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Relaxation des spins nucléaires dans les alliages dilués. II.

par B. Giovannini et A. J. Heeger1)
Institut de Physique expérimentale, Université de Genéve, Genéve (Suisse)

29, IX. 68

Résumé. Les résultats obtenus dans une premiére publication sont établis de maniére plus
rigoureuse et complétés. Il est montré qu’a 'ordre ol nous calculons, 'interaction de Yosida
contient toutes les contributions importantes au temps de relaxation des noyaux via les impu-
retés magnétiques.

Introduction

Lors d’'une premiére publication [1], nous avons montré que le spin des noyaux,
dans un alliage magnétique dilué, peut relaxer via une excitation virtuelle des impuretés
magnétiques auxquelles il est couplé par U'interaction de Yosida. Pour établir ce
mécanisme de relaxation, nous avons utilisé un Hamiltonien d’interaction qui permet
de calculer facilement le processus physique décrit plus haut:

K== 4 X1 0l — % T Sr0@ + XK ST ()

ol
K,,0=9n:i,j{zzF(2kf\anRm1) @)
Flx) = 22080 ®

et z est le nombre d’électrons de conduction par atome. (Les autres quantités sont
définies dans la partie I). L’Hamiltonien (1) n’est cependant pas rigoureusement
correct, car la troisiéme partie est contenue implicitement dans les deux premieres.

Nous nous proposons dans ce travail de dériver de fagon rigoureuse le résultat
obtenu dans [1], ceci afin de pouvoir en particulier discuter les incidences que pourrait
avolr 'effet KonNDoO [2] sur notre résultat.

Premiére partie

Nous considérons le systéeme formé d'un spin nucléaire I placé a l'origine et qui
interagit avec les électrons de conduction et indirectement avec des spins $* placés
en R,. L’Hamiltonien s’écrit: '

K= Ko+ X (4)
‘JCO:_a)nIz—}_wiZS?—l_ngsC:scks : (5)
K =—ANII-p(q)— JINZT ™ 8§ 0(q) (6)

1) John Simmon Guggenheim Fellow 1968-1969. Adresse permanente: Department of Physics,
University of Pennsylvania, Philadelphia, Penna (USA).
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w,(w;) est la fréquence de Larmor du spin nucléaire (des spins d’'impuretés), ¢, =
&+ sw, (s = 4 1/2) est la somme de I'énergie cinétique et de I'énergie de Zeeman
d’un électron de conduction dans I’état de Bloch % et de spin s, cg (¢ ;) est 'opérateur
de création (d’annihilation) pour un électron dans I’état de Bloch %, g(q) =
2 Ch_gs Os oy (0%, 0¥, 0% sont les matrices de Pauli) est le vecteur de densité de spin
k

pour les électrons de conduction et N est le nombre d’atomes par unité de volume.
Nous voulons calculer la probabilité de transition:

W, = (22)8 (E,— Ej) |T,, 7

ou
I}f:<i‘3{’”+> (8)
U+>——If>+mx’f+> (9

Par itération de 1'équation (9) on obtient la série de Born:

Tz'f=-7{;'f+2 Exwxcf +ZE LA 5 T (10)

—E +10) (E;—E +i 0)

Kip=<|X|f> et
xo‘f>= Ef|f>
Ko |e>=E, |c> etc.

Pour calculer le mécanisme décrit dans l'introduction, il faut aller jusqu’au
troisiéme ordre pour T',,, c’est-a-dire jusqu’au quatriéme ordre pour W,

W, =268 (E; — E,) {:){;, X, + (zjé_—mjg— + c.c.)
Ko Koo XKay K

(E;—E,+i0) (E,—Eg+i0)

+ (Z + c.c.)

|2
| Z gy | - ey a

Nous voulons ensuite calculer

k,g E;
Wm m+1 Z W
if
out 'on somme sur toutes les variables excepté celles du spin nucléaire.
Nous choisissons maintenant

|i> = |m, {M}, ¢> 1/>=|m+ 1, {M}, ¢ (12)
ou
m=< |y, (My={a|S,[i>,...,<E|S}>,...}

et ¢, représente 1’état des électrons de conduction. Nous avons choisi les états finaux
de telle manieére que le spin des impuretés soit conservé. La raison est que la relaxation
des spins des impuretés ne se fait que par les électrons de conduction.
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Le premier terme de (11) correspond a la relaxation de Korringa:

W

m—>m+1

=2n(uﬂ§,ﬂ)2kﬂ1+m+1) (I —m) (13)

il

les processus contribuant au deuxiéme terme de (11) sont représentés schématique-
ment sur la figure 1 et calculés dans 'appendice A.
On obtient:

W® ~ W 2. N, log T/D (14)

ce qui est l'effet Kondo pour le noyau, et complétement négligeable parce que
A|E; ~ 10-¢.

Les processus contribuant a W% sont représentés schématiquement sur la figure 2
et sont calculés dans I'appendice B Le fait que les deux parties de W} contiennent
en principe les mémes processus peut se voir en écrivant

J{»chcf ‘& J{,;CJC(;]’JC,[C J( E Ef)
0 (E; — Ey) E~E, +id ’ “2 (E;~E,+i0) (E,—E, —i0) (15)
ou bien, en changeant de notation
_ Kio KoaKay K 1
= (Ey—E +1i0) (E;— E;—10) 4 {8~ B (16)
On voit que seuls les dénominateurs et la fonction ¢ changent.
On trouve:
A J)\? <S>
@ — _ 24 zZ
W® = + 121 (I +m+ 1) (I — m) ( * ) cr o
k— k’
x ZU(* B i) fuy (L= ) 8 (ony — ey + ) (17)
oll
1 1—a2 1+
U = 5 |1+ 50— In 7]

est une fonction de Lindhard.

Il y a évidemment d’autres contributions a W|4|, qui sont calculées dans I'appen-
dice B, mais elles sont toutes négligeables.

Nous avons ainsi montré que les résultats obtenus dans [1] sont corrects, et que
I'effet KoNDO n’apparait pas de maniére significative a 'ordre calculé.

Appendice A

Dans les représentations diagrammatiques des figures 1, 2, 3 et 4, les lignes
ondulées représentent une interaction J’ (c.a.d. soit une interaction J .S . ¢ soit une
interaction 4 I.g). Une ligne montante représente un trou, une ligne descendante
un électron. Les diagrammes sont a lire de haut en bas.

Dans la diagramme (a) de la figure 1 par exemple, une interaction KX’ crée une
paire électron trou (g, k1) (c’est I'état intermédiaire), puis l'électron (q) est diffusé
dans I'état (k'|). La paire électron trou (k4, k'|) est I'état final. A cause de notre choix
de I’état final, la derniére interaction est forcément 4 I, ¢_ pour les diagrammes qui
contribuent & W®),

41
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q q
kf k'y
k'Y k
(a) (b)
Figure 1

Diagramme contribuant & W3).,

q q'
q
kt q'" kb q
| k't
k1 Kkt
(a) (b) (c) (£)
. q q’
q q
kT k't ; Q @
UG g
(@ (h) )

Figure 2

Diagramme contribuant & W),

kt Q'

Figure 3

Explicitation des diagrammes correspondant & la Figure 2 (a).

S_
kh k'Y s
.9 ay
S+
Figure 4

Type de diagramme contribuant en principe & W(4)(2),

P. A,
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Les diagrammes s’évaluent de la facon suivante:

1) Pour chaque ligne montante %, introduire un facteur f, .

2) Pour chaque ligne descendante %, introduire un facteur fk ( f; =1—fi, fo=1/(P5r
+ 1),le zéro de I'énergie est choisi de telle sorte que u = 0).

3) Multiplier par un facteur (— 1)” % ol 7 est le nombre de trous dans le diagramme
et s est le nombre de boucles fermées.

4) Multiplier par le nombre idoine de facteurs — A/N, — J/N, selon le diagramme,
et par le facteur de phase ¢'*-¥) Ry correspondant.

5) Multiplier par les éléments de matrice des opérateurs § et I correspondant au
diagramme. Le facteur (I +m + 1) (I — m) = <4 |I — I_| 1> est présent dans
chaque diagramme.

6) Un signe (— 1) apparait en plus pour chaque transition longitudinale avec spin en
bas car le vertex longitudinal s’écrit: I, (cf_q41 Crt — Ch_q) Cr))-

Convention: nous écrivons

(-%) (%) T+m+nT—m={a]}

(-4) LV T+me I —m={-a]% et

Evaluation des diagrammes de la figure T

Un des deux premiers vertex des diagrammes de la figure 1 est nécessairement
A I_o,, et l'autre est soit 4 1,0, soit J S, ¢,. Comme il y a deux places possibles

z 7z

pour A I_o,, on obtient quatre contributions par diagramme.

Diagramme a
1) Avec AN I,0,

) fol fpr +1

(i) 27 {43} 20 (5 — & — @) fqlg;}:lzi];zz:ﬁd ) (A-1)
3 Fat P frt me

(i) =27 A% 28 (ewy — &y — ) — L (A-2)

2) Avec JIN S, 0,
e i(k'-q) R,
(@) 2ot L% T3 (g — By — i) LRI ESD (A-3)

—ggt—er|+id

* fat Tyt <S> 6@~ F) Ry
(i) —2m{A2 J} 26 (g, — &1y — @) = i—fer— o 18 (A-4)

Diagramme b
1) Avec AN 1,0,

: fat Ty st (m+ 1) -
) 27 {43} T8 (g, — &5y — ) qlﬁ jrg"kTT T (A-5)

(i) — 27 {4 55 (e, — 5 — ) 523 (A-6)

Egj—ERt—,,+10
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2) Awec JIN S, o,

- foyTw ) fa1 <S> &' R~ By

(i) 27 {42 J} 20 () — &4y — 0,,) —2 *qu_ewm (A-7)
Pl TR i(q-k) R,

(i) — B LR PLEB g, — By — o) ~UIE L] (A-8)

£q|—Ert—,,+10
Nous pouvons partout faire d’abord la somme sur g, ce qui donne pour (4 — 1,)
en prenant un modele de bande symétrique avec une densité d’état constante IV,

B fal Tat frt (m+1)
(A-l) = 27 {A3}N§/dek s, S T

d’ol
2 Re(A-1) ~ — 47 {— A% N? T log (g) (m + 1) C(A29)
ot D est la largeur de bande. De facon semblable,
2Re(A2) =4 m{— A%} N}k T log (—g) (m) (A-10)
2Re (A-5) = — 47 {— A N3k Tlog () (m + 1) (A-11)
2 Re (A-6) =4 {— A%} N}k T log (%) (m) . (A-12)
En sommant ces quatre contributions, on obtient:
87 {43} N; T log % = W inga [4(4/N) N log(T/D)] . (A-13)

Les contributions dépendant de {4? J} posent un petit probléme. La seule maniére
de traiter une distribution aléatoire d’impuretés est de remplacer la somme sur R,
par une intégrale. Dans ce cas toutes ces contributions sont purement imaginaires.
Si l'on hésite a utiliser cet argument pour montrer que ces contributions sont
négligeables, il faut considérer le probleme avec une seule impureté.

On obtient alors par exemple:

~oT, L ot
2 Re (A3 + A-8) = — 27 {4* [} N, P | fk;kfszmm

k-q)R,

¢S,> d3k' d3q

- D ; i
< —2m {A% J} N} <Sz>fd3k’ fr) fw) log |%‘ )

Appendice B

Chacun des diagrammes de la figure 2 contient au moins un vertex 4 I_o¢_ et un
vertex A I, o_. Pour les deux autres vertex on a le choix entre
1) deux transitions longitudinales,
2) deux transitions de renversement de spin.

Il est facile de voir que chacun des diagrammes de la figure 2 donne lieu a une

grande prolifération de contributions différentes. Il est cependant inutile de les calculer
toutes. En effet

1) Puisque 4 ~ 10-% J, les contributions proportionnelles & A2 J2 dominent certaine-
ment les contributions proportionnelles a A2 J ou A%,



Vol. 42, 1969 Relaxation des spins nucléaires dans les alliages dilués. I1. 645

2) Les contributions provenant de deux transitions longitudinales S, sont essentielle-
ment équivalentes a celles que 1'on obtiendrait avec un potentiel indépendant du
spin. Nous les négligerons (cf. les contributions A.3, A.4, A.7, A.8).

3) Certaines contributions provenant de (2) (g) par exemple sont non-connexes, et
représentent des fluctuations du vide. N.B. Contrairement aux apparences,
certaines contributions provenant de (2) (g) sont connexes: lorsque un vertex
J S o, apparait sur une boucle et un vertex J S% ¢_ apparait sur I'autre boucle.

ou W (9% est donné par la formule (15).

A) Contributions a Wg‘})(l)
Dans ce cas le dernier vertex est nécessairement 4 I, o_.
Diagramme a

A titre d’exemple les deux possibilités découlant du diagramme (a) sont explicitées

dans la figure 3.

fasFot fre ) frp @ ® 9 Ra

2 72} ¢S X T
) 2r{A2 J2}<S. SO X0 (5 — g4 — w,) h =g 710) (e )= op 1T, £190) + c.c.
c.c. signifie: complexe conjugué.
” leﬁ’Tﬁ?'lfkTei(q’—k)-R"
2 72 e g o ‘ , N

i) 27 {A? [P} (S_S > 20 (g — & —w,) P pTS Y. § Trm—— + c.c.
\ragramme b

_ 2 72 v Tt Ty fer D Re
) 2n {A ] } <S_ S+>26 (‘Sli:’lr €t wn) (er'|—eq)+1 0) (8‘1,1’_54]’_0)1,4.1'5) + ¢.C.
: fal fart Ty fy 478 R

_ 2 72 e 7 ‘
i) 2n {A% JBE<S_S.020 (g — g1 — w,) TR T —— + c.c.
nagramme c '

- 2 72 o ettt fq e Ra
) 2 {42 [P} (S SO X0 (e — &4 — ) PRGN F e + &e.
N 2 72 o Jort Tt fgt fay =) Be
e ) e L Tt Tl e rvwrwtyry ¥ Ay S
agramme d

1 ’Tﬁ'lf_ﬂfﬂ ok -a) Ry,

.y 2 72 _ _ q + c.c.
) 2 {A® J*}(S_S,. > 20 (g — &4y —w,) TS N e p——T
N 2 72 v o ettt ey O R
l) 2% {A ] } <S— S+>"' (gk'i Skf 7(’011) (Eq,T;gk,i_{_wn_‘_i 6) (64’?—547“w5+i 6) + Gl
ragramme e

Fort Tyt fgy =9 Ba ‘

- 2 72 ol § .
) 27 {A® J2}<S,. S_} 20 (e — &4y — ) A + c.c.
N 2 72 i Jot Fiey fuy fqy e R Re
l) 2 {A2 J?}<S, S 5>28 (Ek'l Ext — W) (egl— &g t+w; +1i0) (egt—ek |+ w;+w,+10) B
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Diagramme f

: g 7 o Fort T fut fay 6% D) Ry .

(1) 27 {A% ]2} <S_ S+>Zé(ek,l Exp — W) e —oos +16) G = 770 I e

i 2 2 . fort fe fut fa) 8@ F) R

(11) 2m{A® J?} <5, S >20 (Ek’l Ert ) (egt—ek |+, +10) (eg|— er |+ 0, +w;+10) + 60

Diagramme g

i 2 T2 fry Ty fary far @79 R 7R Ry

(i) 2 {A2 JB}<(S_S,> 20 (e — &4y — ) Y £ § ————ry + c.c.

i 2 frTi ftfa et @2t E R Rn

& S i e (€1} = &t = ) (—w,,—w;+10) (eq)—&g't— w,, +1 9) S

Diagramme h

: 2 72 frtTar) fgt fory @4 TR RN Ra

) 2m{A® J?}(S_S.> 26 (Sk'i——‘ek?_wm) (egt— &g’ |+, +10) (egt— &g’ | — W, +w; +10) T cc.

¥ 2 72 B frt fqi Foey fqry €@ 70T KRRy

M) 2 {d? ]} <S, SO>XB (e, — ey —wn) — T e —— e

Diagramme 1

2 > 79 ‘ B B fkT]T;e'l]_;'q'lquBi(q_q’+k’_k)'R"

(i) 2m{A*? J2}<S, S_>20 (e — &y — o)) Cal—or 40, +10) @ L0110 + c.c.
T T Gl @ -9+ k)R,

(ii) 27 {A2 2 <S, S_> X5 (5, — 63— ) Trrfglfgtfrele L oo,

(eg|—eg't+w;+i0) (w;+w, +10)

B) Contribution a ng}if) 2)

En principe, chacun des diagrammes de la figure 2 contribue a W{)®), etil y a
aussi quelques diagrammes supplémentaires, tels que celui de la figure 4, car le vertex
A I, o_n’est plus nécessairement le dernier, mais un des derniers. Il est facile de voir
cependant qu’aucun des diagrammes possibles ne satisfait notre choix d’états finaux
(équation 12), compte tenu du fait que nous négligeons les transitions longitudinales.
On trouve donc

Wiﬁ’ 2 _ o (B-19)

C) Calcul de W)

Pour chacune des contributions (B-1), (B-2), etc., il faut calculer la partie réelle.
Celle-ci provient de deux termes. Symboliquement, on peut écrire, si 4 est réel

A i A
o (E;~E +10) (Eg—E +i0) P2 (E;—E,) (E;—Ey)

— X An?b(E,— E)6(E,— E,) (B-20)

On voit qu’en intégrant sur les angles de k' et ¢ dans (B-1) par exemple, le numérateur
devient réel. 4 est donc réel et nous pouvons appliquer la formule ci-dessus.

1) Calcul des parties principales

Nous rencontrons & nouveau le probléme rencontré a la fin de 'appendice A.

(B-1:

(B-1-

(B-1!

(B-1¢
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Nous nous contenterons de montrer que pour une seule impureté, la plupart des

contributions sont négligeables.

On trouve:
B-1+ B2+ «+o. 4+ B12 = — 47 {42 [} PZ8 (g4 — &5, — W) iy T,
( ik -aq) R, g T
“lew1—ew)) (eri—eq) (S-S + S S0 Terd)
k) R . LSO, } B-21
(e |+ o;—er|) (er |~ ;—gg)) (S-S fpr 1 545y (B-21)
En écrivant
(5.8 5>=<S5_ 5>+ 25>
on obtient
— (5. S04 {4 JPE 20 (e — &t — Op) fay ey
{ Gk -q)-R,, Lilk-a')- R, }
(eqr\—ek'|) (er|—€q)) (e | +w;—¢er)) (er ) —w;—&q)
— (S 8m{A2 J2L 20 (g — &1 — ©,) fay Ty
AR -0 R, T, () Ry T } -
B-22
{ (eg")—er|) (ew|—eq)) (e |+ w;— ek | (er | —w;—&q)) ( )

Pour une impurité, le premier terme est de 1'ordre

~ (S_S.»{A4% ]2} N, log (1 n ‘;;)“

Le deuxiéme terme est de 'ordre

~ {42 J2} N} log (1 + %) log —-

Ces deux terms sont négligeables.

BT

Les termes B-13, 14, 17 et 18 correspondent & l'expression calculée dans la
référence 1. Pour montrer cela il est pratique de faire d’abord la moyenne sur les

impuretés:

B-13 — 47 {42 J%} ¢S_S,> N, X6 (6 — ¢
B-14 = 47 {42 J2} <S_S.> N, 20 (g — &) — 0,
B-17 =47 {42 J2} (S, . S) N, 20 (gy — &

B-18 =47 {42 J2} (S, S_>N, X6 (e — ¢

R @,,)

kLT w,,

by W)

oy 17 g vy

I Ty >
TWy T W T e p -kt T R T

) fk\l?k'L fir Tkt

T O =@ T -k TR T Om

f—i'el T r -kt

) _fkff;:’l

2

w .
m ] k

€ g b -k B

Tt Ths vy

i S k- TR

k

(B-23)

(B-24)

(B-25)

(B-26)
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Dans ces expressions, la somme sur k et k' se fait sur la surface de Fermi, de telle

sorte que |k — k'| varie entre 0 et 2 2,. Il s’ensuit que pour la plus grande partie
de la somme

& L wop— SO

> Glivw—r o No U (_l-‘je’_:ﬂ_)

SR+ k -k R . Z ks
ol
1 1— 22 1+x
U =5 (1+ o2 In!l_x)
D’ou

B-13 + B-14 + B-17 + B-18
S kR —k
— — 8 {42 B} Ny 52 N 56 (o4 — o4 + 0p) fay firy U _'Wf' (B-27)
A2 2\ N
=— 12wz — I +m+1) (I —m
SN ) (1 = m)
(8> K-k
Sy No 220 (et — &) + @) frt Ty U “‘_z“k}‘l“
Il reste B.15 et B.16

(B-28)

. 1 . &=
B"].S — 4‘7’6{14.2 ]2} <S__ S+>MZ(S (EkT e Ekll + wm) ‘(B‘— fkT fk’l2f5+k~k’ ](E

{ 1 1 ~ 0
kRt Ry Fih-mr— Rt |

et pour la méme raison que ci-dessus B.16 ~ 0.

2) Calcul des parties 1maginaires

I1 est facile de voir que toutes ces contributions sont de 1'ordre

~W® (b{_f)z

Par exemple, pour B.1, on obtient, pour une impureté:
3 L ,
~ G {42 B (S, SR T éW 0% N,
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