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Relaxation des spins nucléaires dans les alliages dilués. II.
par B. Giovannini et A. J. Heeger1)

Institut de Physique expérimentale, Université de Genève, Genève (Suisse)

29. IX. 68

Résumé. Les résultats obtenus dans une première publication sont établis de manière plus
rigoureuse et complétés. Il est montré qu'à l'ordre où nous calculons, l'interaction de Yosida
contient toutes les contributions importantes au temps de relaxation des noyaux via les impuretés

magnétiques.

Introduction

Lors d'une première publication [1], nous avons montré que le spin des noyaux,
dans un alliage magnétique dilué, peut relaxer via une excitation virtuelle des impuretés
magnétiques auxquelles il est couplé par l'interaction de Yosida. Pour établir ce
mécanisme de relaxation, nous avons utilisé un Hamiltonien d'interaction qui permet
de calculer facilement le processus physique décrit plus haut :

^ _ A V T ntn\ - J- yJq'R" X"

OÙ

X -^ZI-Q(q) -AAZi«-«n SnQ{q) + ZKn0 gn {1)

Kn0=9 7cJ=^z2F(2kf\Rn-Rm\) (2)

„, ^cos^— sin* /0,F(x) zj (3)

et z est le nombre d'électrons de conduction par atome. (Les autres quantités sont
définies dans la partie I). L'Hamiltonien (1) n'est cependant pas rigoureusement
correct, car la troisième partie est contenue implicitement dans les deux premières.

Nous nous proposons dans ce travail de dériver de façon rigoureuse le résultat
obtenu dans [1], ceci afin de pouvoir en particulier discuter les incidences que pourrait
avoir l'effet Kondo [2] sur notre résultat.

Première partie
Nous considérons le système formé d'un spin nucléaire I placé à l'origine et qui

interagit avec les électrons de conduction et indirectement avec des spins S" placés
en Rn. L'Hamiltonien s'écrit:

X Xq + X (4)

Xq - con Iz + COi Z Snz + Z sks c+s cks (5)

X' -AjNEI- Q(q) - JjNZeiq"*» S" ¦ g(q) (6)

x) John Simmon Guggenheim Fellow 1968-1969. Adresse permanente: Department of Physics,
University of Pennsylvania, Philadelphia, Penna (USA).
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a>„(a),) est la fréquence de Larmor du spin nucléaire (des spins d'impuretés), sks

ek + s coe (s + 1/2) est la somme de l'énergie cinétique et de l'énergie de Zeeman
d'un électron de conduction dans l'état de Bloch k et de spin s, c£s(cks) est l'opérateur
de création (d'annihilation) pour un électron dans l'état de Bloch k, g(q)
S ck-qs °s s,ck s' (°x, °y, °z sonL les matrices de Pauli) est le vecteur de densité de spin

pour les électrons de conduction et iV est le nombre d'atomes par unité de volume.
Nous voulons calculer la probabilité de transition :

Wif=(2n)ò(Ei-Ef)\Tif\2 (7)

où

rv=<»|X'|/+> (8)

I^H/>+y^X/n. (9)

Par itération de l'équation (9) on obtient la série de Born:

•p *!/•' _i_ y J^ic Jf*cf y J^-ic J^cd J^ij c\ç\\Ff-^i,+Z. Ef-Ec + iô + Zi(Ef-Ec + iò)(Ef-Ed+iò) + ¦¦¦ {ly>>

OÙ

Xif= <i \X\f> et

X0\f> Ef\fy
Xq |c> Ec |c> etc.

Pour calculer le mécanisme décrit dans l'introduction, il faut aller jusqu'au
troisième ordre pour Tif, c'est-à-dire jusqu'au quatrième ordre pour Wif.

Wif=2nô(Ei - E,) |Xv */< + (^ \Xec^ + c-')

i / y J^ic J\-cd J^-df J^fi
\ (Ef-Ec + iô) (Ef-Ed+iô) + X-

E *lcEx;!lô 1} ni+wt? + wt} (n)

Nous voulons ensuite calculer

wmm+x=Ee wif
i/

où l'on somme sur toutes les variables excepté celles du spin nucléaire.
Nous choisissons maintenant

ou
\iy=\m,{M},<j)iy \fy=\m+l,{M},<f>f> (12)

m a | r | »>, {m} {a | s; j »>,..., <* | snz !»>,...}
et </jj représente i'état des électrons de conduction. Nous avons choisi les états finaux
de telle manière que le spin des impuretés soit conservé. La raison est que la relaxation
des spins des impuretés ne se fait que par les électrons de conduction.
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Le premier terme de (11) correspond à la relaxation de Korringa:

W^m+X 2 n (—P°^)2 k T (I + m + 1) (I - m) (13)

les processus contribuant au deuxième terme de (11) sont représentés schématique-
ment sur la figure 1 et calculés dans l'appendice A.

On obtient:

jj/(3) ^ w<2> ~ Nq log TjD (14)

ce qui est l'effet Kondo pour le noyau, et complètement négligeable parce que
4/£f~10-6.

Les processus contribuant à W\f sont représentés schématiquement sur la figure 2

et sont calculés dans l'appendice B. Le fait que les deux parties de W\f contiennent
en principe les mêmes processus peut se voir en écrivant

*iE'-Ef)ZE*EX;iô
ou bien, en changeant de notation

y. Aje J\.çd J*-df J~ti

Y~t Xjç Xçf X/Ç' Xç'i o (Ej Ej)- Zj (Ef-E. + iS)(Ef-Ec,-iö)
K '

(Ed-Ec + iô)(Ed-Ef-iô)
On voit que seuls les dénominateurs et la fonction ô changent.

On trouve :

WW + 127c(I + m+l)(I-m) {^ff cz ^ff

ô (Ed - EA (16)

X

ou

est une fonction de Lindhard.
Il y a évidemment d'autres contributions à FF[4|, qui sont calculées dans l'appendice

B, mais elles sont toutes négligeables.
Nous avons ainsi montré que les résultats obtenus dans [1] sont corrects, et que

l'effet Kondo n'apparaît pas de manière significative à l'ordre calculé.

Appendice A

Dans les représentations diagrammatiques des figures 1, 2, 3 et 4, les lignes
ondulées représentent une interaction X (c.à.d. soit une interaction J S .o soit une
interaction A I. a). Une ligne montante représente un trou, une ligne descendante

un électron. Les diagrammes sont à lire de haut en bas.
Dans la diagramme (a) de la figure 1 par exemple, une interaction X crée une

paire électron trou (q, k1-) (c'est l'état intermédiaire), puis l'électron (q) est diffusé
dans l'état (k' {). La paire électron trou (fe |, fe' \) est l'état final. A cause de notre choix
de l'état final, la dernière interaction est forcément A I+ a_ pour les diagrammes qui
contribuent à TT(3).
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/ V
MA V— kl

V A'| kf

(a) (b)

Figure 1

Diagramme contribuant à ITI3).

q q

kU ^q' kf k'îk'î
k't kt k'î

k'î

a b (c) d e

k't
AÌ3' kf/ \k'

'.(£'
kt/ U't

(g) (h) (i)

Figure 2

Diagramme contribuant à WW.

-I-

Kt kt
-

-s-
'-r\

-u
Figure 3

Explicitation des diagrammes correspondant à la Figure 2 (a).

q'

-<-—a

kt/ W ^~~I-

Figure 4

Type de diagramme contribuant en principe à IT<4)(2).
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Les diagrammes s'évaluent de la façon suivante:

1) Pour chaque ligne montante k, introduire un facteur fk.

2) Pour chaque ligne descendante k, introduire un facteur fk (fk 1 — fu, fu ll(eßek
+ l),le zéro de l'énergie est choisi de telle sorte que p 0).

3) Multiplier par un facteur (— l)r + h oùr est le nombre de trous dans le diagramme
et s est le nombre de boucles fermées.

4) Multiplier par le nombre idoine de facteurs — AjN, — JjN, selon le diagramme,
et par le facteur de phase g*<fc-fe'>fi» correspondant.

5) Multiplier par les éléments de matrice des opérateurs S et I correspondant au
diagramme. Le facteur (/ + m + 1) (I — m) < i \ I — I+ \ i > est présent dans
chaque diagramme.

6) Un signe (— 1) apparaît en plus pour chaque transition longitudinale avec spin en
bas car le vertex longitudinal s'écrit: Iz (ct_q^ cy — ct-q\ ck\1-
Convention : nous écrivons

("4) (-Ì) (I + m+l)(I-m) {AJ)

(- 4) (r WÎ (I + ^Al)(I-m) {-A J2} etc.

Evaluation des diagrammes de la figure 1

Un des deux premiers vertex des diagrammes de la figure 1 est nécessairement
A I_a+, et l'autre est soit A Izaz, soit J Szaz. Comme il y a deux places possibles

pour A I_a+, on obtient quatre contributions par diagramme.

Diagramme a

1) Avec AjN Izaz

(i) 2n{A*}Zô(ek,l-eki-com) ^ll^ (A-D*t "'«•i m-eql+iô

_ g - w
tq\h'\th\m

A *t m> Ek,^-(0m-eq^ + i§
2 n {A-} S ô (ek,, - ekt - com) —--^?» (A-2)

2) Avec JjN Szaz

(i) 2,FA2J)Zö(sn-sk,-mjM^:^;^ (A_3)

/;n o SAîTiYzt \ ütTk'if^<szyet{q~kyR"
(u) — 2 n {A* /} 2, ò (ek,, — £,,. — coA ~ ¦ —-= (A-4)

com) /gtM/M^+1) (A.5)

Diagramme b

1) Avec AjN Izaz

(i) 2 n {A*} Z ô (e„, - ek\

(ii) -2n{A*}ZÒ(ek,l-~ £k\ ~~
U\ik'\lk\m

cq\-ek\-com + iô (A-6)
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2) Avec JjN Szaz

(i) 2„{.4V}X<M«,,-«»,-»J^yy7^ (A-7)

(ii) - 2 n {A' J] El («„, - .„ - «,,) '•J:jj^AS"'"" t*"8»

Nous pouvons partout faire d'abord la somme sur ek,, ce qui donne pour (A — 1,)

en prenant un modèle de bande symétrique avec une densité d'état constante N0

(A-l) 2 n {A*} Ni fdek deq
â*7*f/*t (» + 1)

v ' l ' "J " i ck\-eq\ + com + iô
d'où

2 Re (A-l) s - 4 tt {- ^3} N\ F log J) (m + 1) (A-9)

où D est la largeur de bande. De façon semblable,

2 Re (A-2) 4 tt {- A3} N30 k F log (~\ (m) (A-10)

2 i?« (A-5) - 4 n {- A3} N20 k F log (-J) (w + 1) (A-Il)

2 fo (A-6) =4n{- A3}Nz0kT log (~) (w) (A-12)

En sommant ces quatre contributions, on obtient :

8 n {A3} Ni Tlog^ W$OIlingi [A(AjN) N log(TjD)] (A-13)

Les contributions dépendant de {A2 J} posent un petit problème. La seule manière
de traiter une distribution aléatoire d'impuretés est de remplacer la somme sur Rn

par une intégrale. Dans ce cas toutes ces contributions sont purement imaginaires.
Si l'on hésite à utiliser cet argument pour montrer que ces contributions sont
négligeables, il faut considérer le problème avec une seule impureté.

On obtient alors par exemple :

2 Re (A-3 + A-8) -2tc{A2J) N0 pJ-MM^^. <S,>d3k' d3q

^-2n{A2J)Ni <Szy [dW ]„, /Ä,j log
D + Ehr-

¦D + ek'l
¦0.

Appendice B

Chacun des diagrammes de la figure 2 contient au moins un vertex A I_ <r+ et un
vertex A I+a_. Pour les deux autres vertex on a le choix entre

1) deux transitions longitudinales,

2) deux transitions de renversement de spin.

Il est facile de voir que chacun des diagrammes de la figure 2 donne lieu à une
grande prolifération de contributions différentes. Il est cependant inutile de les calculer
toutes. En effet

1) Puisque A ~ 10~6 /, les contributions proportionnelles à.A2J2 dominent certaine¬
ment les contributions proportionnelles à A3 J ou A*.
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2) Les contributions provenant de deux transitions longitudinales Sz sont essentielle¬
ment équivalentes à celles que l'on obtiendrait avec un potentiel indépendant du
spin. Nous les négligerons (cf. les contributions A.3, A.4, A.7, A.8).

3) Certaines contributions provenant de (2) (g) par exemple sont non-connexes, et
représentent des fluctuations du vide. N.B. Contrairement aux apparences,
certaines contributions provenant de (2) (g) sont connexes: lorsque un vertex

/ S" cr+ apparaît sur une boucle et un vertex / S* cr„ apparaît sur l'autre boucle.
Nous écrivons maintenant :

jj/w www + wwv)

où W ^)(2) est donné par la formule (15).

A) Contributions à W\fm
Dans ce cas le dernier vertex est nécessairement A I+a_.

Diagramme a

A titre d'exemple les deux possibilités découlant du diagramme (a) sont explicitées
dans la figure 3.

2 7T{A2J2}<.S+S_yZÔ(ek,l-ekt-ojn)-—l -AiMMMf!!!^^ + ce. (B-l)1 ' + \k\ k\ ni (ev^-egl+lô) (sk'l-Sq'i+COj + lÔ) v '

ce. signifie: complexe conjugué.

i) 2 tc {A2 J2} <S_ S+yZô (ek,, - y - con) -. ^j^^ -™ + ce (B-2)J + * * *T "' (ck'\-COn-Eq\-COi + lO)(ck'l-0)n-Eq'] + lÖ) V '

Hagramme b

-27z{A2J2}<S_S+yZô(ek,i-ek(-con)- _J?iMMM^j!i^^ _ + cc (B.3)

i) -27i{A*J*}<S_S+yZô(eh., -ek.-con)- fofrtfr*/*t - «'"^V
Hagramme c

kUv\1k\U\AV-*-R»
(%|-%'î + 0>; + î (5) (£Ä'|-%'t+COj + * <5)-2^/2} <5+S_>27ó(%1-eAt-co„) ,.,,_.^l^r;rl,_.^^^ + ex- (B-5)

i) - 2n {A2 f2} <5+ S_yZô (%, - e„ - con) - t*\t*lU\U\fW-k)'Rn + cx. (B-6)

Hagramme d

-2n{A2J2}<S_S+yZô(ek,l-eki-con)-l k&J^f"-*-*" + ce (B-7)

i) -27r{^V2}<S_S+>2:â(%,- £m-co„) -j— ^IMM^t.^!l*,),R" + cx. (B.8)J '' * "' '" (eq'\-£k'\ + 0)n + lÒ) (Eq'\-eq\-Wi + lÒ)

iagramme e

-2n{A2 J2} <S+ SA) Zô (ek, ,-eM- coA --, Jr\7*\th\U\»*"-9)-** + c c (B.9)1 J ' V ' yk * *t ml (e?i_£ft,t+CO!. + j(5) (Eq\-Eh'\ + tÒ)
V '

i) -27t{A2J2}<S+S_yZó(sk.l-ekì-com)l hj^kLz^Z^ —, + c.c. (B-10)
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Diagramme f
(i) 2n{A2J2} <S_S+yZô(ek,:-ekt-com) j—JtlltÜ'*? ^Z'*"'''*^ + ce (B.i;1 J ' » » * »1 ">' fs»'t — Eh' i — m. + i ô) (e«\ -Ch'i + i d) x

(Sq'1-Ck'l-COf + iÔ) (Eql-Ek'l+iÔ)

fq'\fk'\1k\fq\éitq'-k) «»

(%'î -Ek'l + OJn + iÔ) (Sql--«'l + Cy„ + a); + :<5)

fk\Tk'\Tq'[fq\ei(q--q' + fe' -*)•*«
1'-mm-cot + iS) (e- ît£«'J- cuj + i (5)

fk\ïk'lTq"tflle*{q' -g + fe' -*)¦««

-<om-<°i + iô) (£«i--e»'t- com + iâ)

fk\ïk'\fq\fq'\et{q- 9' + *' -*)¦«„
(%t--Eq'[ + (Om + iS)(Eq\--%'|- CO„ + COj + ><5)

fk\fq\Tk'\lq'\et{q' -« + *' -fe)-«„

(e?|-e*'t-£Oj + »'â) [eq{-Eq'\ + i S)

fk\tk'\h'lfq\À^--q' + k' -*>•«„
(Eq\-Eq'[+(Om + iÔ) (tt>y(Um + «é)

fkUqJfiïk'lA^' -q + k' -*)«»

(ii) 2 tt {^2 z2} <s+ s_>i7ô (%, - eh. - œm) j m mmme—"_^ + cx. (B.1:

Diagramme g

(i) 2*{A2J2}<:S_S+yZô(ek,l-ekt-com) ^^^'^.^..^.^^ + ce (B-L

(n) 2,{^/2}<s„5+>27*(M-%t-»j ^^r^:;:,;:;,:^ -+-. (b.l
Diagramme h

(i) 2»{^<s_s+>2a(*;-*t-ao (£?t_;;:^^;?yy^^;T,y + -• CB-li

(ii) 2n{A2J2} <S+S.yZô(ek,t-eki-com) ^ItWS^V^l^^ + «. (*«
Diagramme i
(i) 27r^v2}<g+s->r(3(%i-£AÎ-ft)j —^i-^:^";;^;m ^ ^; - + ce. (B-i:

(ii) 2 * {^ /2} <S S_>27<S (%, - e» - coJ — -7^-"7
: "r"J^-¦' '

- -
" - + ce (B-lï

B) Contribution à W\f&)
En principe, chacun des diagrammes de la figure 2 contribue à Wf^2\ et il y a

aussi quelques diagrammes supplémentaires, tels que celui de la figure 4, car le vertex
A I+ o__ n'est plus nécessairement le dernier, mais un des derniers. Il est facile de voir
cependant qu'aucun des diagrammes possibles ne satisfait notre choix d'états finaux
(équation 12), compte tenu du fait que nous négligeons les transitions longitudinales.
On trouve donc

JF<*)(2) 0. (B-19)

C) Calcul de Wf}
Pour chacune des contributions (B-l), (B-2), etc., il faut calculer la partie réelle.

Celle-ci provient de deux termes. Symboliquement, on peut écrire, si A est réel

A AReZ
(Ef-Ec + iô)(Ef-Ed + io) (Ef-Ec) (Ef-Ed)

-ZAtfò(Ep- Ec) ô (Ej - Ed) (B-20)

On voit qu'en intégrant sur les angles de fe' et q dans (B-l) par exemple, le numérateur
devient réel. A est donc réel et nous pouvons appliquer la formule ci-dessus.

1) Calcul des parties principales

Nous rencontrons à nouveau le problème rencontré à la fin de l'appendice A.
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Nous nous contenterons de montrer que pour une seule impureté, la plupart des

contributions sont négligeables.
On trouve :

B-l + B-2 +...... + B-12 - An {A2 J2} P Z Ö fe,f - ek, - com) fk] f„,

Mk'-q).RH
X | Wi.wd (wt.^ «5- S+y /,, + <S+ s_> /,t)

En écrivant
<5+ S^y <S„ S+> + 2<Sy

on obtient

- <S_ S+> 4 n {A2 J2} Z ô (Bn - eki - com) /A, /,,
i(k'-q)-Rn i(fc-g')-«»

(B-21)

+(Eq'l-Ek'l) (Ek'l-Eqi) (Eq'1+0>j-Ek'j) (Ek' \ - (O; - Eq\

- <Szy 8 rc {A2 J2}ZÔ (%1 - ek] - coj fk] f„,

x( ^-*»-»7^
|

.'<»-«->¦«¦.£,
(B.22)

l (Eq'l-ek'Ù (Sk'i-Eql) (Sq'l + 0}i-E)k'l(Ek'l-(Oi-Sqi) '

Pour une impurité, le premier terme est de l'ordre

~<s_s+>{^v2}^,iog(i + -^)2

Le deuxième terme est de l'ordre

* T
{A2J2}N^log(l + ^-)log^

Ces deux terms sont négligeables.
Les termes B-13, 14, 17 et 18 correspondent à l'expression calculée dans la

référence 1. Pour montrer cela il est pratique de faire d'abord la moyenne sur les

impuretés :

B-13 4rc {A2 J2} <S_ S+yNcZô (eki - %,-coJ ---^ -Y- -/*t/* + *'-*t (B-23)h] M ml
-<*>«,-°>i*£ e* + *'-*t_e*l-0,<

B.14 \n {A2 J2} <S_ S+>NCZÔ (eki - ek,,-com) -J^L-JT—»t'» + * -»t (B-24)
-com-œi ** crk + k,_k^-Ek^-<i)m

B-17 in {A2 J2) <S, S.) NCZÔ (y - ek,, - coj -^\ £_ tM±J^1 (B-25)

B-18 4rc {^2 /2} <SH. S_> iVcrô («„ - %, - o>J -^J F- -V*±j^ji (B-26)
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Dans ces expressions, la somme sur fe et fe' se fait sur la surface de Fermi, de telle
sorte que \k — k'\ varie entre 0 et 2 kf. Il s'ensuit que pour la plus grande partie
de la somme

fkfk + k'-k „ N(0) « ra
ou

^) -2-(1 + ^^ln!T^|)
D'où

B-13 + B-14 + B-17 + B-18

- 8 n {A2 J2} N0^NCZÔ (ek] - %1 + coj fk] f„, U ^L (B-27)

12nz(-A^pj^-{I + m+l)(I

x<^NczZô(eki- eh>[ + coj f^vi U ^1 (B-28)

Il reste B.15 et B.16

B-15 in {A2 J2} <S_ S+yNcZô (e4f - evx + coj ± f.J^Z fk +
k_k,Jk

x { î L—r-1 -0
l £Â + *-*'t £*i ek + k-k'\ £kl+wi J

et pour la même raison que ci-dessus B.16 ~ 0.

2) Calcul des parties imaginaires

Il est facile de voir que toutes ces contributions sont de l'ordre

Par exemple, pour B.l, on obtient, pour une impureté:

~ y {A2 J2} <S+ S__> Ä T «''(*'-*)*« A7*.
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