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Elasticité des métaux paramagnétiques

par 0. Fischer et M. Peter
Institut de Physique Expérimentale de l'Université de Genève

et S. Steinemann
Institut Dr. Reinhard Straumann, Waldenburg et Institut de Physique Expérimentale

de l'Université de Lausanne

(24 IX 68)

Abstract. The kinetic energy of itinerant electrons gives a definite contribution to the elasticity
of metals. The free energy of itinerant electrons and their chemical potential is examined in a
Stoner model and expressions for the susceptibility, compression modulus and thermal dilatation
are derived. The 'internal pressure' of an equation of state for simple metals is explained by a
same model. The main contribution of the band structure and exchange interaction appears for
volume conserving shears and is demonstrated for the whole series of transition metals and their
alloys ; correlations between shear modulus and susceptibility refer in fact to the same contribution
of band structure and exchange interaction.

Introduction
La propriété principale des métaux est l'existence d'une forte densité d'électrons

itinérants. Les propriétés caractéristiques des métaux, telles que la réflectivité
optique, les conductibilités thermique et électrique, la chaleur spécifique et la susceptibilité

magnétique, sont assez directement reliées à la présence de ces électrons
itinérants. La description théorique de ces phénomènes est rendue facile par le fait
que seuls les électrons dont l'énergie est très proche de l'énergie de Fermi interviennent.
La description complète des propriétés thermodynamiques peut être donnée par des
fonctions thermodynamiques telles que l'énergie libre. Mais cette énergie est plus
difficile à calculer, puisque elle dépend des propriétés du réseau ionique, de l'ensemble
des électrons itinérants, et des interactions réseau-électrons.

En premier chapitre du présent travail, nous passons en revue l'énergie libre pour
un modèle simplifié du gaz électronique. Sont utilisés: l'énergie cinétique, le
paramagnétisme des spins, une énergie d'échange simplifiée et une température finie.
Au chapitre II, ce modèle est complété en ajoutant une pression interne qui représente
l'énergie de cohésion du réseau, et nous montrons que ce modèle donne une description
utile de certaines propriétés des métaux alcalins, donc des métaux les plus simples.
Les métaux de transition ont une structure de bande complexe et anisotrope, de façon
qu'un tel modèle semble perdre son utilité. Toutefois, en admettant des sous-bandes
anisotropes, le modèle prédit des corrélations entre la susceptibilité magnétique et les

propriétés élastiques. Au chapitre III, nous élaborons ces corrélations et les mettons
en évidence pour les éléments de transition et certains de leurs alliages. La corrélation
entre module de cisaillement et susceptibilité, précédemment reconnue pour les alliages
du Pd [5], réapparaît pour les alliages du Pt et pour les alliages et composés possédant
de 3 à 5 électrons de valence, donc essentiellement là où la susceptibilité de spin est
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importante, que celle-ci soit due à une haute densité d'état ou à une forte interaction
d'échange. La corrélation est particulièrement nette pour les dérivées par rapport à la
température des valeurs de susceptibilité et des constantes élastiques, puisque ces
dérivées dépendent principalement du mécanisme décrit par notre modèle, tandis que
les valeurs intégrales contiennent aussi de grandes contributions provenant du réseau,
contributions qui dépassent le cadre de la présente discussion.

L'utilité du modèle réside dans la corrélation expérimentalement bien documentée
à laquelle il a conduit. Il a suggéré de nouveaux travaux expérimentaux et il pourra
être comparé avec des calculs plus élaborés concernant les propriétés élastiques des

métaux cristallins ou pseudo-isotropes.

1. Gaz d'électrons libres et son module de compression

Notre discussion se basera sur le modèle simple de Stoner [1]. Les effets de la
structure de bande seront décrits de façon approximative au moyen d'une masse
effective, ce qui permettra d'inclure les métaux dont la densité d'état dévie fortement
de celle du gaz d'électrons libres à cause d'une structure de bande complexe. Nous
tiendrons aussi compte d'une énergie d'échange qui sera introduite comme constante J
entre toutes les paires d'électrons de spin égal.

L'énergie libre est donnée dans ce modèle par

F(F, H, f) n, z+ + n_z_ - \ Jn\- \ f nl__

-kp[N(E) ln [l + exp {^E=A^-}] dE

- k fJn(E) ln [l 4- exp {i^+^L}] dE (1)

H est le champ magnétique externe, le moment magnétique de l'électron est donné

par pj,Q — (g/2) ß, ß est le magneton de Bohr. n+ et n_ sont les nombres d'électrons de

spin positif et de spin négatif et z± est l'énergie de Fermi pour les électrons avec spin
positif (+) respectivement spin négatif (—).

n± n0 + p =Jn(E) /± (E + pi0 H) dE

z
n+ + n_ 2 n0 -

Z est le nombre total d'électrons et F est le volume de l'échantillon. La densité d'état
est celle d'une sorte de spin. f±(E) est la fonction de Fermi-Dirac

f±(E) '
exp{(£-y/AT}+l -

Dans (1) l'énergie libre est décrite comme étant la somme des énergies libres des gaz
à spin positif et à spin négatif, ce qui est possible puisque nous considérons ici l'équilibre

chimique de deux gaz électroniques sans autre interaction que celle d'échange.
Le potentiel chimique pi est donné par

^=Or=2±-/W±- (2)



Vol. 42, 1969 Elasticité des métaux paramagnétiques 461

Pour les calculs suivants, il sera mieux de ne plus tenir compte explicitement de la
séparation des deux gaz, ce qui amène à remplacer z± par une nouvelle énergie de Fermi
ì~ définie par

H f - / «0 (3)

Aussi, la fonction de Fermi-Dirac est définie pour la suite

t(E)
'

exp {(£-£)/A T}+1
•

L'énergie libre est maintenant donnée par

F(F,H,J) 2n0C-fnl+fp2-2 j'f(E)

(/AqH+ jp)2 dE2 N(e) de

N(e) de

dE

dE

(4)

Pour arriver à (4), deux intégrations partielles et ensuite un développement jusqu'au
2ème ordre en (p/,0 H + J p) est fait.

Pour pouvoir calculer le dernier terme, il est nécessaire de connaître l'aimantation
du gaz :

M 2pi0p= NJ[f (E- piqH - jp) - f (E + pIqH + jp)} N(E) dE

x-2pi0J V N(E)dE(pi0H+Jp).

A partir de là, nous obtenons le résultat de Stoner

MIT, J, H) X(T, J)H

X(T, J)
Xo(T)

i-(//2^)x„m
La susceptibilité de Pauli %0(F) est donnée par

di
Xo(T) 2 i4 dE N(E) dE

(5)

(6)

Si en formule (4) le terme / p2 est combiné avec le dernier terme, nous obtenons

F(F, H, J) F(F, H 0, / 0) - Jn2 - f Xo(T)
2 l-(JI2fll)Xo(T)

H2

F(F, H 0, J 0) est la somme du premier et du quatrième terme en (4). Ce résultat
est maintenant développé en F2, H2, (T H)2. On sait que [1]

F (F, H 0, / 0) Uq(Cq)

Xq(F) 2p4N(Q [1 +
(71 k T)2

(n k T)2

L(Ç0)]

N(Co)
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OÙ Co C(T 0, H 0), et

Co

Uq(C0) 2JN(E) E dE
0

Lit)- l (d*N\ l ldNY

ce qui donne pour l'énergie libre

F(F, H, J) Uq(Ç0) - ^-^ N(Cq) -Jn2- £j§f%- H2

__ Inkfl ^V(C0)Z.(Ç0)
6 [1-JN(Ç0)]2 ¦ l ;

La chaleur spécifique et la susceptibilité deviennent

cv=~t IS I (» *)2 ^(w r + -*- fì-jitS-H2 T (8)

V/T n - — _2j4^(Co) (^*)2 ^v(Co)^(Co) r2 ,Qvzi .y; ÖH2 V-/at(c0) + 3 [i-jn(ç0)]2 ¦ w
Pour pouvoir comparer le module de cisaillement calculé en 3ème chapitre avec la
susceptibilité, il est utile de se rappeler que l'aimantation est produite parce que la
bande d'énergie des électrons à spin positif est déplacée vers les énergies plus basses

et la bande d'énergie des électrons à spin négatif vers des énergies plus élevées, de
sorte qu'il y a transfert d'électrons pour rétablir l'équilibre chimique entre le gaz à

spin positif et le gaz à spin négatif.
De la formule (7) peut être déduit le module de compression et le coefficient de

dilatation du gaz électronique. Pour ce faire, il faut cependant connaître la dépendance
en volume des différentes grandeurs. Il est supposé que / et m* (masse effective) sont
indépendants du volume, et comme simplification supplémentaire une «bande
standard», c'est-à-dire N(E) ~ F1'2, est employée. Cette bande standard décrit aussi
des trous dans le cas d'une bande presque remplie et 2 n0 donnera alors le nombre des

trous par unité de volume.
Pour une bande standard, nous aurons

N(Co)=32-^ U(C0)=jn0CQ L(to) -1-jl.
De plus Co ~ V'213, et ainsi A(f0) ~ V-113, U(Ç0) ~ F"5'3

Le module de compression isotherme devient (H 0)

«m - 2 < (j4t - /) + 4r(» k r>a "(M ¦ <10>

Dans le cas de mesures ultrasoniques, on mesure cependant essentiellement le module
de compression adiabatique. Celui-ci se calcule d'après les relations

U(S) F(T(S))-T(S)(§)v S -(^)y
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ce qui donne

^ - - ro. -2 ¦* (w - ')+£ (- * t,! *«" ¦ (ii)
Le coefficient de dilatation est

1 idV\ _jy /d/>„\
a V \dTJp KT XdTIv'

La pression devient alors

t* - (-ïv\ 3 ^^ -J<+\(nkT)2 N(Q (12)

Avec (10), nous obtenons pour a
2 iVa(;0) fa A)2

Il résulte ainsi que # et oc sont proportionnels au facteur de Stoner 1/1 — / N(Ç0) et que
KT et Ks sont proportionnels à l'inverse du facteur de Stoner; par contre, le facteur de

Stoner n'intervient pas pour Cv. Berk et Schrieffer [2] ont montré qu'en tenant
compte de la dépendance en fréquence de l'interaction d'échange, on peut obtenir une
contribution en Cv qui, pour des substances à grand facteur de Stoner, est de la forme

- NJ ln (1 - /A) 77

Cette contribution peut être mise en évidence dans certaines séries d'alliages des

éléments de transition où le facteur de Stoner en fonction du nombre atomique
moyen accuse des maxima prononcés. C'est dans les alliages de cette sorte que l'identification

de la contribution électronique en Cv, i, K et a est bien facilitée. Dans le cas
de la chaleur spécifique et de la susceptibilité, la contribution électronique est évidente,
et en effet dans les séries Ph-Pd-Ag [3] et Ir-Pt-Au [3], on trouve des maxima prononcés
qui peuvent être mis en relation avec les maxima du facteur de Stoner.

Par contre, nous n'avons pas connaissance de mesures donnant une indication
claire sur la contribution électronique au module de compression et au coefficient de

dilatation. Le coefficient de dilatation de différents métaux à basses températures
à été étudié par Andres [4] ; il trouve que par analogie avec le cas de la chaleur

spécifique, le coefficient de dilatation du gaz électronique peut être identifié à des très
basses températures. Ceci donne l'espoir que cette autre contribution du gaz électronique

pourra également être démontrée pour les séries d'alliages indiquées ci-dessus.

Le module de compression de la série d'alliages Rh-Pd-Ag a été étudié par
Belmahi et al. [5]. Pour le module de compression, ils n'ont pas trouvé de minimum
correspondant au maximum de la susceptibilité. Par contre, ils ont observé un faible
minimum dans la dérivée logarithmique par rapport à la température. Pour une bande

standard, on trouve d'après (9) et (10) la relation

x=*4^- (i4)

Le module de compression adiabatique Ks ne montre pas, à température finie, une
proportionalité directe à Ijjr, mais on peut écrire une relation entre les dérivées

logarithmiques de la façon suivante

»--?(£),--»t(*V (15)
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Il faut alors mettre q 1 pour KT et q 5 pour Ks. (d%jdT) < 0 pour la série des

alliages Rh-Pd-Ag, de sorte que la formule ci-dessus prédit pour la quantité k un
maximum et non un minimum. Il est possible que le minimum vu par Belmahi et al.
soit causé par la contribution électronique non pas au module de compression mais au
coefficient de dilatation, étant donné que ces auteurs se sont basés sur une mesure de

vitesse du son. Ce point est en train d'être vérifié par des mesures du coefficient de

dilatation.
Pour terminer ce paragraphe, indiquons que pour toute mesure des coefficients de

température des grandeurs physiques, il faut tenir compte de la dépendance explicite
en température du volume; c'est ainsi que pour n'importe quelle grandeur B

dB ldB\ ldB\ dv
)v+ [dVjidT ' \dT /v \dV Jt dT '

Dans les expressions (7) à (11) et (13), nous ne pouvons identifier directement que
(ÒBjdT)y mais dans un métal réel le deuxième terme de dBjdT est négligeable que si

ce terme est petit par rapport au premier. Ceci est probablement le cas dans les

métaux de transition tels que le Pd, puisque dans ces métaux la densité d'état du gaz
à électrons-«" est forte, et par conséquent la dépendance en température intrinsèque
aussi. Par contre, dans le cas des alcalins à faible densité d'état, le terme proportionnel
en dVjdT devient important. C'est pour cette raison que l'on obtient par exemple que
la susceptibilité de masse du Na augmente avec T, bien que (d%jdT)v < 0 [7].

2. Gaz électronique dans un métal et l'équation d'état

Dans les métaux alcalins, le gaz électronique apporte une contribution essentielle
à l'énergie. On obtient une bonne approximation pour le module de compression en ne
tenant compte que de la contribution électronique. Les forces cohésives du réseau ne

jouent que le rôle d'une pression extérieure qui serait pratiquement indépendante du
volume. Ceci a conduit Borelius [8] à écrire une équation d'état pour les métaux
alcalins de la forme suivante

(pi + p)(ß + AV)=piß. (16)

Dans cette expression, p{ est la pression des forces cohésives dirigées vers l'intérieur
et p la pression extérieure. Ces deux forces sont en équilibre avec la pression du gaz
d'électrons pe. L'équation (16) peut, pour cette raison, être interprétée comme étant
l'équation d'état du gaz électronique dans le volume ß + A V. Pour ß F0, F0 étant
le volume d'équilibre, nous trouvons l'équation pour une isotherme du gaz idéal.
Autrement, il s'agit d'une isotherme pour un gaz Van der Waal avec e F0 — ß.

Si maintenant on introduit y — AVjp F0 et x — AV/V0 on peut représenter
la relation entrey et x qui est donnée par (18), et on trouve la droite donnée en figure 1.

Pour une substance mesurée, on choisit une droite qui donne la meilleure approximation

aux valeurs expérimentales et on peut ainsi déterminer ß et p{ ainsi que le
module de compression

*<y o); *-(-¦£),_„ *.= 7(^ör (17)
dx \- =: y. [ v .-- n ¦ -n ---. t - ¦

Vo
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Si l'on se réfère aux courbes de compression mesurées par Bridgmann (1935 [9]-
1948 [10]), on voit que l'équation (16) est une bonne approximation seulement pour
les basses pressions. A haute pression, on trouve des déviations marquées. Du point
de vue théorique, ceci n'est pas étonnant puisqu'on ne s'attend pas à une équation de
Van der Waal pour un gaz d'électrons. En effet, la situation peut être considérablement

améliorée si l'on part de l'équation d'état du gaz d'électrons libres en gardant
toutefois l'idée du paramètre e. Ce paramètre e peut être interprété comme étant un
covolume, mais il est également possible de l'introduire comme dépendance en masse
effective du volume.

-«V.1cr12cm2dyn-1

Richards (1915)

Bridgman (1935)

Bridgman (1948)

Beecroftet Swenson(1961)

8orelius(1964)
Calculé de (19)

Extrapolation des mesures
de Bridgman(1948)

4^

fet r+ \ x

0,1 0.2 0.3 0,4 0,5 0,6

Figure 1

Equation d'état des métaux alcalins (formules 16 et 17).

Dans la discussion qui suivra, nous allons omettre le terme d'échange, ou plutôt il
sera considéré comme incorporé de façon approximative dans la grandeur p{. La
faute ainsi commise sera discutée plus loin.

Pour H 0, l'énergie libre par unité de volume est donnée par les deux premiers
termes en (7).

Nous introduisons maintenant dans £/„(£„) et A(£0) les valeurs pour la bande

standard, et la masse effective dépendra du volume de la façon suivante

mfi sera la masse effective pour un volume standard F0 ; nous obtenons alors l'équation
d'état suivante (en posant pt + p pe)

(Pt + P) ^(?:;f+c(*r^]
A^-5n0Co C 2{7tQk? Nq(Cq)

(19)

(20)
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L'indice 0 indique les grandeurs qui sont à prendre pour V V0. Par le dernier terme,
nous avons introduit la température dans notre équation d'état. Même à température
ambiante, ce terme sera très petit par rapport aux autres termes. Pour cette raison, la
dépendance en température de l'équation d'état sera donnée par la dependence en

température de l'énergie du réseau, ce qui veut dire que la pression cohesive dépend
de la température: p( pt(T). Par contre, de même que Borelius, nous négligerons
dans p{ la dépendance du volume.

Le comportement isotherme du métal est ainsi identifié avec le comportement de

son gaz électronique. Par contre, c'est l'énergie du réseau qui est la cause de la
dépendance en température des grandeurs physiques.

En omettant le dernier terme de l'équation (19), nous nous trouvons en présence
de seulement deux paramètres indépendants. Ceux-ci peuvent être déterminés dans
notre équation si l'on regarde la tangente de y(x) au point y (0) (Fig. 1). C'est ainsi que
nous pouvons calculer la courbe de compression avec notre équation. Le résultat est

également indiqué en Figure 1. La concordance avec les mesures est maintenant
beaucoup améliorée. Toutefois les déviations subsistent aux très hautes pressions.

Il est maintenant possible de calculer K a partir de la valeur théorique de A donnée

par (20) et de la valeur expérimentale pour e. Le taux de compression sera (19)

K» A m>* ¦

Pour l'énergie de Fermi Co nous prenons les valeurs de Ham [12] corrigées pour la
dilatation thermique à 0°K et 297°K avec l'hypothèse que Co ~ l/J^2'3 (Tableau 1).

Le résultat pour les modules est ensuite donné. Comme point de comparaison, nous
avons aussi noté les modules de compression tirés des mesures faites par Bridgman
en 1948 [15].

Tableau 1

Modules de compression

Elément Li Na K

»0 4,6 ¦ IO22 2,54 ¦ IO22 1,32 • IO22 cm"3

Co 3,33 3,12 2,12 eV

(V0-e)IV0 0,587 0,614 0,640

-^calc. 47,5 22,2 7,29 • 1010 dyn/cm2

mes. 11,5 6,90 3,18 • 1010 dyn/cm2

^calc. 5,8 4,82 2,23 • 1010 dyn/cm2

La concordance n'est que qualitative, les valeurs théoriques sont 2 à 4 fois trop
grandes. Cette discordance n'est pas étonnante puisque l'énergie d'échange a été

négligée mais en réalité elle fait une contribution importante à l'énergie du gaz
électronique et en général donc aussi à K. Pour une discussion du point de vue
qualitatif, nous pouvons prendre dans les alcalins les énergies d'échange calculées par
la méthode Hartree-Fock [16]. Cette énergie d'échange est proportionnelle à
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(Fq/F)1'3 et en introduisant le paramètre e, nous obtenons dans la parenthèse du côté
droit de notre équation d'état

-*mr-
Dans ce cas, B < A. Pour le calcul du module de compression, ce terme donne

effectivement une correction dans le sens voulu ; d'autre part, la forme de la courbe de

compression n'est pas fortement changée puisque la dépendance en F des deux termes
est presque identique. Le tableau contient aussi une valeur Aéalc, calculé en tenant
compte de l'énergie d'échange. La concordance est maintenant bien améliorée.

Il subsiste cependant une déviation relativement forte pour Li; c'est probablement
une conséquence du fait que le Li, contrairement au Na, K, ne possède pas de surface
de Fermi sphérique. Finalement, nous admettons que la situation pourrait encore
être améliorée si l'on tient compte de l'énergie de corrélation.

Jusqu'à maintenant, nous avons pris comme point de départ de notre discussion
l'idée simple d'une pression électronique équilibrée par la pression cohesive du réseau.
Un calcul plus complet permettant de déterminer le volume d'équilibre F0 aura pour
base une expression pour l'énergie tenant compte des interactions avec les ions à

pression externe zéro. L'énergie du réseau peut être négligée si l'on maintient l'hypothèse

que le minimum d'énergie est très plat, de façon que les contributions kp et K
seront faibles.

C'est en se basant sur ces délibérations que Bardeen [13] a proposé une équation
d'état pour le Na et le Li en 1938; à l'aide de la méthode Wigner-Seitz, il calcule
l'énergie du gaz électronique et il trouve

W A'(V0IV) + B'(VqIV)2!3 - C'(VqIV)1!3 (21)

Le deuxième terme à droite est l'énergie cinétique et les deux autres termes
correspondent à l'énergie potentielle et à l'énergie d'échange des électrons. De la formule (21)

on trouve, avec la condition (ÒWjdV)v^v 0, l'équation d'état

^[(*r-(4nK+4*^'({>r-1)]- ^
La dépendance en volume du facteur entre parenthèses carrées est négligeable. Pour
cette raison, cette équation d'état a une forme très semblable à notre équation (19),

pourvu que dans cette dernière nous introduisions le terme d'échange. Toutefois, deux
différences essentielles subsistent. D'une part, il n'est pas tenue compte de la dépendance

en volume des forces cohésives en (22), et d'autre part Bardeen n'a pas
introduit l'idée de covolume ou de masse dépendante du volume.

Comme test de son équation d'état, Bardeen a comparé les isothermes déterminés
à partir de (22) avec les mesures de Bridgman de 1935. Il a ainsi adapté ses
paramètres à la compressibilité mesurée par Bridgman pour p 0. Il trouve que les

pressions calculées à partir de (22) sont légèrement trop faibles, ce qui signifie que dans
la Figure 1 sa courbe se situerait en-dessus de la courbe mesurée. Il est probable que
l'introduction des covolumes e dans la théorie de Bardeen conduise à une meilleure
concordance avec les valeurs expérimentales.

Animalu et Heine [14] ont introduit dans le calcul de l'énergie électronique un
«potentiel écranté» tenant compte des dimensions finies du noyau ionique. Dans ce
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calcul, l'équivalent d'un covolume est donc introduit; nous ne voulons cependant pas
entrer ici dans une discussion de ces calculs plus exacts.

La dépendance en température du module de compression nous fournit un autre
test pour notre équation d'état. Beecroft et Swenson [17] ont mesuré la dépendance
en température du module de compression du Na. Dans la Figure 2, nous reportons le
résultat des mesures [18] ainsi que le module de compression K(T) calculé à l'aide de

(19) en prenant pour K (F 293) la valeur 6,7 ¦ 1010 dyn/cm2.

10 ig _ module de compression K.10 dyncm

8

7

6 -
temperature, °K

20 50 100 200 25015G

Figure 2

Module de compression de la Na en fonction de température selon les mesures de Beecroft et
Swenson [17, 18] et calculé à l'aide de la formule (22) avec K (293 °K) 6,71 • 1010 dyn cm et

(Vo-eW* 0,614.

Pour le calcul, nous prenons le volume molaire en fonction de la température
indiqué dans le travail précité de Beecroft et Swenson. La concordance est très
satisfaisante entre les valeurs ainsi prédites et les valeurs expérimentales, ce qui peut
être compris comme une confirmation qualitative de l'importante contribution
électronique au module de compression dans les alcalins.

Ajoutons pour terminer que notre équation d'état n'est pas de la forme Mie-
Grüneisen. Nous pouvons, il est vrai, introduire la forme

F(V,T)=Fe(V) + Tfg(6ip)j

où Fe(V) est l'énergie totale libre des électrons et 77 • f (djT) l'énergie totale libre du
réseau. La force cohesive pt(T) est maintenant la dérivée du 2ème terme par rapport
à F. Mais pour que p( soit indépendant en volume de toutes les températures, il faut
que la température de Debye change sa dépendance en volume dans la région où

fg(0jT) modifie son comportement en température, c'est-à-dire aux environs de la
température de Debye. Pour cette raison, le paramètre de Grüneisen yG défini par

YG
ôioge

va dépendre de la température. Pour le Na, on peut calculer le paramètre de Grüneisen
en fonction de la température à l'aide des mesures de Beecroft et Swenson. On trouve
en effet que yG dépend de la température, ce qui indique que le Na, ainsi que d'autres
métaux alcalins, ne possède probablement pas d'équation d'état du type Mie-Grün-
eisen.
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3. Module de cisaillement

Pour obtenir des indications sur le module de cisaillement, il faut tenir compte du
réseau réel et par conséquent de la structure de bande. Une distorsion du réseau
modifie en général l'énergie du gaz d'électrons, ce qui conduit à une contribution aux
modules élastiques. Elle est discutée par Leigh [19] pour les conditions T 0, J 0
et Bernstein [20] l'a complétée en incluant le développement en série de l'énergie
jusqu'à l'ordre T2. Nous présentons dans ce qui suit l'extension des calculs de Leigh
pour des températures quelconques et des effets d'échange ; ensuite, les effets du gaz
d'électrons sur les modules sont examinés pour les métaux de transition.

Les modules élastiques sont obtenus par la deuxième dérivée de l'énergie libre par
rapport au volume ou aux cisaillements. Les derniers conservent le volume en premier
ordre, ou bien des déformations de second ordre sont introduites pour compenser un
petit changement de volume résultant des cisaillements (voir Huntington [21]).
Sous ces conditions de constance de volume, les modules de cisaillement isothermes et
adiabatiques s'avèrent être identiques et il suffit d'évaluer

\ dy2 It '

Les distorsions de la zone de Brillouin sont reliées aux déformations du réseau direct
et la figure 3 montre l'exemple du réseau cubique à faces centrées pour les deux cisaillements

G 1/2 (cx et G c44. Une traction en direction [001] et compression
dans les directions perpendiculaires du cristal, conservant le volume (le cisaillement y
changeant la forme est simplement la somme de l'allongement relatif en direction de la
traction et du raccourcissement en directions perpendiculaires), produit pour la zone
de Brillouin une inclinaison des faces hexagonales, tandis que les faces carrées

s'approchent ou s'éloignent de l'orgine distinctement pour les deux faces relatives à

[001] ou les quatre faces en directions perpendiculaires. La compression en direction
[111] du réseau réciproque, donc la déformation qui correspond à G c44 de l'autre
côté, donne des distances variables des faces hexagonales depuis l'origine et peu de

déplacement mais inclinaison des faces carrées.
Une distorsion de la zone de Brillouin affecte peu les états électroniques éloignés

de ces discontinuités d'énergie, mais il ne sera pas de même si ces états se situent près
de la surface de la zone de Brillouin. Pour cette raison, il faut s'attendre à une

cisaillement M (c„- c,

Ez-0,2 f 0,76
G cisaillement c,

r-0,2 n=1
J-

^Y-'
y-j~ —

>—i—-

Figure 3

Les cisaillements indépendants G 1/2 (cxx— c12) et G c44 d'un cube et les distorsions correspon¬
dantes de la première zone de Brillouin pour le réseau cubique à faces centrées.
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contribution marquée aux modules de cisaillement si l'énergie de Fermi est de
l'ordre des énergies liées à la zone de Brillouin. Le détail de l'interaction dépend
évidemment des propriétés topologiques de la surface de Fermi. L'exemple d'une
situation favorable est le Pd qui possède une bande d'électrons-d presque remplie.

Des observations expérimentales [22, 23], qui s'appuyent sur les calculs
de bande de Fletcher [24] pour le Ni et de Allan [25] pour le Ni, Pd et Pt,
montrent en effet que des poches de trous d'électrons-d se situent sur les surfaces
carrées.

Dans le modèle de Leigh [19], repris pour cette étude, il est supposé que les états
électroniques voisins d'une face de la zone de Brillouin se déplacent comme cette face
dans l'échelle des énergies. Aussi, les énergies des faces du même type dépendent d'une
même fonction de gtj, où gtj signifie la distance de ces faces de la zone de Brillouin
depuis l'origine. L'indice i se réfère aux différents types de face et j numérote les

différentes paires de face d'une même type. Toutes les distances q{, sont donc fonction
du cisaillement y considéré et les états électroniques y relatifs forment des bandes
partielles d'un ensemble de structure électronique. La distorsion de la zone Brillouin
produit en conséquence un déplacement des électrons et réarrangement qui est sélectif
envers le genre de cisaillement. Ce modèle ressemble aussi fortement à celui utilisé
récemment par Barisic et Labbé [26] pour calculer les constantes élastiques des

composés du type V3Si.
En supprimant les termes relatifs aux électrons non-affectés par la distorsion

(zones intérieures), l'énergie libre devient
co

F =Znn 'a - 4 JZ< ~ k TZ fNa (E - Ea)
ij i) ij y

X ln (l + exp {—y^}) dE (23)

Le paramètre Ei} décrit le fond de la bande partielle associée à la face ij de la zone
de Brillouin et de même n{j est son nombre partiel d'électrons et N{j (E — E(f) la
densité d'état partielle. Il est utilisé l'hypothèse que l'énergie d'échange, exprimé par
le second terme de l'énergie libre, soit considérable seulement pour les électrons
appartenant aux faces i; ceci se justifie, car l'échange est en général d'autant plus
fort si le transfert d'impulsion est petit. L'énergie d'échange entre deux électrons de la
même bande partielle sera donc plus grande que celle entre des électrons appartenant
à des bandes différentes. Le facteur 1/4 du terme d'échange provient enfin de la
notion que n(j et A^- (E — Et,) comprennent les électrons des deux sortes de

spin.
L'évaluation de la contribution des électrons aux modules de cisaillement suit les

mêmes voies que le calcul précédent de la susceptibilité. Dans les deux cas, la contrainte
extérieure, soit mécanique ou magnétique, provoque un déplacement des bandes

partielles et ce déplacement conduit à un transfert d'électrons entre bandes partielles
qui a pour conséquence un changement d'énergie.

Le potentiel chimique à l'équilibre est indépendant de i j

^=(jn~)T=^-}2-Jn^ W
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où Zu est le potentiel chimique pour J 0, analogue au paramètre z± de la formule (2).
Le nombre de particules est

nu =fNi} (E - EtJ) Fld(E) dE (25)

avec

Fij(E) exp{(E-zu)lkT}+l-

La dérivée de (25) par rapport au cisaillement vaut

oo

Ea

Parce que E(j est supposé n'être fonction que de g,- ¦ et parce que le volume est
conservé

pour des raisons de Symmetrie et en position d'équilibre, désigné par l'indice 0. En
outre, le nombre de particules étant indépendant de y, il est

et avec (26)

et avec (24)

(£)*-» <3»>

comme trouvé par Leigh [19]. Mais l'inclusion de l'échange donne un nouvelle
relation pour le potentiel

Ç&.-TÏ&). <31>

et les modules de cisaillement deviennent

_ô2y=v, (»Eu\ y,(d»tJ\ (dEtJ\
dy2 4* n*J V dy2 }o^4f \ dy )o \ dy )o

Yn (d2EAL) + V fNij(E-Eij)(dFijjdE)dE (dEjA* ,,«4f 'J [ àf )o^jf i+ (1/2) J/Nij (E-Eij) (dFtjlOE) dE [dy. V ^
Le premier terme provient du changement de l'énergie des bandes électroniques
partielles et le deuxième terme est dû au transfert d'électrons entre ces différentes
bandes. Dans le cas d'une bande remplie, le deuxième terme disparaît, pendant que le

premier apporte toujours sa contribution. Le résultat s'applique aussi bien à des

trous qu'à des électrons, cependant n{J doit toujours être interprété en nombre
d'électrons du fait qu'ils contribuent au premier terme pour une bande remplie.
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Il est maintenant particulièrement intéressant de rechercher les corrélations entre
modules de cisaillement et susceptibilité. La dernière est calculée pour un même
modèle incluant l'échange, analogue à ce qui est décrit en chapitre 1, et donne

rtfNijjE-Ejj) (ÒFijjàE)dE
(1/2) J/Nij (E-Eij) (àFijIàE) dE'|h

Exprimant (ÒEijjdy)o par une valeur moyenne (dEjdy)o, il apparaît que le deuxième
terme de la formule (32) est proportionnel à la susceptibilité sous les mêmes conditions.
Combinant (32) et (33)

=ro-£¦«(£).-*(£)> <*>

et
dG_ ^ y, ànAj (d*E \ _ J. (àE\2 dx ,,-,
dT 4r< dT \ dy1 )o p4 \ dy )o dT [ '

dont les premiers termes sont petits, car (d2Ejdy2)0 est faible près de la position
d'équilibre et la dérivée öw^/dT est nulle pour les bandes remplies.

Une contribution importante des électrons aux modules de cisaillement peut être
attendue dans le cas d'une densité d'état élevée ou d'un grand facteur de Stoner.

Remarquons aussi que le deuxième terme des modules (32) ne dépend que du
comportement des états près de l'énergie de Fermi et ce terme est donc fort insensible à

l'hypothèse quelque peu artificielle que la bande d'énergie suit le mouvement des

surfaces de la zone de Brillouin jusqu'à une certaine profondeur (voir aussi réf. [27]).
La condition ci-dessus est réalisée dans les métaux de transition. Pour les alliages

Rh-Pd-Ag, Belmahi et al. [5] n'ont pas pu mettre en évidence directement la contribution

des électrons au module de cisaillement G mais la relation (35) entre les

coefficients de température était satisfaite.
Nous allons maintenant examiner ces relations pour l'ensemble des métaux de

transition. La littérature scientifique et technique peut fournir assez de données pour
la susceptibilité % et son coefficient de température, le module élastique E, le module
de compression K et leurs coefficients de température e (ljE)j(dEjdT) et k

(llK)l(dKldT). Pour les dernières ont été utilisées seulement les mesures qui ont été
obtenues de façon directe par le genre d'expérience employé (E à partir de mesures
statiques ou de vibrations longitudinales ou de flexion de barres, K à partir des

constantes monocristallines obtenues par des techniques d'oscillations ou d'impulsions,
etc. mais non pas les grandeurs calculées à l'aide des relations pour les polycristallins
isotropes p.ex.). Des mesures directes sur le module de cisaillement sont rares, car ce

n'est pas une grandeur qu'intéresse l'ingénieur. Il faut donc tout d'abord clarifier les

relations entre E et G.

Pour le solide polycristallin sans texture, la relation quasi-isotrope entre E, G et K
est

f - 9KG - -3, r - G*
4- & - G"

4~ 3K+G ~ ~K + Tk* ~ 9 K8 + ' ' '

et entre leurs coefficients de température elle est

d _ d I. 9KG \ E E /, G \ G
e +JTlnE AiT{ln TkTg) ~TGZ+TKkx[1-lTK)f> + TKk
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si on utilise pour la dernière expression encore le développement en série de E.
G/3 K ne dépasse pas environ 0,18 (moyenne env. 0,12) pour les métaux de transition
et G2jK vaut seulement 10% de 3 G. Mais il y a un argument plus direct de démontrer
que le module d'élasticité E décrit pratiquement le comportement du module de

cisaillement, c'est de considérer séparément les parts de dilatation et de cisaillement
sans changement de volume sous l'action d'une tension uniaxiale. Zener [28] utilise
cette séparation pour discuter le nombre de Poisson v des monocristaux, qui est une
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Susceptibilités magnétiques et modules élastiques et leurs coefficients de température des éléments
et alliages de la période 4.
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mesure des valeurs relatives des K et G. Pour le corps polycristallin quasi-isotrope,
le rapport des deformations

deformation sans changement volume 3K
3K+2G

1 + v
~2-vdilatation 4- def. sans chang. vol.

est de 0,73 à 0,91, avec une moyenne d'environ 0,8, pour les métaux de transition.
La dilatation fait intervenir en particulier des contributions d'énergie électrostatique.

Les Figures 4, 5 et 6 donnent dans un même ordre les susceptibilités % mesurées à

température ambiante et les contributions orbitales ^orb calculées ou mesurées, les
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Susceptibilités magnétiques et modules élastiques et leurs coefficients de température des éléments
et alliages de la période 5.
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modules élastiques K et E à. température ambiante, les coefficients de température
de x à température ambiante et les coefficients de température e et k 298 °K en fonction
de la concentration électronique eja pour les éléments de la période 4, 5 et 6 respectivement.

Les alliages sont toujours composés d'éléments adjacents d'une même période
(p.ex. Ti-V, V-Cr, Ni-Cu, Zr-Nb etc.), sauf pour les systèmes Nb-Ti, Nb-Cr, Nb-W,
Mo-Re et V-Nb-Ta qui combinent éléments entre périodes et diffèrent de 0 ou 1

valence. Dans ces conditions, on fait appel au modèle de la bande rigide où les électrons
forment une bande commune dont l'occupation est déterminée de façon unique par
une concentration électronique moyenne (voir Vogt [29]). Le choix de la température
ambiante pour déterminer les coefficients de température est arbitraire mais c'est sans

conséquences. La contribution du réseau aux variations des modules élastiques avec
la température devient en effet constante déjà en dessous de la température de Debye
(voir Huntington [21]) et cette dernière est supérieure à 300°K dans quelques cas

300 susceptibilité magnétique 5(, 10 uem mole"'

Rn La Hf AV. W Re Os

200

Ba La Hf A\ W Au
100

AJ- -*• -E

° I" modules élastiques ,10'* dyncnrf^
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coefficient de température susceptibilité 1 Çfe/10 degré "
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10 1234567 89
Figure 6

Susceptibilités magnétiques et modules élastiques et leurs coefficients de température des éléments
et alliages de la période 6.
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d'éléments ou alliages seulement (Ti, V, Cr, Mo, Ru, Rh, W, Re, Os, Ir). La contribution
de la structure électronique d'autre part est contenue dans la formule du module de
cisaillement (32) et de la susceptibilité (33) pour les températures quelconques par la
fonction de Fermi-Dirac.

Ces données sur la susceptibilité et les modules élastiques sont tirées de nombreuses
sources (voir bibliographie séparée). Il n'y a pas lieu de regarder ici la qualité de
toutes ces données mais il faut remarquer que les matériaux d'essais étaient de
différente pureté et que l'état métallurgique (homogénéisation, dégazage, traitement
thermique final etc.) ne doit être identique pour les différentes expériences de
propriétés magnétiques ou élastiques. Les métaux de transition sont p.ex. fort sensibles
aux interstitiels dissous, qui provoquent de nombreux processus de relaxation et ces
derniers modifient le comportement du module élastique.

La susceptibilité % en période 4, 5 et 6 a l'allure identique de pics et vallées. Elle est

généralement élevée depuis la concentration électronique eja 3 jusqu'à 6 et autour
de 10. Là se situent les possibles contributions des électrons aux modules élastiques.

Le coefficient de température de la susceptibilité prend des valeurs positives et
négatives qui sont expliquées par Stoner (voir Wilson [1]) et Kriessman et Callen
[30] ; la position du niveau de Fermi et le nombre des deux sortes de spin dépendent en
effet de la pente et courbure locale de la courbe de densité d'état. Pour que ce
comportement du différentiel se manifeste nettement, il faut que la susceptibilité de spin
soit suffisante et on admet aussi que la contribution diamagnétique et orbitale ne
dépend pas ou peu de la température, i — %OTh doit dépasser environ 20 uem. mole-1.
Cette interprétation est applicable pour les groupes 3, 4, 5 et peut êtres aussi 7, ou les

concentrations électroniques eja 3k 5,5 et autour de 7; les expériences de spectros-
copie-X d'émission der Merz et Ulmer [31, 32] placent les niveaux de Fermi correctement

dans les structures de bande calculées (Mattheis [33, 34]; Loucks [35]) pour
donner les coefficients de température alternant de signe. Pour le Pd et Pt par contre,
l'échange est prépondérant (Berk et Schrieffer [2]; Jensen et Andres [36];
Eggs et Ulmer [37]) mais cet exhaussement d'échange est aussi fortement dépendant
de la température (Brenig [38]).

Le coefficient de température du module élastique montre pour les mêmes raisons
des variations dans les deux sens et la formule (35) exige que les variations de e suivent
une courbe en miroir du coefficient de température de %. L'effet est le plus fort pour
les éléments de la période 5 et semble aussi inclure 1'Yttrium tout au début des métaux
de transition et le Rhénium au milieu pour eja 7 (les données manquent pour Tc) ;

selon le comportement de %, la contribution à e serait positive pour Y et Tc et négative
pour Re.

Dans les modules élastiques, le module de compression K reflète essentiellement la
contribution d'énergie électrostatique interélectronique et doit donc atteindre un
maximum au milieu de la bande-d. Grossièrement, le module élastique E suit une
même courbe, mais une forte contribution des électrons de bande (terme de transfert
en formule) est superposée dans la région des Ti-V, Zr-Nb-Mo, Pd, Ta, Pt, où E décroit
subitement pour remonter ensuite. On peut utiliser les coefficients de température
(lJX)j(d%jdT) et e pour calculer le potentiel (dEjdy) ; introduit en formule (34),dGbande

peut aller jusqu'à 0,7 • 1012 dyn. cm-2 et est une contribution prépondérante.
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Les coefficients de température de la susceptibilité et du module élastique pour la
région eja 4-6 et des alliages à base d'éléments de la période 5 sont montrés en
détail en figure 7. Ces coefficients de température sont réciproques l'un à l'autre
suivant la formule (35), si on déduit de celui de l'élasticité le comportement d'un
module «normal» (contribution du réseau et électrostatique) qui est d'environ
— 3 • 10~4 degré-1 pour Zr et croit à environ — 1 • 10~4 degré-1 pour Mo. Les alliages
de Nb-Ti, Nb-Cr, Nb-W et Mo-Re, c.à.d. entre éléments de périodes différentes mais
de groupes voisins montrent un même comportement ; il est bien connu que la structure
de bande est assez semblable entre périodes et les niveaux de Fermi des composantes
s'identifient.

La série isoélectronique V-Nb-Ta en figure 8 corrobore également les lois discutées.
Ces effets observés pour les métaux de transition sont indépendants de la structure

cristalline; celles-ci sont hexagonales pour les concentrations électroniques eja 3 à

environ 4,2, cubique centré pour eja \,2-\$ jusqu'à environ 6,5 suivant les systèmes
et cubique à faces centrées à eja supérieur à env. 8,5. Cette observation a une signification

particulière pour les éléments du groupe 4 (Ti, Zr, Hf et leurs alliages) où la contribution

électronique au module élastique est forte et négative. La décroissance rapide
du module à température croissante provoque une instabilité de phase (tous les

cisaillements indépendants doivent être positifs!) et est à l'origine du changement de

phase hexagonal-cubique à haute température. Remarquons qu'une situation
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Coefficients de température de la susceptibilité et du module élastique en fonction de la concentra¬
tion électronique eja 4 à 6 pour les alliages à base d'éléments de la période 5.
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semblable se trouve pour les composés du type V3Si, où une transformation martensi-
tique à basse température (Batterman et Barrett [39]) est expliquée par la contribution

des électrons de conduction qui peuvent stabiliser la phase cubique seulement
à haute température (Labbé et Friedel [40]).
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Susceptibilités magnétiques et modules élastiques et leurs coefficients de température pour la
série isoélectronique V-Nb-Ta.

De ces données on peut tenter d'obtenir la quantité (dEjdy)0 qui est un potentiel
de déformation. La variation en température de la susceptibilité d^jdT, obtenue des

références citées avec les figures 4 à 8, comprend essentiellement la variation de ^spin.
Pour dGjdT de la formule (35) par contre, il faut déduire des valeurs observées la
contribution du réseau, d'énergie électrostatique etc., ou simplement la variation d'un
module «normal», non affecté d'effets de bande. Un tel module «normal» peut être
trouvé dans les mesures sur les monocristaux qui différencient nettement l'influence ;

en effet, les coefficients de températures des modules de cisaillement indépendants des

métaux nobles et des métaux Mo, Ru, Re, W, Ir sont à peut près identiques mais ce
n'est pas le cas pour les métaux Ti, V, Y, Zr, Nb, Pd, Hf, Pt où des règles se trouvent
(Tableau 2). Ces différences proviennent de la contribution des bandes partielles,
décrite en formule (32) par l'indice i, c.à.d. de la valeur particulière de la densité
l'état A; et du potentiel de déformation (dEjjjdy)o correspondant. Les coefficients de

température de ces modules «normaux» sont tracés en figure 9 ainsi que les coefficients
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Tableau 2

Comportement des modules

Réseau cubique fCP 1/2 (cxx — cxt

(centré et à faces centrées) (CS cu

Réseau hexagonal

CP {cxx+cxi + 2c3.
CS l/2(Cll-cla)

CT

« normal »

Coefficient de température plus positif

-4c13) «normal»
Coefficient de température plus négatif
(Ti, Zr) et plus positif (Y)
«normal»

de température e (IjE) (dEjdT) observés; les derniers se situent par régions en
dessus des premiers et dans d'autres régions de concentration électronique l'inverse se

produit. Avec cette différence des coefficients de température et la relation «quasi-
isotrope»

âjG

dT gG (l-(£/9JQ)
(1-(2EJ9K)) 3 T 27IT ¦) 3 (1- (2EJ9K))

eE

sont maintenant obtenus les potentiels de déformation (dEjdy)a. Le premier terme de

la formule (35) a été négligé. Les calculs sont approximatifs à deux égards ; le module
élastique n'est pas décomposé en parts «normal» et «anomal» et le coefficient de

+ 1

o

-5

-7

1,5

1,0
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Figure 9

Coefficients de température des modules élastiques des alliages polycristallins et coefficients de

température des modules de cisaillement «normaux» des monocristaux et les potentiels de déforma¬
tion calculés à partir de la formule (35).
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température du polycristal isotrope (orientation des cristallites) comprend en partie
aussi le comportement du cisaillement «normal». Les potentiels ne sont pas nuls pour
les concentrations électroniques eja 3-5,5 et autour de 10.

Ces calculs et considérations sur la contribution électronique au module de

cisaillement sont valables pourvu que le temps de relaxation accompagnant le
transfert des électrons soit infiniment rapide. L'étude des surfaces de Fermi par
l'atténuation ultrasonique (exemples Mo, W [41]) ou les oscillations magnéto-
acoustiques (exemples W, Re [42, 43]) reflète fidèlement les déformations jusqu'à des

fréquences de 1 GHz. L'atténuation, exprimé en frottement interne Q-1, n'est p.ex.
que de l'ordre du 10~4 à 400 MHz pour le Mo et W (Jones et Rayne [41]) et linéaire
avec la fréquence suivant la théorie de Pippard [44].

Discussion

Nous avons vu en chapitre 3 et spécialement en Figures 4 à 6 que la corrélation
entre la susceptibilité et l'élasticité apparaît essentiellement dans le module élastique
(c.à.d. G, dont E dépend). En effet, le module de compression K est inversement
proportionnel à la susceptibilité (formule 14) et E proportionnel à x (formule 34),
mais les constantes de proportionnalité sont 4 n\ px\ et ljpt\ (dE/dyJl et dans bien des

cas, ce dernier facteur est plus important. Ainsi la discussion peut se concentrer sur le
module de cisaillement.

Isenberg [45], Bolef [46] et Featherston et Neighbours [47] discutent les

modules élastiques des métaux de transition à structure cubique centré à l'aide d'un
modèle «d'électrons-d localisés». Mais les études de la diffusion inélastique des neutrons
font supposer l'existence de forces de grande portée (Nb Nakagawa et Woods [48] ;

Mo Woods et Chen [49]; article de revue [50]). Les courbes expérimentales de

dispersion ont été analysées par le modèle de Born-von Karman et il s'avérait nécessaire

de tenir compte des voisins très lointains. La signification de telles forces entre
voisins distants n'est pas très claire mais n'est certes pas compatible avec des
électrons-d «localisés». En outre, les auteurs remarquent que des anomalies de Kohn
peuvent expliquer les particularités des courbes de dispersion pour le Nb. Woods et

Powell [51] trouvent que l'alliage riche en Nb donne une dispersion semblable au Nb
pur et l'alliage de Mo reflète le comportement du métal de base et concluent que ces

alliages désordonnés ont des structures électroniques et phononiques ordonnées
(bande rigide). L'interprétation de tout cela par la contribution des électrons est
réaliste et compatible avec nos résultats sur les modules élastiques, en particulier si on
remarque encore que le modèle de Born-von Karman nécessite l'emploi de constantes
de forces jusqu'aux lOèmes voisins pour le Nb et jusqu'aux 3èmes pour le Mo pour
accorder les résultats; le transfert du moment est évidemment plus fort pour une
susceptibilité élevée et en outre, le potentiel de déformation est grand pour le Nb et
nul pour le Mo.

La distorsion de la surface de Fermi sous pression hydrostatique (Templeton [52])
et traction uniaxiale (Shoenberg et Watts [53]) dans les métaux nobles, obtenue par
l'effet de Haas-van Alphen, ne suit pas simplement l'échelle imposée par le changement
de la zone de Brillouin, comme montre aussi Jan [54] à l'aide du modèle de Ziman.
Notre modèle pour les modules élastiques tient compte d'un tel fait en laissant ouvert
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les paramètres dans les deux termes de la formule (32). La distorsion de la zone de

Brillouin ne peut pas directement imposer une échelle de distorsion pour la surface de
Fermi (qui conserve le nombre de particules), car l'existence d'un potentiel de
déformation de grandeur variable et l'anisotropie détruisent effectivement la proportionnalité.

Pour en savoir davantage, il faudrait faire les calculs de la structure de bande sous
contrainte.

Nous avons ainsi établi des relations générales entre la structure électronique et
une contribution spéciale à l'élasticité des métaux de transition, relations au même

rang que la chaleur électronique ou la température de transition supraconducteur
p.ex. Pour vérifier ces relations par l'expérience et dégager les effets de bande il
était essentiel d'utiliser le nouvel élément de la dérivée par rapport à la température,
dans laquelle les contributions électroniques jouent un rôle essentiel. On doit conclure
que ces études d'élasticité consistuent aussi une intéressante méthode pour l'étude des

structures électroniques, car ces mesures élastiques sont indépendantes du libre
parcours des électrons et applicables pour des corps polycristallins. Pour pouvoir
prouver ces relations, il était évidemment nécessaire de disposer de beaucoup de
données sur des substances suffisamment exemptes de gaz; cela est aujourd'hui le cas.
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Origine des données contenues en figures 4 à 9

A) Susceptibilité des métaux purs: Ca 012; Sc B39, NTS 63, VG 63, AGP64, CP64; Ti K39, SK41,
KTW61, KW65; V K39, K53, CGP59, BT61, KTW61, KW65; Cr MK52, WK64; Mn KM53;
Cu LB62; Zn LB62; Sr 012, RS41; Y B39, CP64, GP68; Zr K39, SK41, KTW61; Nb K53,
KTW61 ; Mo K53, KTW61 ; Tc NBS54; Ru GB31, KTW61, WK67; Rh GB31, HW51, HM52,
KTW61, WK67; Pd HW51, HM52, KTW61, WK67; Ag LB62; Cd LB62; Ba L33; La B39,
L57; Hf KM53, KTW61, VG64; TaHW51, K53, KTW61; W K53, KTW61; Re PC33, NBS54,
KTW61; Os GB31, WK67; Ir GB31, HM52, KTW61, WK67; Pt HW51, HM52, KTW61,
WK67 ; Au LB62 ; Hg LB62.

B) Susceptibilité des alliages: Sc-Ti AGP64; Ti-V TTW62; V-Cr CGP60, TTW62; Cr-Mn TTW62,
LMRRST67 ; Ni-Cu KS43, STK63 ; Cu-Zn LB62; Zr-Nb TTW62 ; Nb-Ti JPM61 ; V-Nb LSV67;
Nb-Ta TTW62; Nb-Mo JPM61, JM62, TTW62; Mo-Tc LVP64; Mo-Re JM62, LMRRST67;
Ru-Rh B68; Rh-Pd BHP60; Pd-Ag S32, W52, HMW53; Ag-Cd LB62; Hf-Ta TTW62; Ta-W
TTW62; W-Re B68; Re-Os B68; Os-Ir B68; Ir-Pt BHP60; Pt-Au BHP60.
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C) Contribution orbitale à la susceptibilité: Se GP65; V HB66; Cr STK62, DL63; Y GPT65;
Zr SK64; Nb BH68; Rh SJW65; Pd WK67, BH68; Ta BH68; Pt WK67; Ti-V-Cr STK63b,
B64, M65; Ni-Cu STK63a, M65; Nb-Mo VLSK63; Hf-Ta-W-Re KS66; Ir-Pt-Au SK64.

Références pour les parts A), B) et C) : AGP64 R. A. Anderson, W. E. Gardner et J. Penfold,
Proc. Int. Conf. Magnetism Nottingham 1964, Inst. Phys. et Phys. Soc, London, p. 186; B39
H. Bommer, Z. Elektrochem. 45, 357 (1939) ; B64 J. Butterworth, Proc. Phys. Soc. 83, 71 (1964) ;

B68 J. G. Booth, Phil. Mag. 77, 205 (1968) ; BH68 D. Baldock et R. Huguenin, sera publié (1968) ;

BHP60 D. W. Budworth, F. E. Hoare et J. Preston, Proc. Roy. Soc. A257, 250 (1960); BT61
J. P. Burger et M. A. Taylor, Phys. Rev. Lett. 6,185 (1961) ; CGP59 B. G. Childs, W. E. Gardner
et J. Penfold, Phil. Mag. 4, 1126 (1959); CGP60 B. G. Childs, W. E. Gardner et J. Penfold,
Phil. Mag. 5, 1267 (1960) ; CP64 V. I. Chechernikov et I. Pop, Izv. Akad. Nauk. SSSR, Ser. fiz.
28, 748 (1964) ; CP64 V. I. Chechernikov et I. Pop, Zh. Eksp. Theor. Fiz. USSR 46,1226 (1964) ; DL
63 J. S. Denbigh et W. M. Lomer, Proc. Phys. Soc. 82, 156 (1963) ; GB31 A. N. Guthrie et L. T.
Bourland, Phys. Rev. 37, 303 (1931); GP65 W. E. Gardner et J. Penfold, Phil. Mag. 11, 549
(1965) ; GP68 W. E. Gardner et J. Penfold, Phys. Lett. 26A, 204 (1968) ; GPT65 W. E. Gardner,
J. Penfold et M. A. Taylor, Proc. Phys. Soc. 85, 963 (1965) ; HB66 R. Huguenin et D. Baldock,
Phys. Rev. Lett. 16, 795 (1966) ; HM52 F. E. Hoare et J. C. Matthews, Proc. Roy. Soc. A 212, 137

(1952) ; HMW53 F. E. Hoare, J. C. Matthews et J. C. Walling, Proc. Roy. Soc. A 216, 502 (1953) ;

HW51 F. E. Hoare et J. C. Walling, Proc. Phys. Soc. B64, 337 (1951) ; JM62 D. W. Jones et
A. D. McQuillan, J. Phys. Chem. Solids 23, 1441 (1962) ; JPQ61 D. W. Jones, N. Pessall et
A. D. McQuillan, Phil. Mag. 6, 455 (1961) ; K39 L. Klemm, Z. Elektrochem. 45, 354 (1939) ;

K53 C. J. Kriessman, Rev. Mod. Phys. 25, 122 (1953) ; KC54 C. J. Kriessman et H. B. Callen,
Phys. Rev. 94, 837 (1954) ; KM53 C. J. Kriessman et T. R. McGuire, Phys. Rev. 90, 374 (1953) ;

KS43 A. R. Kaufmann et C. Starr, Phys. Rev. 63, 445 (1943); KS66 A. Katsuki et M. Shimizu,
J. Phys. Soc. Japan 21, 279 (1966) ; KTW61 H. Kojima, R. S. Tebble et D. E. G. Williams, Proc.
Roy. Soc. A 260, 237 (1961) ; KW65 R. Kohlhaas et W. D. Weiss, Z. Naturforsch. 20a, 1227

(1965) ; L33 C. T. Lane, Phys. Rev. 44, 43 (1933) ; L57 J. M. Lock, Proc. Phys. Soc. B70, 476, 566

(1957); LB62 Landolt-Börnstein: Zahlenwerte und Funktionen, II. Band Eigenschaften der
Materie, 9. Teil Magnetische Eigenschaften 1 (Springer-Verlag 1962) ; LMRRST67 D. A. Levina,
Yu. V. Milman, A. N. Rakitsky, A. P. Rachek, V. I. Silantyev et V. I. Trefilov, Ukrain.
fiz. Zh. 72, 1264 (1967); LSV67 D. J. Lam, J. J. Spokas et D. O. VanOstenburg,
Phys. Rev. 756, 735 (1967); LVP64 D. J. Lam, D. O. VanOstenburg et D. W. Pracht,
J. appi. Phys. 35, 976 (1964); M65 N. Mori, J. Phys. Soc. Japan 20, 1383 (1965); MK52 T. R.
McGuire et C. J. Kriessman, Phys. Rev. 85, 452 (1952) ; NBS54 C. M. Nelson, G. E. Boyd et
W. T. Smith, J. Amer. Chem. Soc. 76, 348 (1954) ; NTS63 O. P. Naumkin, V. F. Terekhova et
Ye. M. Savitskiy, Fiz. metal, metalloved 16, 663 (1963) ; 012 M. Owen, Ann. Phys. 37, 617 (1912) ;

PC33 N. Perakis et L. Capatos, Compt. rend. 196, 611 (1933) ; RS41 S. R. Rao et K. Savithri,
Proc. Ind. Acad. Sci. 14A, 584 (1941); S32 B. Svensson, Ann. Phys. 14, G99 (1932); SJW65
J. A. Seitchik, V. Jaccarino et J. H. Wernick, Phys. Rev. 138, A148 (1965) ; SK41 C. F. Squire
et A. R. Kaufmann, J. Chem. Phys. 9, 673 (1941) ; SK64 M. Shimizu et A. Katsuki, J. Phys. Soc.

Japan 19, 1135 (1964); SK64 M. Shimizu et A. Katsuki, J. Phys. Soc. Japan 19, 1856 (1964);
STK62 M. Shimizu, T. Takahashi et A. Katsuki, J. Phys. Soc. Japan 77, 1740 (1962); STK63a
M. Shimizu, T. Takahashi et A. Katsuki, J. Phys. Soc. Japan 18, 801 (1963) ; STK63b M. Shimizu,
T. Takahashi et A. Katsuki, J. Phys. Soc. Japan 18, 1192 (1963) ; TTW62 S. Taniguchi, R. S.

Tebble et D. E. G. Williams, Proc. Roy. Soc. 265A, 502 (1962) ; VG63 N. V. Volkenshteyn et
E. V. Galoshina, Fiz. metal, metalloved 16, 298 (1963) ; VG64 N. V. Volkenshteyn et E .V.

Galoshina, Fiz. metal, metalloved 18, 784 (1964); VLSK63 D. O. VanOstenburg, D. J. Lam,
M. Shimizu et A. Katsuki, J. Phys. Soc. Japan 18, 1744 (1963) ; W52 J. Wucher, Ann. Phys. 7,

318 (1952) ; WK64 W. D. Weiss et R. Kohlhaas, Z. Naturforschg. 19a, 1631 (1964) ; WK67
W. D. Weiss et R. Kohlhaas, Z. angew. Phys. 23, 175 (1967).

D) Modules élastiques des métaux purs polycristallins et monocristallins: Ca K48; Sc G64; Ti
K48, BR60, AB64, FR64, LB65; V A60, B61, AB64, LB64; Cr AB64; Mn K48, R68a; Fe K48,
RC61; Co K48, M55, FD67; Ni K48, ANS60, AB64, LB64; Cu K48, NS54, OG55, R58, CH66;
Zn K48; Y SCS57, SG60, LB65; Zr K48, M60, AB64, FR64; Nb B61, C62, AB65, ADB66;
Mo K48, FN63, AB64; Ru LB64, FD67; Rh K48; Pd K48, R60; Ag K48, NA58, CH66;



484 0. Fischer, M. Peter et S. Steinemann H. P. A.

Cd K48; Ba K48; La K48; Hf FR64; Ta K48, B61, FN63, AB64, S66; W K48, M60, B62,
FN63, AB64, LG65; Re LB64, SS65, FD67; Os LB64; Ir K48, MRJ66, R68b; Pt K48, MRJ65;
Au K48, NA58, CH66; Hg G64.

E) Modules élastiques d'alliages: Ti-V LB64; Ni-Cu PKF57, OF66; Cu-Zn KR48, NS54, R58;
Zr-Nb BRS57, AAP66, NGH66, H67 ; Nb-Ti FB64, TUM64; Nb-V NC66, H67 ; Nb-Ta TUM64,
NC66, H67; Nb-Mo TUM64, MS68; Nb-Cr TUM64; Mo-Re UT64; Nb-W TUM64, H67;
Rh-Pd BMPPWS66; Pd-Ag KR48, BMPPWS66; Ag-Cd KR48, BS56; Ir-Pt KR48.

Références pour les parts D) et E) : A60 G. A. Alers, Phys. Rev. 119, 1532 (1960); AAP66
H. Albert, F. Assmus et I. Pfeiffer, Solid State Comm. 4, 519 (1966) ; AB64 P. E. Armstrong
et H. L. Brown, Trans. Met. Soc. AIME 230, 962 (1964) ; AB65 P. E. Armstrong et H. L. Brown,
Trans. ASM 58, 30 (1965); ADB66 P. E. Armstrong, J. M. Dickinson et H. L. Brown, Trans.
Met. Soc. AIME 236, 1404 (1966); ANS60 G. A. Alers, J. R. Neighbours et H. Sato, J. Phys.
Chem. Solids 13, 40 (1960) ; B61 D. I. Bolef, J. appi. Phys. 32, 100 (1961) ; B62 B. T. Bernstein,
J. appi. Phys. 33, 2140 (1962); BMPPWS66 O. Belmahi, M. Merck, E. Perréard, M. Peter,
E. Walker et J. R. Schrieffer, Helv. phys. Acta 39, 338 (1966); BR60 K. Bungardt et
K. Ruedinger, Metall 14, 988 (1960) ; BRS57 Yu. F. Bychkov, A. N. Rozanov et D. M. Skorov,
Zh. Atomic Energi USSR 2, 146 (1957) ; BS56 R. Bacon et C. S. Smith, Acta Metallurgica 4, 337

(1956); C62 K. J. Carroll, Bull. Amer. Phys. Soc. 7, 123 (1962) et J. appi. Phys. 36, 3689 (1965);
CH66 Y. A. Chang et L. Himmel, J. appi. Phys. 37, 3567 (1966); FB64 S. G. Fedotov et P. K.
Belousov, Fiz. metal, metalloved 77, 732 (1964) ; FD67 E. S. Fisher et D. Dever, Trans. Met.
Soc. AIME 239, 48 (1967) ; FN63 F. H. Featherston et J. R. Neighbours, Phys. Rev. 130, 1324
(1963) ; FR64 E. S. Fisher et C. J. Renken, Phys. Rev. 135, A482 (1964) ; G64 K. A. Gschneider,
Solid State Phys. (éd. F. Seitz et D. Turnbull) 16, 275 (1964) ; H67 B. Harris, J. Less-Common
Metals 12, 247 (1967) ; K48 W. Koester, Z. Metallkunde 39, 1 (1948) ; KR48 W. Koester et
W. Rauscher, Z. Metallkunde 39, 111 (1948); LB64 Landolt-Börnstein, Zahlenwerte und
Funktionen, IV. Band Technik, 2. Teil Stoffwerte und Verhalten von metallischen Werkstoffen,
Bandteil b) (1964) ; LB65 Landolt-Börnstein, Zahlenwerte und Funktionen, IV. Band Technik,
2. Teil Stoffwerte und Verhalten von metallischen Werkstoffen, Bandteil c) (1965) ; LG65 R. Lowrie
et A. M. Gonas, J. appi. Phys. 36, 2189 (1965) ; M55 H. J. McSkimin, J. appi. Phys. 26, 406 (1955) ;

M60 A. Myers, Phil. Mag. 5, 927 (1960) ; MRJ65 R. E. MacFarlane, J. A. Rayne et C. K. Jones,
Phys. Lett. 18, 91 (1965) ; MRJ66 R. E. MacFarlane, J. A. Rayne et C. K. Jones, Phys. Lett. 20,
234 (1966); MS68 I. Milne et R. E. Smallman, Trans. Soc. AIME 242, 120 (1968); NA58 J. R.
Neighbours et G. A. Alers, Phys. Rev. 111, 707 (1958) ; NC66 M. M. Nedyukha et V. G. Chernyy,
Fiz. metal, metalloved 22, 114 (1966) ; NGH66 C W. Nelson, D. F. Gibbons et R. F. Hehemann,
J. appi. Phys. 34, 4677 (1966) ; NS54 J. R. Neighbours et C S. Smith, Acta Metallurgica 2, 591

(1954) ; OF66 A. F. Orlov et S. G. Fedotov, Fiz. metal, metalloved 22, 137 (1966) ; OG55 W. C
Overton et J. Gaffney, Phys. Rev. 98, 969 (1955) ; PKF57 V. A. Pavlov, N. F. Kriutchkov et
I. D. Fedotov, Fiz. metal, metalloved 5, 374 (1957); R58 J. A. Rayne, Phys. Rev. 772, 1125
(1958); R60 J. A. Rayne, Phys. Rev. 118, 1545 (1960); R68a M. Rosen, Phys. Rev. 165, 357

(1968); R68b J. A. Rayne, communication personelle (1968); RC61 J. A. Rayne et B. S.

Chandrasekhar, Phys. Rev. 122, 1714 (1961); S66 N. Soga, J. appi. Phys. 37, 3416 (1966);
SCS57 J. F. Smith, C. E. Carlson et F. H. Spedding, J. Metals Trans. AIME 209, 1212 (1957);
SG60 J. F. Smith et J. A. Gjevre, J. appi. Phys. 31, 645 (1960); SS65 M. L. Shepard et J. F.
Smith, J. appi. Phys. 36, 1447 (1965) ; TUM64 N. D. Tarasov, R. A. Ulyanov et Ya. D. Mikhay-
lov, Fiz. metal, metalloved 18, 740 (1964); UT64 R. A. Uljanov et N. D. Tarasov, Tsvetnaya
Met. No. 2, 140 (1964).


	Elasticité des métaux paramagnétiques

