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Impossibility of Quantum Mechanics in a Hilbert Space
over a Finite Field

by J.-P. Eckmann and Ph. Ch. Zabey
Institute of Theoretical Physics, University of Geneva

(12. VIII. 68)

Abstract. In this paper, we show that the lattice of propositions of a quantum mechanical
system cannot be represented as subspaces of Hilbert Space with coefficients from a finite field.

The only exceptions are the two dimensional lattices, for which the restriction on the field is

only that it may not be of characteristic 2.

1. The Structure of Irreducible Proposition Systemsx)

According to the axiomatic of Jauch and Piron, the set of all "yes-no" experiments

of a physical system is an irreducible proposition system L, i.e. a partially
ordered set with the following properties,

(i) It is a complete lattice: every family {ai}i of elements of L admits a greatest
lower bound A{ a{ and a least upper bound Vi a(.

(ii) It is orthocomplemented: there exists a mapping a e L |-> a' e L which is
involutive (a" a), decreasing (a ^ b implies b' ^ a') and such that a V a' I, where

I VaeL a is the greatest element of L, we define also 0 I' AaeL a as the least
element of L.

(iii) It is weakly modular: if a < b, then a (aV b') A b.

(iv) It is atomic: every non zero element admits an atom as lower bound; by atom
we mean a non zero element p such that 0 < x < p implies x p.

(v) It satisfies the covering law: if p is an atom and a any element such that a A p
0, then (p V a') A a is an atom.

(vi) It is irreducible: for every pair of atoms (p, q), there exists a third atom r such
that pV q pV r qV r.

The following example ensures the compatibility of these properties; denote by
L(V) the set of all biorthogonal manifolds of a euclidian or of a unitary space V. The
order in L(V) is given by the inclusion, and the orthocomplementation by taking the
orthogonal complement. This set L(V) is a genuine irreducible proposition system.

Conversely, one shows that an irreducible proposition system L can be realized
by the set of all biorthogonal manifolds of a vector space V over some field F, the

l) This section is mostly an extract from: J. M. Jauch, Foundations of Quantum Mechanics
(Chapter 8).
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orthocomplementation defining on F an involutive antiautomorphism a |-> a2) and on
V a scalar product, that is a non degenerate sesquilinear hermitian form S:VxV ->F.
The field F over which V is defined is, up to an isomorphism, determined by the
algebraic structure of L. Usually one takes for F either the field R of real numbers,
or the field C of complex numbers, or the field "U of quaternionic numbers; each of
these is a complete valuated field.

The purpose of this paper is the study of finite dimensional vector spaces over
finite fields; such fields are necessarily complete, for they admit only the trivial
valuation | 0 | 0 and | a | 1 for a ^ 0.

Remarks :

1. In the following we shall say subspace for biorthogonal manifold.
2. We can use a graphical representation for lattices; a point will figure an element, and a "climbing"

line an order relation. o

means a < b.
b

o

In the case of a lattice L(V), it will be sufficent to give all possible inclusions between any sub-
space and a subspace of immediately higher dimension.

2. Finite Fields

Let F be a finite field, and u its unit element. A theorem by Wedderburn3) states
that F is always abelian. The prime field of F, defined as the subfield generated by u,
is isomorphic to the field 2^,, where p is a prime number called the characteristic of
the field (2^ stands for the field of integers modulo p). Thus F is a finite extension
of 2^, with dimension d over 2^, and its order is pd. One knows that to each power pd
of a prime number p (d j^ 1) there exists, up to an isomorphism, a unique field with
pd elements; one usually writes it as GF(p, d)4); its multiplicative group is cyclic
of order pd — 1.

Under an automorphism of F GF(p, d), u and therefore the elements of the
prime field 2# are invariant. The group Aut(F) of automorphisms is cyclic of order d;
each automorphism of F can be written as:

a e F\-> ol^ e F (ô 0,1,2,..., d - 1)

The group Aut(.F) has as generating element the automorphism a l> of.
F has a non trivial involution (that is an automorphism of order 2) if and if only

d is even. Evidently, in that case the automorphism

oiefk a<*c» e F (c d\2)

is a non trivial involution, and there is no other one possible. We write :

ä a(^>.

We say that GF(p, 2 c) is of complex type whereas GF(p, 2 c + 1) is called of real
type, and we shall use the terms and notations commonly adopted, except for | a |2

a a, because a finite field admits only the trivial valuation.

*) a. a; a + ß -ü+ß;äß /3 oc.

3) See E. Artin, Geometric Algebra (Chapter 1, section 8).
4) GF Galois Field.



422 J.-P. Eckmann and Ph. Ch. Zabey H. P. A.

3. Lattices L(p, d, n)

Let F be a vector space of dimension n over the field GF(p, d). Let L(p, d, n)
denote the lattice of all subspaces of V. We intend to calculate the number Nk(p, d, n)
of subspaces of dimension k (0 < k < n) and the number Lkik+X(p, d, n) of subspaces
of dimension k + 1 containing one of the subspaces of dimension k (0 ^ k < n).

First note that each subspace of dimension k has pik elements, or in other words
pdk — 1 non zero vectors.

We calculate the number Fk(p, d, n) of ordered Ä-frames5) of V ; evidently,
Fn(p, d, n) denotes the number of ordered bases of V. We proceed by the construction

of an ordered Ä-frame. There are pdn — 1 possibilities to choose the first vector
of the frame; afterwards there remain pdn — pd vectors in V which are linearly
independent from the first chosen, that is there are pdn — pd possibilities to choose the
second vector of the frame ; there remain pdn — p2d vectors linearly independent from
the first two chosen, and out of these we choose the third one; and so on. It follows
that

Tk(p, d, n) Ti*'] (Pdn - Pdi) (0 <k<n). (3.1)

We define F0(p, d, n) 1. As there are Tk(p, d, k) ordered bases for one Ä-dimen-
sional subspace, Nk(p, d, n) is given by

™>*>*)-WM' (3-2)

Lktk+X(p,d,n) is calculated as follows. A subspace of dimension k + 1 contains
Nk(p, d,k + 1) subspaces of dimension k. As there are Nk+X(p, d, n) subspaces of
dimension k + 1, the total number of inclusions is Nk(p, d,k + 1) Nk+X(p, d, n). Now
there are Nk(p, d, n) subspaces of dimension k, and as each of them is included in the
same number Lk:k+X(p, cl, n) of subspaces of dimension k + 1, we have

Lk k+x(P, à, n) - N^dÌ^f-d-n) Tx (p, d, n-k). (3.3)

The formulas (3.2) and (3.3) characterize completely the structure of the lattice
L(p, d, n).

The next problem discussed in this paper is the following: describe all possible
orthocomplementations of L(p, d, n). This description is possible for all such lattices
and is given by the following theorem.

Theorem: Let L(p,d,n) be defined as before. An orthocomplementation is
possible only if p # 2 and n 2, for each value of d. In this case, there are

Jff (2q f+l)
different ways to realize the orthocomplementation.

The proof of this theorem is divided into three parts:
1st part : (section 4) n 2.

2nd part : (section 5) n > 2 and d odd (real fields).

3rd part: (section 6) n > 2 and d even (complex fields).

A k-frame is a set of k linearly independent vectors; a basis is a total frame.
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4. Two-dimensional Vector Spaces

In a two-dimensional vector space, an orthocomplementation is an involutive
permutation of the 1-dimensional subspaces which leaves no element invariant.
Evidently, the number of 1-dimensional subspaces must be even for such an involution

to exist. But we know that:

Nx(p, d, 2) P™-_1- =pd+l.
If p 2, pd + 1 is odd and there is no orthocomplementation.
If p ^ 2, p is odd and thus pd + 1 is even, and there are orthocomplementations.

Their number is equal to the number of pairings of 2 q pd + 1 elements, this number

is :

(2?)!

We summarize:
(2q-l)(2q-3) ...3-1 - 2qq[

Lemma: A lattice L(2, d, 2) admits no orthocomplementation. A lattice L(p, d, 2),
with p jtz 2, admits

orthocomplementations.

5. Vector Spaces over Real Fields, with Dimension n > 2

The fields GF(p, 2 c + 1) have no non trivial involution. It follows that an ortho-
complementation must be induced by some bilinear form B : V x V ~> F GF (p,
2 c + 1). Before giving the main lemma of this second part, let us recall a few general
notions.

A quadratic space is a pair (V, B) consisting of a vector space V and a bilinear
symmetric form B : V x V -> F. Let x be any vector of a quadratic space. It is said
to be isotropic when B(x, x) 0; note that the zero vector is always isotropic. The

space V itself is said to be isotropic when it contains a non zero isotropic vector.

Remark : In a euclidian or in a unitary space, the scalar product, being non degenerate, does not
admit any non zero isotropic vector; thus such a space is never isotropic.

An orthocomplementation of L(p, 2 c + 1, n) is induced by a bilinear symmetric
form bringing V into a non isotropic space. We recall now the following important
result: "A quadratic space over a finite field is isotropic if its dimension is greater
than or equal to 3"6). As a corollary we have now our main lemma.

Lemma: A lattice L(p, 2 c + \,n), with n~^3, admits no orthocomplementation.

6. Vector Spaces over Complex Fields, with Dimension n > 2

These fields have a non trivial involution a l> a. So we have two possibilities
to choose the form defining the orthocomplementation.

See O. T. O'Meara, Introduction to Quadratic Forms (Section 62).
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A. Fhe involution is the identity

Then, again, the orthocomplementation is induced by a bilinear symmetric form,
and the arguments of the previous section apply ; there is no such form.

B. Fhe involution is not trivial
In this case the orthocomplementation is induced by a sesquilinear hermitian

form S : V x V -> F, which, in a suitable basis (ex, en), is diagonal:

S(x,y) =Xni_xcLi'xiyl

where x 27; x{ et and y 2^-y,- y The hermiticity of S implies a,- a, for all i's. Let
V denote a vector space of same dimension as V but defined over the subfield of F
of the elements invariant under the involution a !>«; this subfield, denoted by F,
corresponds to the real axis of F. V may be identified to a subset of V. The restriction
of 5 to V defines a bilinear symmetric form B : V x V -> F :

x, y e V => B(x, y) S(x, y)

As dim V dim V ^ 3, V is isotropic for B, after the arguments of the previous
section, and hence V is also isotropic for S.

We have therefore proved our last lemma.

Lemma: A lattice L(p, 2 c, n), with n > 3, admits no orthocomplementation.
The three lemmas of the sections 4, 5 and 6 are sufficient to prove the theorem

we stated in section 3.

7. Concluding Remarks and Acknowledgements

Only a lattice L(p, d, 2), with p / 2, admits at least one orthocomplementation.
Such a lattice can always be imbedded in the proposition system of the polarization
states of a photon, i.e. the lattice of subspaces of the unitary space C2-

We would like to thank Prof. J. M. Jauch for having suggested this problem and
for his advice during its solution.
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