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Fonction de portée effective et déplacement en énergie des états liés
en présence d’un potentiel coulombien modifié?)

par E. Lambert
Institut de Physique, Université de Neuchatel

(27 X1168)

Abstract. We first recall some properties of the confluent hypergeometric functions then from
these we build the usual Coulomb functions paying special attention to their analytical properties.
An irregular solution of the Coulomb problem, entire in 42, is then built for all /. From this solution
an effective range function, meromorphic in 42, is established when a finite range additional inter-
action is present. We simply connect the energy shifts of the bound states, produced by this
additional interaction, to the scattering length.

I. Introduction

Afin d’¢viter au lecteur de fréquents retours a la littérature, nous résumons au
début de ce travail quelques propriétés, analytiques pour la plupart, des fonctions
hypergéométriques confluentes. Pour I'essentiel cette partie est extraite de [1].

Ensuite nous passons au probleme de Coulomb en traitant simultanément le cas
répulsif et le cas attractif et nous restreignant a des / entiers. Nous définissons les
fonctions coulombiennes F, et G, [2] a4 partir de la solution réguliere ¢, et des solutions
de Jost f(*) de I'équation de Schrédinger radiale. Les propriétés analytiques en £ de
ces solutions sont données ainsi que quelques comportements limites. D’autre part,
une solution 6, irréguliére en 7 & I'origine et entiére en %% est construite explicitement
pour tout /.

Introduisant ensuite une interaction additionnelle de portée finie nous construisons
de fagon simple une fonction de portée effective Z¢(/, £2) méromorphe en %2 généralisant
ainsi la fonction de Bethe-Landau-Smorodinsky [3].

Dans la derniére partie de ce travail nous lions ce développement de portée
effective au déplacement en énergie des états liés dans un potentiel coulombien modifié
par une interaction de portée finie (atomes mésiques) généralisant a tout / le résultat
de TRUEMAN [4] par une expression sans bois mort [5].

II. Fonctions hypergéomeétriques confluentes

Ces fonctions sont les solutions de 1'équation hypergéométrique confluente:

d? a
=2 —ay=0 (2.1)

ou a et ¢ sont des parametres complexes.
C’est une équation linéaire du 2éme ordre possédant deux singularités régulieres
en 0 et oo. Cette équation provient de 'équation hypergéométrique:
2
z(l—z)%+[c—(a+b+1)z] ?{“ aby=10 . (2:2)

Z

1) Ce travail a bénéficié de I'aide financiére du Fonds National Suisse de la Recherche Scientifique.
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(2.2) posséde 3 singularités régulieresen 0,1 et co. C’est par confluence de ses singularités
en 1 et oo a l'infini que l'on obtient (2.1).

1) Solutions du premier type

Pour autantquec¢ Z={...,—2,—1,0,1, 2,...} on a deux solutions linéairement
indépendantes de (2.1) notées vy, et v, et données par:
v1=P(a,c;2), (2.3)
yo=2""D(a—c+1,2—c¢;2)
o & I a+n) I'0
a+n c) zn
@(Cl, c, 2') = né; Tm‘ Pk (25)
Si¢=...,—2,—1,0 yp n'est pas définie
si c=1 V1=,
g1 =29 % ... v, N'est pas définie.

On peut cependant introduire les solutions du premier type modifiées

~ WM A Vs
yl_T(CT et Yo = I"(z_c)

définies pour tout ¢ € C et coincidant pour ¢ € Z.
Mentionnons maintenant quelques propriétés de ces solutions:
a) On a I'importante relation de Kummer
D(a,c;2) =eD(c—a,c;, — 7). (2.6)

b) Considérée comme fonction de a ou de z la fonction @(a, c; 2) est entiére. En tant |
que fonction de ¢ elle est méromorphe avec des péles simplesen ¢ =0, — 1, — 2, ....
Il s’ensuit que v, est une fonction entiére en ses 3 variables.

¢) Les propriétés d’analyticité de y, découlent de celles de y,. En particulier on

voit que y, est une fonction multiforme en z et on définit sa branche principale en
coupant le plan z selon le demi-axe réel négatif. Alors:

Vo(z €M) = MU= 5 (2); —w <argz <@ meZ (2.7)
d) O les limites:
J i e e lim ®(a, c;2) — 1 (2.8)
3]0
. I(e) e 1) Z a—C
D(a, c; 2) e Tl ( ; ) + Ta) &4 (2.9)

Pour I'application de cette derniére relation il faut prendre — 7w << arg z < 7 (bien que
D(a, c; 2) soit entiére en z) et ¢ = sgn[Im(z)].

2) Solutions du 2¢ type

L’introduction de ce type de solutions est nécessaire afin d’obtenir une seconde
solution de (2.1) lorsque ¢ € Z. On les obtient par une combinaison linéaire judicieuse
de y, et v, et a l'aide de la relation de Kummer (2.6):

v = Pa, 65 2) = Nl A D(a, c; 2) + _1'11(1.:(;)12_ A<Pa—c+1,2—c¢;2) (2.10)

I'ia—c+1)
Va=e¥(c—a,c;,—2). (2.11)
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Ces deux nouvelles solutions sont toujours définies et linéairement indépendantes.
Elles sont en général multiformes et on coupe & nouveau le plan z selon le demi-axe

réel négatif pour définir leur branche principale. Lorsque ¢ =1, 2, ... on a:
c) — T Co — (—1)ntt
Pl nt 12 = lim ¥e,09 = pord Fa-w

< Jllnz D(a,n+1;2) + Z ?(g-;“yzyi-(ﬁii))
r=0

Xlyl@+r)—pl+7)—p{d+n+7)

zr
v !

T L B n=012,... (2.12)

expression dans laquelle la derniere somme doit étre ignorée si n = 0 et ol y(x) =
I (x)/I'(x) est la fonction di-gamma.

Lorsque ¢ = ..., — 2, — 1, 0 on utilisera (2.13) puis (2.12).

Voyons maintenant quelques propriétés de ces solutions:

c) A partir de (2.10) on voit que:
Ya,c,2)=21"¥Ya—c+1,2—c¢c;2). (2.13)

b) Pour autant que |z| > 0, ¥(q, ¢; z) est une fonction entiére en z et ¢. Considérée
comme fonction de z, ¥(a, c; 2) est en général multiforme et singuliére a I'origine.
On définit sa branche principale, alors analytique, en coupant le plan z selon le demi
axe réel < 0. On a:

vy p2imE ~2imn I'(c—1)
Wia,o; e ) =¥a,c;2) + (e £—1)

T@ 2~@a—c+1,2—c;z) (2.14)

; meZ, —xm<<argz<m
etsic=1,2,... d

(—1)»+1
I'n+1) I (a—n)
Y(a, c; z) est donc entiéreen zsia =0, — 1, — 2, ....

Ya,n+1;2"") =¥(a,n+1;2) + 29maP(a,n+1;2) (2.15)

¢) On a la relation

D(a, c; 2) = A1

iena . P(C) ine(a—c) .z B .
To—a ¢ Flacd+ pore eV (c—a,c;—2) (2.16)

I'(a)

e = sgn Im(z) .
d) On a les limites

Y a, c; 2) lzir::ooz—“ - -3123 <argz < 321 (2.17)
Ej(,f(;)} ) Re(c) > 1
ri-g
Vos) oo, O B 218
Fa—ord T Tw Z=e Re(c) =1,¢ *= 1
- ;“I:;) =l
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e) Les différents ensembles de solutions parmi lesquels on peut choisir 2 solutions
linéairement indépendantes de notre équation (2.1), selon les valeurs de a, ¢, ¢ — a,
sont donnés dans la figure 1.

?gg a¢Z | a2..1a-07,..| a¢Z a¢l a-12..§ a-12.. | a-0-1.. { a-01..
caéz | C€L | c¢l |cél |ca-12.)ca-04.) ca-12..} ca-0-. | ca=12.. Jca-0,..
7 . . ’ i B . ; - o o
5, . N - . ~ . 0 o~ o .
" B R B B B
-1 -1 31 -1 -1 30 .17 .71.
Figure 1

Groupements de solutions de 1’équation hypergéométrique confluente parmi lesquels on peut en
choisir deux linéairement indépandants.

I11. Fonctions coulombiennes

L’équation de Schridinger radiale en présence d'un champ coulombien est:

” l l+]
yilk,7) + [22 - b )y =0 (3.1)
ol 2uZ,Z
B = *f,?:z 2¢ (3.2)
Introduisant le paramétre de Coulomb
a=-1- (33)
et posant

w=21kv,

() = " o~y (k, 7)
(3.1) devient
O () + [(21+2) — o] gio) — [ +1—idpfw) =0
qui est I'équation hypergéométrique confluente avec
a=1l+1—1a et c=214+2.

1) Solution réguliére a I’ origine

En vertu du chapitre II, la seule solution de ce type pour chaque / est:

~

ikyr) = Rikr)T DU +1—da,214+2;20ky). (3.4)
En théorie de la diffusion on travaille en général avec la solution normée par
|lilm o,k r)r1=1, (3.5)
r|—0

Alors
qﬂi(k,r)=¢l“‘“1e”””'k’(15(l—1~1——1Joc,2l+2;2ik7). (3.6)
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Nous avons:
a) ¢, est une fonction entiére en » (cf. chap. II).
b) D’apres le théoréme de POINCARE [6], ¢, est une fonction entiere en A2

c) (2.6) nous donne:

b~ k1) = b, 7 37)
)
Tim gk, r) = EEE i 38)

7,: fonction de Bessel sphérique d’ordre ..

¢
Lo B Ly 2B p>0
0,7) = .
0 7) = dm b k)= (21+2) (39)

g (B171® Taa (2181 7)) B <0

I,,,,: fonction de Bessel modifiée d’ordre 2/ + 1,
Jo,.1: fonction de Bessel d’ordre 27+ 1.

f) D’apres (2.9) on a le comportement asymptotique:

¢,(k,r)lr;stin(kr——ocankr—l +a) Re(l)>0  (3.10)

avec
piay _ L E+1+i0) (3.11)
I'i+1—ia)
et
2 ean2[D (4 14ia) T (I+1—ia)]%
Cile) = AT E (3.12)
C,(a) est appelé coefficient de Coulomb d’ordre /. On a
2
Cole) = ;2,,3:%1 (3.13)
(o)
Cile) = 5o 75y Col@) (3.14)
avec
2 o 221
o) = mpTeEET H (s2+ o2). (3.15)

On trouve l'expression asymptotique de ¢,(, ) pour Re(k) < O en utilisant (3.10)
et (3.7). (3.10) nous conduit & introduire la fonction de Coulomb réguliere habituelle,
ayant un comportement asymptotique plus simple:

Eya, k7) = C,() ki +1ghy(k, 7) = Cy() e ¥ (k)11 DU+ 1 — i, 21+ 2; 20 k7)
~ sin(kw—o&ankr—lg——ko‘l) Re(k) > 0. (3.16)

| #|—00

2) Solutions trréguliéres a I'ovigine

Par analogie avec le traitement habituel de la diffusion nous voulons définir ici
deux solutions de (3.1) ayant, dans un certain domaine du plan % 7, un comportement
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asymptotique analogue & e***”. Nous définissons, pour des raisons d’analycité en %
qui apparaitront par la suite:

FE R, 7) = ™2 ¥R (T 2 k)W, I+ 1 £da, 2]+ 2, F 20ikr)  (3.17)

ou ¥, est la branche de la fonction ¥ (2.10) définie en couplant le plan z selon le demi
axe Imaginaire positif (resp. négatif pour ¥_). D’apres (2.17) on a les comportements
asymptotiques désirés:

fE R, ) ~ ilkr-aln2kn) o 4 arghr < 2. (3.18)

i |k#|—o00
On a les propriétés:
a) Pour ke R, f{*)(k, ») sont analytiques dans le plan » coupé selon le demi-axe
réel < 0.

b) Pour 7 € R, f{+)(, 7) sont analytiques dans le plan % coupé selon le demi-axe
réel < 0.

c) ]t(i)(k €T §) = %" fﬁ)(k, 7) (3.19)
) l11|me (£)(k, ) = (£ 0) ky B (R 7) (3.20)

h{=): fonctions de Hankel sphériques (Messiah).

e) On a I'expression pour notre solution réguliére (3.6) & partir de (2.16):

ex(x/2) I (2 1+2) — i)l ) _ it )
Bulk,7) = (2 B)IH1 [Fl+1—za k) Ii+1+iq) ik, 7)]' (3.21)

On introduit la fonction de Coulomb irréguliere en formant:

[ (+1+i0) I'(1+1—4 )12
2

+) e
% [F l+1—zcz (k’T)Jr_ IF'il+1+ia) fl (k,?’)]

_ 22Uk y)l+14 (= 1)1 [F(i-l—l—’.i(x) e‘“”‘[{_ (l+1—iot,2l—|—2,21k7’)

Gl(of., k 7) =

C,) T@i+2)
C+1tia) i, . L
- L Lia) by, (l+l—|—zo¢,2l+2,—2¢kr)] (3.22)

ayant le comportement asymptotique

Gilo, k7) 14,02

| — o0

cos(kr—aln2kr—l%+al) —m <argkr <m. (3.23)

Nous construisons maintenant une solution irréguliére de (3.1) entiére en 42 4 1'aide de
(3.22). Cette construction n’étant en aucun cas unique, nous nous bornerons a soustraire
de (3.22) «le moins possible» de facon a obtenir les propriétés analytiques désirées.

Pour des raisons de simplicité nous partons plutét de la solution k! C(x) G,(e, & #)
qui possede comme singularité en £: une coupure le long de I’axe réel < 0; des pdles en
x=f2k=4+i(l+1+n),n=0,1,2,.... Le premier type de singularité s provient
des fonctions ¥, (2.15) nous permet de 1’éliminer en considérant les fonctions:

ar(f,?) =YL (l+1+1a,21+2;F 21k
Ing

+ I'2l+2) ' (-1 4+ia)

Ol+14+r1a,2l+2 F21k7)
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ou

a= L (3.24)

Les singularités de second type, provenant des fonctions [, sont aussi éliminées
simplement en considérant (2.12). On voit en effet que les fonctions
bi(k,7) =R2FIT (1 + 1 4 7o) ay(k, 7)

R2IHL T (141 4 4 o) (- 4 o)

TeirayTicitig QU+1kio2i+2F 2ik7)

sont entiéres en £.
En reportant ces résultats dans (3.22) on obtient la solution de (3.1)

(o) Alw)
0,(k,7) =k C)a) G,(ox, B 7) — z ll—l—l) c,@ k' F(, k7) (3.25)
entiére en % et ou
h(a) = ; [p(i o) + p(— )] — Ina (3.26)
Nous avons les propriétés:
3 B,(— &, 7) — 6,(k, 7) (3.27)
donc 6, est une fonction entiere de £2.
b) .
lim 6,(%, 7) = k rn,(k7) (3.28)
la|—0 (21+1)!

n,: fonction de Neumann sphérique d’ordre /.

c)
6,0, 7) = Tim 0,(k, 7) — F(Zﬂll+ 2) 208 ' Ky [2(8 )] g >0 5,20
r) = lim 7 !
= ;I F21+2 Iﬁ‘ 2l+1[2(‘ﬂ17)1}2] ﬁ<0

K,,,,: fonction de Neumann modifiée d’ordre 27+ 1,
Y,,.1: fonction de Neumann d’ordre 27 + 1.

3) Wronskiens, fonctions de Jost, matrice S

A partir de
(f( (&, 7), f“(k r)) =21k (3.30)
on a successivement
W(Gl(oc, k), Fo, k r)) = B (3.31)
W(B,(k, 7), (%, 7)) =1 (3.32)

L (21+42) exn/2
fgi)(k) b W(fgi)(k: ")’ QSJ(k’ iV)) = (F2ik)IT(I+1 +i0) (3-33)

par définition des fonctions de Jost.
La solution physique 9{*) devant satisfaire aux mémes conditions de régularité a
l'origine que ¢,, elle lui est proportionnelle. La matrice S, étant définie par

'lP; (k 1,) NC( ilkr—aln2kr) ( 1)1 Sl(k) ei(krw-oclnzkr))

43
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et 1l suit de (3.33) que:

(3.34)

A7) Ta+1+i0) _ a4
AN e TOri-iq O

IV. Potentiel coulombien modifié
Nous considérons le probléme ol un potentiel V(#) est présent en plus du potentiel
coulombien. Nous faisons les hypotheses suivantes:

V(r) ~ ¥ 3 &£>0

r—>0
Vi) =0 st7>#
(portée finie).
Nous avons I'équation de Schrédinger radiale

gt + [pr— & — LD g0 = V) ). (4.1)

¥ y?

Sous nos hypothéses quant au potentiel, nous pouvons définir la solution réguliére a
'origine de (4.1), proportionnelle a la solution physique, par:

lirnor_’_1 ui(k,v) = 1. (4.2)
One wi(k, 1) = AG) Ok, 7) + B gk ) 7 =7, (4.3)
avec
AR) = W, ., (ui(h, 7), (b, 7)) = fV ul(k, O) byl 0) d
BUE) = — W, o (iR, 7), 0,(6,1)) = 1+ [ VO ik, D) Ok, 0V . (44)

0

En vertu du théoréme de Poincaré nous savons que (%, ) est entiere en k2. A(R) et
B(k) sont donc des fonctions entiéres en k2 en vertu des propriétés de 0, et ¢,.
Nous définissons le «déphasage nucléaire» de fagon habituelle:

uf(k,r)rwCsin(kréaIHZkr—l%-i—al%—éf) (4.5)

— 00

I'indice supérieur ¢ rappelant le fait que ce déphasage est sensible a la présence du
champ coulombien.

1) Développement de portée effective
De (3.16), (3.23), (3.26), (4.3) et (4.5) nous tirons 'importante relation:

a B(k c
Ze(l, k) £ ——Agk; — CHa) K21+7 cotg & + k204t TI pg) (4.6)

que nous pouvons encore écrire, a 1'aide de (3.14):
Ze(l, b2 = P g1t (020 oot 67 4+ 2 o B(w)] . (4.7)

2 (214+1)
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C’est une fonction méromorphe en 2% que nous appelons fonction de portée effective
par analogie avec le cas non coulombien.

On a en effet:

1 :
; c(] h2) — 9y . T p2i+1
HHIEOZU’IE) = Z{l; B == PAESVENiE k cotg 9, (4.8)

qui est la fonction habituelle de portée effective.

Développons-la, en admettant que 1'origine ne soit pas un pdle, de fagon a faire
apparaitre longueur de diffusion et portée effective:

1
Aj

2o k) = — = + & RO R+ O(RY).

Quelques calculs conduisent a:

0,
Af =21+ 1) 72 #1010
(21+1) 75" 6,(0, #y)
B (2 1+1) 7, uf(0, 7,) } 4.9)
7ot 50, 75) [(214+1) 7] 0,00, 7)) 2+ 5 (0, 7g) [~ (2 1+1)2 72141 0,0, 7) 6,(0, 7,)]

qui donne a la limite le résultat sans potentiel coulombien:

(4.10)

21+1 0,
AlzlimAf=(21+1)ygl 7y — ( i ) 7o 1,(0, 7) }
|B]—0 7o 1)(0, 7o) + L 14;(0, 7y)

De fagon a comparer 'expression de R¢ avec celle donnée dans la littérature pour R,
nous introduisons une solution v,(k, 7) du probléme coulombien pur (V () = 0) telle que

v, (ky) = ut(ky) = ML)y > (4.11)
Explicitement :
vk, ) = Cy(&) & [cotg & Fy(a, k7) + G, k7)] = Z°(1, &) ¢,(k, 7) +0,(k, 7) (4.12)

et quelques calculs donnent:

Z(L, B = — - + lim
' 1 e—0
[ o . . l
X 1 Wik, ¢), 6,00, €)] + &2 / [vy(k, ) 9,(0, 7) —u; (&, 7) u;(0,7)] drj} (4.13)
L :

dans laquelle le terme W[0,(%, ¢), 6,(0, )] supprime la divergence de l'intégrale a la
limite ¢ = 0 présente lorsque / + 0. On a donc

RS =2 lim lim
|E|—0 e—0
- o o
X i —z WI0,(%, ¢), 6,(0, €)] +/ [v,(k, 7)v;(0,7) — u;(k, 7) u; (0, 7)] dr (4.14)
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et comme cas particulier:
0]
RE=2 f ([9,(0, )? — [36(0, 7)J%} dr (4.15)
0

analogue coulombien du résultat bien connu.

2) Matrice S

Par définition de la matrice S nous avons:

g2i(al+6f) -

Si(k) = (4.16)
Notons dans ce paragraphe:
ery _ 2ig, L (U+1410) | cpeipy 2087
Sk —e l“——l’(l+1—ia) s Sy =&

On calcule a partir de (4.6)

Sn’c B(k) — gl(ot) A (k) &
I (k) — TR(A) B(k)—_g}"(_:*)—_ﬁ (k) (4.1/)
ol

gilo) = pei [RELEE i o). (4.18)

S7¢(k) possede comme singularités:
a) des pdles simples provenant de g,(a) enoo = —¢ (! +#n),n=1,2, ...,
b) une coupure selon le demi axe réel £ < 0 d’origine coulombienne,

c) des poles provenant des zéros du dénominateur. On montre que les poles de cette
catégorie pour lesquels Im(£) > 0 sont situés sur I'axe imaginaire dans le plan &.

Remarquons encore que S™¢(k) posséde des zérosena =17 (I +n), n=1,2,....
Donc S (k) ne posséde que les singularités b) et c¢) compte tenu de Sj(k). Pour un
potentiel réel (4.4) donne:

A*(k*) = A(k);  B*(k*) — B(k)

ce qui permet de vérifier sur (4.17) l'unitarité:

Sme* (k%) SMe(k) = 1. (4.19)
La limite
i — 7 R2I+1
S @) = i nTE Gy

montre qu’on retrouve l’expression habituelle de S,(k) aux hautes énergies ou en
coupant l'interaction coulombienne,

3) Relation entre états liés et développement de portée effective
Notons k,, respectivement «,, le point du plan %, respectivement «, correspondant
a un état lié b. On a:
cotg 6;(k,) = ¢
1

Aj

20+1
20, ) = B B (20, h(ay) + i Calog)] = —

1 2 4
2o, 21+ 1) + 5 Rk +0(k)  (4.21)
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Faisons les hypothéses suivantes:

a) 1

.

=

<

iZC(Z, k) +

‘1
Aj

i.e. nous négligeons les termes de l’ordre de &2 dans le développement de portée effective.

b) k, est suffisamment proche de £¢ (état lié purement coulombien correspondant)
pour que nous puissions nous limiter au premier ordre dans leur différence.
En numérotant les états liés 4 'aide de et » == [ + 1 il vient:

o, =1in
| !
e z'(_l)l+1 ﬁ2l+1 9 2
Wy = %t S T IR Q(p —n®) A . (4.22)
En passant aux énergies et en introduisant le déplacement
AE%,I = En,l - ;,l (423)
on obtient
AEn; 1 4 1401 1\ 4§ ‘
B, = tenniE w1 (? - u) BT (+.24)
ou
p=2__" _ (4.25)

est le rayon de Bohr de notre systéme.
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