

6,(0, rQ) 6j(0, ,„)]

qui donne à la limite le résultat sans potentiel coulombien :

(2l+l)r0ifl(0,r0)A,= lim Aj= (21+1) rll
Iß!-*« rQUi(0,ro) + lu,(0,ro)

(4.9)

(4.10)

De façon à comparer l'expression de Rf avec celle donnée dans la littérature pour R,
nous introduisons une solution v,(k, r) du problème coulombien pur (V(r) 0) telle que

v,(k,r) u\(k,r) u\ (k, r) r > : (4.11)

Explicitement :

Vl(k, r) C,(oi) k1 [cotg òj F,(a, k r) + G,(<x, k r)] Zc(l, k2) fa(k, r) +dt{k, r) (4.12)

et quelques calculs donnent :

1
Zc(l, k2 + lim

IJ e-*0

\

X | W[6,(k, e), 6,(0, e)] + k2 I [v,(k, r) v,(0, r) -ùj(k, r) ùc,(0,r)] dr \ (4.13)

l i J

dans laquelle le terme W[Ot(k, e), 6,(0, e)] supprime la divergence de l'intégrale à la
limite e -> 0 présente lorsque l 4= 0. On a donc

Rc, 2 lim lim
|*|~*0 £->0

X
' ^ TF[e,(*, s), 6,(0, e)] +j [v,(k,r)v,(0, r) - ù,(k, r) ù,(0, r)] dr (4.14)
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et comme cas particulier:

R°0 2j {[v,(0, r)f - [<(0, r)f} dr (4.15)
o

analogue coulombien du résultat bien connu.

2) Matrice S

Par définition de la matrice S nous avons :

S,(k) e2i^+ôî). (4.16)

Notons dans ce paragraphe:

Sj(k) e^i ^i + l-la) ; Sr(k) e%i6F

On calcule à partir de (4.6)

c»,clh\ _ B(k)-g,(a.)A(k) /41„* >{k>-A3(k)-gU**rA(k) ^U>

gj(a) _ *,+i [*lWW -,-crw]. (4.18)

S"'c(k) possède comme singularités:

a) des pôles simples provenant de g,(a) en a — i (l + n), n 1, 2,

b) une coupure selon le demi axe réel k < 0 d'origine coulombienne,

c) des pôles provenant des zéros du dénominateur. On montre que les pôles de cette
catégorie pour lesquels Im(&) > 0 sont situés sur l'axe imaginaire dans le plan k.

Remarquons encore que Sn'c(k) possède des zéros en a i (l + n), n 1,2,
Donc S,(k) ne possède que les singularités b) et c) compte tenu de S,(k). Pour un
potentiel réel (4.4) donne :

A*(k*) A(k); B*(k*) B(k)

ce qui permet de vérifier sur (4.17) l'unitarité:

Sf-C*(Ä*) S?'c(k) 1 (4.19)
La limite

,S5oftW ww (4-20)

montre qu'on retrouve l'expression habituelle de S,(k) aux hautes énergies ou en

coupant l'interaction coulombienne.

3) Relation entre états liés et développement de portée effective

Notons kb, respectivement a6, le point du plan k, respectivement a, correspondant
à un état lié b. On a:

cotgòc,(kb) =i
Zc(l, kl) pp0r^ P a6 h(xb) + i C*(«6)] - -L- + | Rc, k\ + 0(k\) (4.21)
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Faisons les hypothèses suivantes :

a)

zc(i, K) + yr <
i.e. nous négligeons les termes de l'ordre de k\ dans le développement de portée effective.

b) kb est suffisamment proche de h% (état lié purement coulombien correspondant)

pour que nous puissions nous limiter au premier ordre dans leur différence.
En numérotant les états liés à l'aide de / et n > l + 1 il vient:

K,t l n

i (-1)1+1 ßil+i [J(j>*-n*)A<,. (4.22)"¦n,l *n,l= „21 [p (2 1+2W li
En passant aux énergies et en introduisant le déplacement

AE„, En, - E< (4.23)

on obtient

ou

¦ÌEn>i

En,l

1 4 nix- [(2/+1)!!]2 « fJ-x\P2

B
2

-
H2

ß ftZxZ2 eï

H
_B2(+l

(4.24)

(4.25)

est le rayon de Bohr de notre système.
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