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Coexistence of Ferromagnetism and Superconductivity?

by R. Avenhaus, 0. Fischer, B. Giovannini and M. Peter
Institut de Physique expérimentale, Université de Genève, Genève, Suisse

(9. XII. 68)

A bstract. Some aspects of the problem of coexistence of superconductivity and ferromagnetism
are analyzed, in particular the suggestion of Jaccarino and Peter [2] that it might be possible to
compensate an exchange field by an external magnetic field, such making superconductivity
possible in a range of very high magnetic fields.

The Meissner effect will however in principle impede very high magnetic fields from penetrating
the material. We examine in this paper if there are interactions, acting on the orbits of the

electrons, that could play the role of effective magnetic fields, and therefore «compensate» the
Meissner effect. It is shown that, within our assumptions, this is not possible.

Introduction

Clogston [1] has shown that in the limit of complete field penetration in a

superconductor, there is an upper limit imposed on that field due to its effect on the
spins of the electrons. Jaccarino and Peter [2] pointed out that magnetic ions, such
as in the rare earths, impress upon the spins of the conduction electrons an effective
(exchange) field, which in some cases point in the opposite direction as the magnetization.

They suggested that this effective field could be cancelled by an external field,
such making superconductivity possible in a certain interval of magnetic field. The

upper bound of this interval would then be given by the sum of the effective field plus
the field given by the Clogston criterion.

The purpose of this paper is to investigate more closely the possibility of this effect
in bulk superconductors of type I or of type II below Hc x, where the effect of a magnetic
field on the orbits of the electrons is of crucial importance.

In part I, we analyze the problems in general terms.
In part II, we analyze microscopically the spatial distribution of currents and

fields in a hypothetical superconducting ferromagnet.

Part I
The formulation of the' problem is simple : if an effective field, acting on the spins

of the conduction electrons, must be compensated by an external field, then this
external field must penetrate the superconductor. In a bulk superconductor of type I,
or type II below HcX, this is in principle not possible, because the superconductor
expels the magnetic field (Meissner effect). In a type II superconductor above HcX,
the field in the material is at most Hci. Our purpose is to investigate whether the
magnetic field acting on the orbits of the conduction electrons can be compensated in
some way by an effective internal field. Note that the equivalence of superconductivity
and Meissner effect, which has been proven [3], concerns the response of a conduction



650 R. Avenhaus, 0. Fischer, B. Giovannini and M. Peter H. P. A.

electron system to an external electromagnetic field. Here we have in addition the

response of the electron system to a ferromagnetic lattice.
Let us first recall briefly how the Meissner effect comes about. A microscopic

treatment [4] shows that to first order in the vector potential A, the total current in
an electron gas is given by two contributions:

a) a paramagnetic current
t

Jp(r, t) - i'cfd3r' fdt' «f>0\ [f(r', t'),f(r, t)] |ç50> A(r', f) (1)

— oo

where jp(r t) is the usual paramagnetic current operator and |^0> is the ground state
of the system.

b) a diamagnetic current

Jd(r) -°*-Qs(AA(r) (2)

wheie Qs(r) is the conduction electron density.
In the normal phase, and for q 0, the two currents exactly cancel, whereas in the

superconducting phase Jp(q) disappears for small q so that the total slowly varying
current is given by the diamagnetic current (2) which produces a field which exactly
cancels the external field in the interior of the specimen.

Our system consists of magnetic ions, where the localized ,^-electrons' are responsible

for the magnetic properties of the ferromagnet, and a gas of conduction electrons.
In this system there will be a certain spatial distribution of magnetic fields, given by
the sum of the external field He(r), the internal dipole-field Hid(r) due to the magnetic
ions, and the magnetic field His(r) due to whatever currents are present in the
conduction-electron system. In addition a part of the exchange interaction between
the ^-electrons and the conduction electrons will depend on the momentum p of the
conduction electrons when the total angular momentum of the ^-electrons is not zero.

If we suppose that this interaction can be written as -p Aeff and that the system we
study is superconducting with the usual singlet pairing, then the slowly varying part
of the current will be given by :

J<(r) y- Q,(r) {Ae(r) + Aid(r) + Au(r) + Aeff(r)}. (3)

Using the Maxwell equation :

J,{r) ~ curl Hu(r) (4)

we get, performing a standard calculation [5] and putting Heff— cwAAefj

- *Bt,(r) ±?£ Qs(r) {He(r) + Hu(r) + Hid(r) + Heff(r)}

+ -yy- VQs(r) {Ae(r) + Ais(r) + Au(r) + Aeff(r)} (5)

Supposing that qs is constant (the more general case Vqs 4= 0 will be discussed later)
we have

2

- V2His(r) y-;2 o, {He(r) + His(r) + Hid(r) + HeJf(r)}. (6)
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In this the total magnetic field is given by

H(r) He(r) + His(r) + Hid(r)

It is easy to see on a simple geometry that H(r) inside the superconductor will be
reduced to — HAr) :efA ' H(r) ~ - Heff(r) (7)

in the interior.
So if Hefj(r) has approximately the value of the spin-polarisationfield a compensation
of the exchange field is possible.

Equation (5) is valid for the slowly varying part of the fields, and this is indeed the
part which we want to calculate. Since the right hand side of equation (5) is curl /,,
we have to calculate the Fourier transform of Jt(r) for small wave vectors q. This will
be done in the next section.

Part II
We consider first a regular ferromagnet. Our system consists of a regular array of

magnetic ions, with the magnetic moment of each ion pointing in the + ^-direction,
and the gas of conducting-electrons. In the interaction energy between the localized
'^-electrons' and the conduction electrons, we take the expectation value over the
rf-electrons, thus neglecting dynamic effects.

The one particle Hamiltonian for the conduction electrons is written :

* À (P - c KM + *«(')))' + J l (p - y (Ae(r) + Aid(r))) Aeff

+ ZV(r- Rt) +ZJ(r- Rj) (a ¦ S) + gp a (He(r) + Hid(r)). (8)

In the two first terms, Ae(r) is the vector potential of the external field and Aid(r) is
the vector potential of the internal dipolefield, due to the magnetic ions, and is

definedby;
4 M V f ,3 t* (r>-RlX(r-rlAid(r) Zj d%r \r±7f (9)

/A. (r' — Rj) is the spin-density of the localized ^-electrons. The sum runs over all
lattice points R{.

Aeff(r) represents the orbital part of the exchange interaction. The exchange
interaction can be written in the form :

Xex=Yj(r- RA a ¦ S, + £D (r - Rj) lrLi+...
i i

where we disregard higher terms. The first term corresponds to the fourth term in (8)

a is the spin of the conduction electron and 5; is the spin of the ion at the t'th lattice
site. In the absence of magnetic fields the second term is

P ¦ Aeff
mc ejJ

where m
Aeff- -^ED (' - Ri) (Li X (r - R,)) ¦ (10)

i
Lj is the orbital momentum of the i'th ion and l{ is the orbital momentum of the
conduction electron with respect to the i'th lattice point. The third term in (8) is the
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ordinary periodic potential and the last term is the Zeeman energy of the conduction
electron.

The Hamiltonian (8) can be separated in two parts : a part which has the periodicity
of the lattice, Xper, and the rest, Xap- As we will see, the whole problem depends on
Xa p. This aperiodic part contains :

a) the orbital interaction with the external field.

b) surface terms.

Surface terms have an important influence on the properties of the whole system
only if they have a long range. This is the case for the dipole field Aid: as Kittel [6]
has shown in a simple geometry, the non periodic part of the dipole field is just equal
to the uniform magnetization.

™t(Aid)ap 4nM.
It is clear however that Aeff has a short range compared to Aid: the range of Aeff is

approximately equal to the range of the wave functions of the ^-electrons, which are
well localized.

From equation (7) one expects therefore that the interaction p ¦ Aeff cannot
'compensate' the Meissner effect.

To prove this, we make our argument self-consistent: we suppose that the total
magnetic field, including the induced field arising from the super currents, is small in
most of the material. We build therefore a BCS wave function with the eigenfunctions
°iXper Xpercpks ek<pks (11)

and treat then Xap as a perturbation. The main point will then show that p ¦ Aeff does

not induce any slowly varying currents in the system. In equation (11) we have
restricted ourselves to one conduction band, and dropped the exchange field acting
on the spins since this is not essential to the present argument.

We now define the current operator by the relation [7]

ÒX - yJj(r) ÔAe(r) d3r (12)

Performing the functional derivation we find as usual a paramagnetic and a

diamagnetic current: v \ • / \ • / \ /i?\S J (A =Jp(r) Ajd(r) (13)

Using the formalism of second quantization and writing cks (cks) for the creation
(annihilation) operator for the state cpks we get:

•>» - T« E&Ur) VVkt,(f) - (V<p*Jr))<pkJr)] c+s ys (14)
k, k.,

S

M) - A± £<ptiS(r) cpkiS(r) (Ae(r) + Aid(r) + Aeff(r)) ck\s ys (15)
A', k.j,

s

We now split the current operator in two parts :

j(r) =jper(r) +f(r) (16)
where ^jpt,(r) =Jp(r) +f/r(r) fP(r) =fdP(r) (17)
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i\"(r) is defined as in (15) but with the periodic part of the total vector potential,
Af" Affi", similarly ja/(r) is defined as the rest, with the aperiodic parts of the vector
potentials, Ae + A^ + Aaeff.

In the same way the BCS wave function will have a periodic and a non periodic
part

\^y=\fy+\^py (18)
where

l^> 17(% + ^c*+tc^i)l°> (19)

and j 0 > is the vacuum

\fp>= 77 exp [- \fxap(t') dt'] \fy. (20)

Correspondingly, the expectation value of the current can be written :

j=<<f>\j(r)\<f>y Jp" + rp (21)
where

Jper <(f>p\fer \cf>py (22)

We first discuss Jper. It is easy to see that it has the periodicity of the lattice, and we
can therefore expand it as in equation (1)

JP"(r) 2Jjper(G) eiGr (23)
G

where G are the reciprocal lattice vectors.
As discussed in part I, we are only interested in the small q__ components of the

current, and this means here the G 0 component. This term is explicitely discussed
in Appendix I, and it is there shown that it is zero:

<f\jpe,(G 0)\<f>py 0. (24)

To discuss Jap, we restrict ourselves to linear terms in the aperiodic part, and write:
o

J"pC£ -y f«f>p\[Xap(t'),jp"(r)] \cj>py+ <f\fp(r) \<f>py (25)

—oo

The first term in (25) contains among other terms the paramagnetic current. This
current goes to zero for q -> 0. In Appendix II we discuss all these terms, and we show

explicitely that all terms go to zero for q -> 0 in the same way as the paramagnetic
current does.

So the only current which survives in the long wavelength-limit is the second term
in (25). This can be written:

Jap(r) ~ Q(r) {Ae(r) + Af/'(r) + A"pf'(r)} (26)

If we add e2jm c Q(r) Ais(r), to make the magnetic field selfconsistent, to the right
hand side of (26) we get the equation (3).

Now, from Part I we know that if our system is superconducting, the slowly
varying part of the total magnetic field in the interior of the specimen will be reduced
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to — Aaefj. But because of the short range of the exchange interaction Aae/j is different
from zero only on the surface of the specimen, and therefore the total magnetic field
is zero in the interior of the specimen.

One could argue that the other momentum-dependent terms in the exchange
interaction are of the same order as the one we have used, and might give different
results. However the main point is that our result comes from the short range nature
of the exchange interaction, and any short range interaction will lead to the same
conclusion. The same argument applies also to the ordinary spin-orbit interaction,
which we also neglected in (8).

In discussing equations (3) and (26) we supposed that Vo(r) 0. In real metals
this is not the case and normally q(r) varies in such a way that the mean field seen by
the spin of the electron is larger than the magnetization. One may think that this also

produces an effect on the orbits of the electrons, that means that high-g-components
of Q(r) and A(r) together produce low-g-components of the current. This problem is

analyzed in Appendix III, using equation (5) for Vq 4= 0. It turns out that the slowly
varying contribution that one finds, has exactly the range of the Meissner current, so

that in the interior it has no effect. Note that in discussing equation (22) and the first
part of equation (25) we did not suppose Vq 0.

We thus come to the conclusion that heffis essentially zero and that in ferromagnetic
superconductors of type I or type II below HcX, the mean magnetic field, inclusive
the magnetization due to the dipoles, will be expelled from the interior of the specimen.

At this point it should be emphasized that we have constructed one solution, in
analogy with the BCS solution for the nonmagnetic case, but we have not shown that
this is the ground state of the system. This depends on the effective electron-phonon
interaction. One could for instance suppose that the magnetic field penetrates the
superconductor, and then construct a BCS-like-wavefunction with Landau-functions.
One would probably find a state which would not show a Meissner-effect. Such a state
has not been observed, and the reason is probably that the effective electron-electron
interaction between Landau-states ist very small, due to their small overlap [8]. The

o 1.0

0.5

0.5

1.0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

External magnetic field H in kGauss

Figure 1

Magnetization versus field for Ce0 91sGd0082Ru2 at 1.3 °K as measured by Bozorth et al. Note that
the magnetization is in the same units as the external field.
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same argument applies to the ferromagnetic superconductor, and therefore we don't
expect such a state to be the ground state of our system.

From the anomalous Hall-effect in ferromagnetics one knows that in normal
metals the conduction electrons can 'see' internal fields which are much higher than
the magnetization. This seems to be in contradiction with our result. However the
anomalous Hall effect is connected in an essential way to scattering processes [9] which
produces also the electrical resistance. These scattering processes will be reduced in a

superconductor in a similar scale as the resistance and cannot therefore give an
effective field which could be of interest in our case.

Practically our results mean the following. In a type I superconductor, or a

type II below Hc2, it is only possible to make superconductivity and ferromagnetism
compatible if the exchange field acting on the spins is negligible. Superconductivity
and ferromagnetism will be compatible in an external field that compensates the
uniform magnetization. In a type II superconductor above HcX, the exchange field
acting on the spins may be atmost of the order of Hc 2.

Some years ago, Bozorth et al. [10] published magnetization curves for alloys
of the form Ce^Gd^Rua (Fig- 1) ; these alloys, as shown by Matthias et al. [11] are
both superconducting and ferromagnetic, but the question arises whether the specimen
consists of an homogeneous phase, or if superconductivity and ferromagnetism exist
in different domains.

1.0

0.5

0

1-0.5

.9-1.0

--

--

N
'¦? 1-0

c
o>

| 0.5

0

-0.5

-1.0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

External magnetic field H

Figure 2

a) Typical ferromagnetic hysteresis curve, b) Typical superconducting hysteresis curve.
In both curves the magnetization and the external field are in the same (arbitrary) units.
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In Figure 3 we show the magnetization curve for a ferromagnetic superconductor,
starting from a hypothetical substance which, if only ferromagnetic (superconducting),
would have the magnetization curve shown in Figure 2a (Fig. 2b). The resulting
magnetization curve depends on the choice of the curves 2a and 2b, but if the
ferromagnetic and superconducting magnetizations are of the same order of magnitude,
some important features are independent of the details of curves 2a and 2b: in
particular the characteristic peak is always well on the left of the origin, and it is
followed by a sharp decrease of M(H). The perfect diamagnetic behaviour of the
initial curve is also independent of the details of 2a and 2b.

10

0.5

-0.5

-1.0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

External magnetic field H

Figure 3

Magnetization versus field for a hypothetical ferromagnetic superconductor, as calculated from
the two curves in Figure 2 using the selfconsistent equations

hF H + 4nMs(hs)
hs H + 4nMF(hF)

lip(hs) is the magnetic field acting on the magnetic ions (superconducting electrons) and MF(MS)
is the magnetization of the ferromagnetic (superconducting) system as given in Figure 2a (2b).
H is the external field. At the points a, a' the magnetization becomes unstable, and it changes
abruptly to the magnetization at b, b''. The calculated curves M(H) between these points are the

dashed curves.
The units are the same as in Figure 2. Demagnetization effects were disregarded.

\

\
\

\ ¦

1 it* b'

ib, ' \r
\

¦ -
via'

In Figure 4 we draw the curve which is just the sum of 2a and 2b. This corresponds
roughly to the case where two phases are present. Comparison of these two curves
with the experimental curve of Bozorth et al. points clearly towards the second

possibility: his samples consisted probably of ferromagnetic and superconducting
domains. This view is supported by recent measurements by Wilhelm and Hillenbrand

[12] on the same alloys, who checked carefully the homogeneity of the
specimens by metallographic methods. They did not find superconductivity in alloys
which had already become ferromagnetic.

To conclude this section, we discuss briefly the case of a dilute ferromagnetic
alloy, when the magnetic ions are distributed at random.
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The potential Aid(r) is written as above

Aid(r) £ dV l*(r'-Rj) X (r-r)
\r— r' j3

where the sum goes over the magnetic sites. As usual one treats this system by
averaging over the impurity-sites i.e. by replacing the sum by an integral. Physically
this means that the q 4= 0 components of the pi(r)-distribution average out because of
the random distribution. It is clear then that this system is equivalent to a regular
ferromagnet with a moment per ion reduced proportionally to the concentration.

1.0

5
0.5

c
o
ra o
N

4>

™-0 5

ro
S

-1.0

--

--

-.1.5 1.5-1.0 -0.5 0 0.5 1.0

External magnetic field H

Figure 4

Magnetization versus field obtained by adding the two curves in Figure 2 (units as in Figure 2).
This corresponds approximately to the situation where one has cylindric superconducting and

ferromagnetic domains which are mainly parallel to the external field.

One can apply moie sophisticated averaging procedures, which take into account
random distribution of clusters of various sizes. We believe however that these will not
give larger contributions to the low q components than would the magnetization of a
similar system in a regular dense ferromagnet. In other words, for low ^-components :

e

mcJ(q)<ir-Q«\Aatp(q)

where Aj[jj(q) is the Fourier transformed of the aperiodic part of the internal field in a
dense regular ferromagnet. This is because each of the clusters produces low q-
components corresponding at most to their magnetization.

Conclusion

We have examined the possibility of a bulk material being both superconducting
and ferromagnetic if placed in a suitable external magnetic field. Our analysis showed
that there is no possibility of 'compensating' the Meissner effect; in other words

hejj 0 (see equation (5)) in most of the material. This result is due essentially to the
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short range nature of all s-d interactions except the dipole field. Practically this
means that one cannot compensate an exchange field acting on the spins in a
superconductor of type I or type II below HcX. In a superconductor of type II above HcX,
or in thin films, the system can become ferromagnetic and superconductor if the
exchange field is smaller than the upper critical field.
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Appendix I
Here we show that Ji>er (q 0) 0 :

JP" (q=0)= ($p" | jp" (q 0) | (f>per y fjp"(r) d3r (1.1)

Jp"(r) ~ Z [<P*k(r) K Vh(r) - (Vr cp*(r)) <pk(r)] v\

+ -^ ZcftXr) cpk(r) (A*? + A%r) v\ (1.2)

Using now that apart from a phase factor

cpk(r) cp_k(- r)
and furthermore

2 2
Vk V-k >

AÎT(') A A%'(r) - (Afd"(- r) + A%>(- r))
one finds :

J(r+ RN) J(r) -iA. Z (- <p*_h(- r) (V<pk) (- r) + (Vrcp*_k) (- r) cp_k(- v\

- - -A- Z \cp_h(- r) \2 (Ap?(- r) + A%*(- r)) v\h

- J(- r) - J (- r + RN) (1.3)

Therefore the current is antisymmetric with respect to every lattice points, so that
the integral in (LI) is zero.

Appendix II
Here we discuss the first part of the aperiodic current, defined in equation (26).

It is given by t

J"P(r, t) - y [df <<ßper\ [Xap(t')jper(r, f)] |^"> (ILI)
— OO

The aperiodic Part of the hamiltonian can be written

W) - y fdr' (jp(/ f) - At. aper(r' t>jj AaP{r>)



Vol. 42, 1969 Coexistence of Ferromagnetism and Superconductivity 659

where j(r) is the paramagnetic current operator, aper(r', t') is defined by aper(r' t')
f+(r' f) (Af°r(r') + Ape/y(r')) rp(r', f) (rp+, y are fieldoperators), and Aap(r) A,(r) +
Aaâ(r) + Kït(r) -

Following Schrieffer [4] we then write the aperiodic current as :

J"P(r, t) ~ fj dt' d3r' <[<f>Per\ \jp(r', t') - -£L aPer(r', t') ,jPer(r, t)] \^'ry A"P(r' t')
— OO

ffdt' d3r' K(r, t r' t') A"P(r' t') (11.2)

where the Kernel K(r, t r' t') is given by

K(r,tr' t') l- <l<f>Per\ \jp(r' f) - — a^(r't'), jPer(r, t)] \<f>Per} 6 (t - f)

Fourier transforming, and using the fact that the Kernel is periodic, we get :

J"p(q, <7o) EKto- ~q-G,q0)A(q+ G, q0) (11.3)
G

where G is a vector of the reciprocal lattice.
As we are interested in the zero frequency response we put q0 0. We then find :

o

K(q,-q-G,0) ±-[dT<p»\
— OO

X [jp{-q-G,x)-~ aP*r(-q-G,T),jP-(q,0)] |^>.
We now write our operators in 2. Quantization.

hii> n EJKkM) cm,(0 %sSn
kik2s1

aPeriqA')=kEak,kSq)4,s,(n%Sl(n,

ipe'(q,t) EJKkM)<s^-
A3ft4s2

If one expresses the cks operators by the yks operators, defined by the Valatin-
Bogoliubov-transformations

ct\ uk 7k\ + vk Y~k\ ct\ uk VÌ\ " vk Y-k\
ck\ uk Yk\ A vh ytH y uk ykl - vk y±k]

and use that yks(t) =yks(0) e' k where Ekis the excitation energy of quasiparticles
from the superconducting ground-state, the Kernel K(q, — q — G, 0) can easily be
calculated and one obtains:

K(q, -q-G,0) ± £ [jk\ (- q - G) - ^ «^ (- q - G)]
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We have here used the inversion symmetry of Xper, from which follows that Ek E_k,
vk v_k, uk u_k.

Furthermore, using the periodicity, we find:

iU}(q) =27-5 (*i - k2 A- q + G')ji^(q)
G'

<\*.(«) =Ed (*i - k2 +1 + G') akAi) ¦

G'

Finally we suppose that our specimen has a center of symmetry and then, using the

antisymmetric and hermitian properties of the vectorpotentials and the current-
operators one obtains

y^U(9) -^2,(-«)--A1,4,(«)*
a-h-k,(l) - «*.*,(- 1) - «*,*,(«)* •

We thus get for the Kernel:

K(q, -q-G,0)=]g [j^-q-G-G' (" Q ~ G) - ^ «M_f_c_G (- « - G)]

.(2) / v (?<* "A -g -G -G' ~ ^k-q-G-G' Vk)2

XJk-q-G-G',kW -
Ek + Ek-q-G-G'

+ }c E ÜZ-q-G-G' (-i -G) -JkS-q-G-G' ('V' G)]
kG'

.(2) / _\ 2 UkUh-q-G -G' Vk Vk-q-G-G'Xh-q-G-G',kW Ek+Ek-q-G-G'

+ l E l°k,k-q-G-G- (-1-G)- a*k_g_G_G, (-q- G)]
kG'

X Jk-q -G-G'.kiQ)
• (2) /_\ 2 Uk Uk-q-G-G' Vk Vk-q-G-G'

-G-G'.kW Ek + Ek-q-G-G'

We novj( restrict ourselves to one band, which means that k, and k — q — G — G' must
be in the first Brillouin zone. For q tending to zero, this means G —G', and so it
follows K(0, — G, 0) 0 for all G which means that j(q) -> 0 for q -> 0. Now, because

our system is not translation invariant, we cannot use the Schafroth argument to
prove the Meissner effect. The important thing is, however, that all terms (II.3)
behave in the same way for small q. This can be seen from (II.5). In the first line the
factor making the expression going to zero for q -> 0 is independent of the different
fields and currents contained in K(q, — q — G, 0). In the second and third line the
factors which goes to zero are

Uk,k-q-G-G' (-Q-G) -)tk-q-G-G' (-Q- G)) and

(aKk_q_G_G, (-q-G)- a*k_q_G_G, (- q - G))

respectively. The behaviour of these two differences for small q are however both
given by the behaviour of (9^ — <p*_.) and (cpf — q>*_.) where <pk are the Blochfunctions
which belong to the periodic part of our Hamiltonian. On the other hand is the Kernel
of the paramagnetic current contained in the two first lines in (II.5). It is therefore
not possible to replace the paramagnetic current (which disappears for small q) by
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some of the other contributions to (II.3), because all these contributions behave in the
same way as the paramagnetic current for small q. Thus none of these current
contributions can have an influence on the Meissner effect.

Appendix III
We write equation I in the form

- V2h(r) Q(r) {h(r) + h(r)} + Vg(r) x {a(r) + ~a(r)} (III.l)
where

h curl a h curl a

h represents the self-consistent field his and h is the inhomogeneous term hid + h + heff.
If q is a constant, the equation is separable in the Fourier space, i.e. the low

^-components of h(q) are determined by the low g'-components of h(q), and it is enough

to calculate accurately these low ^-components of h(q).
The situation must be analyzed more carefully when one allows q to be r dependent.

To discuss this, we write
q(r) =Qq + ôQ(r) (111.2)

where q0 is the average of g(r) and \ôo(r) j <4 q0. Accordingly we write

ôh(r) (111.3)

ôa(r) (III.4)

Qo{h0(r) + h(r)}. (111.5)

We discuss our problem in the simple half space geometry : the y-z plan separates the
superconducting body (x > 0) from the vacuum (x < 0).

Suppose we write for hz(r) (the ^--component of h(r))

hz(r) d e~ßx + h

where d is some constant. Then one finds

h0z(r) (h - c') g-l/le7l* + c' e-fi* _ l (III.7Ì
where

c'=~%±-. (III.8)
Also

«o,W - ^, e~m* - "a *~&x -hx. (III.9)

The other components are zero

«Ox a9z Kx hy ° •

Replacing in (III.l) q, h and a by (III.2), (III.3) and (III.4), and using (III.5) we get

- V2 6h(r) Qq ôh(r) + ôç(r) h0(r) + ôg(r) h(r) + V ôg(r) x {a0(r) + a(r)} (III.10)

and
h(r) h0(r]

where h0(r) is defined by
a(r) a0(r]

- V2h0(r) eo \
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In (III.9) we have neglected the term ôg(r) ôh(r) and V òq X ôa(r). Setting e i
ÒQ(r) Òq ei{*nla)ix+y+z) (III.ll)

and using (III.6), (III.7) and (III.9), we get for the z component of equation (III.10)

- V2 dhz(r) Q0 dhz(r) + Ôq g*"(2*/«>(*+5<+*> l(h - e') g-VÌaTl*

+ e' e-?* + de-^-i -- %f' e-VM* _ i 2JA ï+± e-ß\
a /led a ß

Qq dhz(z) + g'<*»/.)(*+y+») (/. e-V\eA* + m e-ß*)

with dhz(r) el[2nla)[y+z)j(x)

\

we get

- £, /(*) (eo - %l )/(*) + *,(2l7,a)* (* ^lfc" + » ^*) -

The solution can be written

/(^) (?2 + 9l) (?-l/(8">'l+ le.l* __ a2 e(2»la)x-V\e,\x _ % jt?.*ia)-ß* (IIL12)

where «j and a2 are given by

a
eo-tSTr/a2)!^;

b _ o0-(8 7ry)iy»«
2 - (ï(2 7r/a) -l/fe^])2

X -(i(2nla)-ßY

The form (III.l2) shows that the penetration depth is again given by the larger of

l/(/|fj0| (London penetration depth) and 1//3 (range of the aperiodic effective field).
If 1//3 is small, the total magnetic field will be zero in the interior of the specimen.
Finding that oh and da are negligible in most of the material, we also justify self-
consistently the fact that we neglected òq xôh and V òq xòa in our solution.
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