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Contribution a la théorie des excitons de WANNIER
dans les cristaux anisotropes

par J.-A. Déverin
Cyanamid European Research Institute, Cologny, Genével)

(28 VIII 68)

Résumé. Sur la base d’'un modéle simple, nous avons établi que 'influence de la discontinuité
du réseau sur l’énergie de liaison des excitons de WANNIER était négligeable. En respectant les
regles de symétrie de la théorie des groupes et & I’aide de la méthode des perturbations, nous avons
calcul€ les corrections a apporter a 1’énergie de liaison pour tenir compte de I’anisotropie, pour des
cristaux uniaxes et biaxes. Les résultats de ces calculs, appliqués aux CdS, CdSe et GaSe, permet-
tent d’interpréter les spectres excitoniques observés avec des valeurs des parameétres de bandes
raisonnables.

1. Introduction

Dans les spectres d’absorption et de réflexion de cristaux non métalliques, déter-
minés au moyen de spectromeétres de haute résolution, on peut quelquefois observer
une série de pics du c6té des basses énergies photoniques des bandes d’absorption.
Ces lignes correspondent a une absorption d’énergie lumineuse nécessaire a la création
d’une paire électron-trou, liés par l'interaction de Coulomb, appelée exciton.

La théorie des excitons a été formulée, voici une trentaine d’années, par FRENKEL
[1] et WANNIER [2], sur la base de deux modeles différents. FRENKEL a employé
'approximation de la liaison étroite en représentant les états par des fonctions ato-
miques localisées. WANNIER, d’autre part, a utilisé des fonctions représentant des
états électroniques se propageant par onde dans le cristal, ce modele est donc repré-
sentatif pour des excitons délocalisés. Nous allons nous restreindre a I'étude de ce
modele. _

Considérons un cristal semi-conducteur ou isolant parfait, contenant 2N électrons
et tel que les atomes soient au repos dans leur position d’équilibre. On peut alors
écrire 'hamiltonien électronique H,:

TV DV )+ S ey D

en négligeant les interactions spin-orbite. Le potentiel V,,; (r,) représente l'inter-
action entre I'électron v et le réseau, et le troisitme terme représente l'interaction
entre électrons. On admet que la fonction d’onde s’écrit comme un produit anti-
symétrisé de fonctions uni-électroniques orthonormales avec spin; on a alors, pour

I’'état fondamental:
Tﬂ: A¢nk1a¢nk1ﬁ¢nk2a ¢nkN,8 (12)

-1) Nouvelle adresse: Institut Battelle, 7, route de Drize, Carouge/Geneve.
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ol 4 est 'opérateur d’antisymétrisation et ¢, k;o est le produit d'une fonction de
Bloch #,, ki(r) exp ¢ k; r de la bande de valence # et de vecteur d’onde k, par la fonction

de spin S(o). L’indice o prend les deux valeurs & = 1/, et § = — /,. A partir de I'état
fondamental ¥, on peut obtenir (2N)2 états excités possibles de la forme:

Tzz;(ke; kﬁ) = Aénkla ¢nk1,8 e ¢nkha ¢mkea' e ¢nkNﬁ (13)

tels qu'un électron de la bande de valence », de spin — ¢ et de moment k, a transité
dans un état de spin ¢’ et de moment k, de la bande de conduction m. Le vecteur
d’onde du systeme est k, — k, = K et la composante du spin le long de 'axe de quan-
tification est %#/2 (o 4 ¢'). On peut montrer qu'une fonction d'onde de la forme

Worns =2 A0 W0, (ke k) (1.4)

mn v
kekh

représente un état exciton. L’indice » représente I'ensemble des nombres quantiques
autres que mmnoo’ caractérisant le systéme. Avec cette fonction, on peut calculer
l’énergie d’excitation qui est:

= [E, + &, (m]; k) — &, (m}; k)]
5 [ ue ) |2
T r.) EETS Pom k, (r) d®r, &
2 | Pn (r) e
//‘?Snkh 4n8 [r—r| ¢nk (ry) dry d*r
2
— 0, (;[/?Smke 1) dre (1) ine, ‘6,.1_,,2| ¢mk ra) G (ry) dPry d%ry
2

MZf/}b nk’ (1’2) 47‘56 |gr1—r2 ‘ ¢nkh 1”2) ¢'nk’ (1‘1) d3 1'1 d3 1‘2} (15)

ou g;(mf; k;) représente l'énergie cinétique de I'électron de la bande 7 = m, »n conte-
nant la masse effective m* et E, est la largeur de la bande interdite. Le second terme
représente la différence de deux énergies d’interaction de Coulomb et le troisieme la
différence de deux énergies d'interaction d’échange.

Si on néglige le spin, on peut introduire un formalisme & deux particules — élec-

tron et trou — dans lequel la fonction d’onde excitonique devient:
Tmnv = ZAIZ:;: ¢mke (re) ¢n ky (rh)
ko Ry

1 v
N o (1) Uy o(1) M ARG exp i (R, 7, + Ky (1.6)

k k),

Si on ignore la modulation du réseau, c’est-a-dire les oscillations rapides introduites
par les facteurs de Bloch #,,,(r) la fonction (1.6) devient:

EAm k, €XP i (k. 7, + k1)) (1.7)

kkﬁ

et est appelée fonction enveloppe.
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Nous montrerons dans 2b que l'influence des facteurs de Bloch est négligeable. On
peut alors chercher les fonctions @,,,, qui minimisent la valeur moyenne de 1'énergie
d’excitation (1.5) en introduisant un parametre de Lagrange E’; de ce probleme de
minimisation on obtient finalement I’équation dite de la masse effective:

32

E'®,,,~ B+ e, m; —iV,) =&, mf; —iV,) | B (18)

ﬁ4ﬂ808|1’e—rh| mny*

On a introduit dans le potentiel de Coulomb effectif une constante diélectrique &
supposée réelle qui rend compte de la polarisabilité du réseau cristallin. Si les bandes
de valence 7 et de conduction m sont isotropes et non dégénérées, on peut passer dans
le systeme des coordonnées du centre de masse R et relative r définies par

Mg To+mj 1

r=r,—1r,, = mﬁ* (19)

de sorte que I’équation (1.8) devient:

2 2

(=2 Vi 257 Vi~ To7] 40 2(R) = E" () (R) (1.10)
ol u = m¥ mjffm¥ 4+ m} est la masse réduite et M = m¥ + m}¥ est la masse totale et
ot I'énergie est comptée a partir du bord de la bande de conduction.

Les fonctions propres du mouvement interne sont alors des fonctions hydro-
géniques @, (r), o n, [, m sont respectivement les nombres quantiques principal,
azimutal et magnétique, et les solutions pour le mouvement du centre de gravité
sont des ondes planes y(R) = 1/)/V expi K - R. Les valeurs propres de I'équation
(1.10) sont:
po? 1 h? K*

“'” S— S s — — ———— .
B, = K n? 2M

(1.11)

Comme nous nous intéressons aux niveaux excitoniques diis au mouvement in-
terne, nous supposerons par la suite que la transition est directe et donne un état
final de moment K essentiellement nul et que nous pourrons ignorer 1'énergie ciné-
tique de translation de la paire.

2. Théorie

a) Cristaux anisotropes

Dans un grand nombre de cristaux, les bandes de valence et de conduction ne
sont pas isotropes, de sorte que les masses effectives ont une forme tensorielle de
composantes mf;; et m¥;,. Si les extrema des bandes de valence et de conduction sont
situés au méme point k, de la zone de Brillouin, alors ces deux bandes sont invariantes
par les opérations de symétrie du groupe du vecteur k,, de sorte que les tenseurs m;;;;
et m};; refletent les mémes propriétés de symétrie et ont les mémes axes principaux.
En choisissant des axes de coordonnées paralltles a ces axes et en ignorant le mouve-
ment du centre de gravité, I'opérateur énergie cinétique s’écrit:

TP s s (2.1)

Loy I P T
2 lp,, 04? Byy 0V My, 02

ou (u;;)~t = (m}y;)~* + (my;;)~! est le tenseur diagonal de la masse réduite.
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Dans un cristal anisotrope, la constante diélectrique peut aussi avoir une forme
tensorielle de composantes ¢;;. Si les extrema des bandes sont situés au centre de la
zone de Brillouin, en k, = 0, alors les tenseurs ¢;; et m},. ont mémes axes principaux,
car ils refletent tous les propriétés de symétrie du groupe ponctuel cristallin; en re-
vanche, si les extrema ne sont pas situés au centre de la zone de Brillouin, alors I'exis-
tence d'un tenseur de masse m},. n'entraine pas nécessairement l'existence d'une
constante diélectrique anisotrope. L’équation de Poisson dans un milieu anisotrope,
rendue isotrope par le changement de coordonnées

1 1 1
(Vgx, "V"E?y: ']'/gz)=(X, Yl
donne alors, dans des axes de coordonnées paralléles aux axes principaux de ¢;;, un
potentiel de Coulomb qui s’écrit [3]:
. e?
Vir) = ‘ : - =T (22
4 7igg l/gyy Coz #% + Exx €z v+ Exx Eyy 2

Apreés avoir effectué une contraction des indices, I'équation de Schrédinger pour un
exciton de WANNIER dans un cristal anisotrope est:
K2 1 92 1 02 1 02
=% (17; o T e T )

2

2 2 2
4n60]/szsyx te. e v te eyl

J $(r) = E(r) . (2.3)

Nous allons traiter, pour commencer, le cas des cristaux uniaxes qui se préte plus
facilement & une solution analytique.

Cristaux uniaxes

Soit z la direction de 'axe unique—axe cristallographique c¢; ce sera aussil'axe de
quantification du moment orbital des états hydrogénoides de I'exciton. Introduisons
les notations suivantes:

E, =& =¢& MUy = Uy =W
€. =¢§) Mz =My -

Aprés avoir multiplié I'équation (2.3) par la quantité 2 u, /A% et aprés avoir sorti
]/a | & de la racine du potentiel, on peut écrire:

0% 0? 0% M o
e B e o i = r)=E'¢(r)--- (24a
09:2 0y2 OZ?. ’u“ sz + yz o E_L/{-,‘u Zz} ¢( ) ¢( ) ( )
o 2uy
E'=E o
3 By e _ 27@;
2 47e, ]/eL ‘;ﬁ h# h?
uy 1
R = my &, € Rao
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Ry est la constante de Rydberg et m, la masse de 1’électron libre. On peut encore
transformer cette équation au moyen d'une déformation de I'espace de long de I'axe z,
correspondant au changement de variables:

(xy]/%z) -End=e.

On obtient alors une concentration de l’anisotropie dans le potentiel et 'équation
(2.4a) devient:

02 02 02 oc o
[“— 08 T o T T Vﬁiz‘l‘ég} d(0) = E'¢(0) - (2.4b)

Nous introduisons le parameétre d’anisotropie A défini par:

4="rL (2.5)
i
Ce parametre que nous supposons réel et positif, représente une mesure du degré
d’anisotropie d’un cristal.
Aprés avoir ajouté et soustrait a I'hamiltonien de (2.4b) un potentiel de Coulomb
isotrope dans les nouvelles coordonnées, I'equation (2.4b) devient:

02 02 02 o :
-~ T p(m] $(0) = E'(0) (2.6)
avec
Fo/ 7 | SRR - z : (2.6b)

V§2‘|‘772+C2 V§E+n2+ Agz'

Nous proposons de traiter le potentiel P(A) comme une perturbation. On voit alors
que dans l'approximation zéro, les fonctions propres sont des fonctions hydrogé-
niques ¢,,,,(0) et les valeurs propres sont
'R o« R 1

e A T
ol # est le nombre quantique principal, avec les dégénérescences accidentelles d’ordre
n? dues a l'isotropie de I'espace @. L’hamiltonien non perturbé appartient au groupe
infini de l'espace isotrope, invariant par toutes les opérations de symétrie. La pertur-
bation P(A) réduit la symétrie du systéme et va, par conséquent, lever des dégéné-
rescences. Elle appartient au groupe Dy, oll toutes les rotations autour de 1'axe z —
ou { — laissent le systéme invariant, ou a un des groupes des systémes hexagonal,
tétragonal ou trigonal, sous-groupes de Dy ,. La théorie des groupes nous permet de
déterminer quelles seront les dégénérescences levées et quels seront les éléments de
matrice de P(A) non nuls:

nlm | PA) |0 m'> = [§31, PA) by B0

De cette étude, on déduit que P(4) a des éléments de matrice diagonaux en / et m
non nuls et que, par conséquent, il y aura une correction du premier ordre a 1'énergie;
ces éléments de matrice peuvent étre non diagonaux en #, car le nombre quantique

26
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principal n’intervient pas dans la détermination de la symétrie d'un état. De plus,
les éléments non diagonaux sont non nuls si A/ =1" — [ est pair, car P(A) est une
fonction paire et Am = m’ — m = 0, car P(4) ne dépend pas de la variable ¢.

Pour nos calculs de perturbation 4 partir d’états dégénérés, on en déduit que la
matrice de P(A) est diagonale pour les deux premiers niveaux excitoniques # = 1, 2,
puisque le potentiel perturbateur ne couple pas des états s avec des états p, mais
qu’elle ne I'est plus, en revanche, a partir du niveau # = 3. Nous avons calculé expli-
citement ces éléments de matrice en fonction du parametre A, pour les états s, p et d.
Pour les éléments de matrice diagonaux, les résultats sont donnés dans les relations
(2.7) a (2.12), ou la fonction f!™(A) ne dépend que des nombres quantiques angulaires
[ et m.

<ns | PA) |ns>=—Eg°[2 — [°%4)] (2.7a)
1 YA+ YA -1
}/A—lln(VA—VA-l) A>1
foo(4) =1 2 A =1 (2.7Db)
2 .
| vica Arcsin /1 — 4 A =1
apy | P(A) | npe> = — 3E3°° [ 5 — fo(a)] 2.82)
1 yA-y4-1
f10(4) = ,g, A=1 (2.8Db)
\W[Arcsinl/l—A—VA (1—A4)] A <1
Mpay | PLA) [ mpar> = — 5 B3 [5 — (a)] (2.92)
1 1 VA+y4-1 VA
YA-1 [1 T m"{)‘] In ( VA= yA— 1) A-1 A1
fi(4) = : A= (2.9Db)
2 1 . v
\ —]/'1"_7“ [1 = *2*(1*/[)] Arcsin V]. — A + 1 A < 1
ndy | P(A) | ndy> = — 5 E1 [% — (4] (2.10a)
[ 1 1 3 27 VA+yA-1
4 {T/}i'-_f [1+ a-1 8(A—1)2] In (72‘:724—:1)
BTN
f20(4) = | ,i, A=1 (2.10b)
1( 2 3
4 \yA-1 [1 T4 T8 (1 A ] Arcsin /1 —
3 yd 9
+tzaar [~ zacal) A<l
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15 noo [ 4 a1
Ay | P(A) [mdapy = — 5 B3 |55 — (4]

ot [l (A

2 (4—1)pe 4(4-1) VA+yA4—1
+ 7oy U+ 7en) A4=1
Fi(4) =1 15 4o
g |1 — Gy Aresin Y1 — 4
e bate s

45 16
sy | P(A) | ndag> = — 52 B3 [ = P2(4)]

1 [1+ 1,3 ]ln(VA+1/£—l)

YA-1 (A-1) 8 (A—1)2 YA-yA=1
34 i
~ 7w |1+ 7a= 4>1
2(4) = % A =1
g 1 3 .
iR [1 ~ A=A + 87(1—7\.)72] Arcsin )1 — 4
. 3y4 1
- e Ll ot L
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(2.11a)

(2.11b)

(2.12a)

(2.12b)

Pour les éléments de matrice non diagonaux, la fonction f**”(A) dépend des trois

nombres quantiques /, /" et m. Pour le troisiéme niveau, on a:

B's| P(A) | 3dy> = — 5 EP [0 — f0(A)]
(34 1 3 YA+ YA -1
A-1  y4A-1 [1+ Z(A—l)]ln(]/A-_VA—l) 431
joo(4) =10 A=1
—3 4 2 3 :
=4 71:2 [ S Zﬁf;*ﬂ] Arcsin Vl — A A <1,

(2.13a)

(2.13D)

Dans ces relations, qui sont valables quel que soit le nombre quantique principal #,
E?90 représente 1'énergie non perturbée du niveau n. De ces éléments de matrice, on
déduit les énergies corrigées au premier ordre pour les deux premiers niveaux exci-

toniques # = 1, 2:
EVi™ = EM™ 4 (nlm | P(A) | nlm)>

E® = E"[f*4) — 1]
ET = E3[f%(4) — 1]
E¥® = EX[3f10(4) — 1]

3
g = 53 [ i) 1]

(2.14)
(2.15)
(2.16)

(2.17)
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Pour le troisiéme niveau, la matrice du potentiel perturbateur n’est plus diago-
nale, comme l'indique la théorie des groupes, car P(A) couple les états 3s et 3d,,.
On obtient alors la correction du premier ordre en diagonalisant la partie non dia-
gonale de la matrice de P(A4), c’est-a-dire la sous-matrice [4]:

|E— 3s|P4)|3s>Bs|Pd)|3dy = E—Vy Vi
’ = . (2.18)

VE V|

| <3dy | P(A) |3s> E — 3d, | P(4) | 3dy>
Ceci revient a chercher les combinaisons linéaires des états 3s et 3d, qui soient
des fonctions de base de ’hamiltonien perturbé ayant la bonne symétrie. On trouve

finalement que ces états hybrides normalisés et les valeurs propres sont:

Vi Ei-Ty

3405 =

I :
| Var Vam Bt 5 T s B 0 (2199
i _ E——'V22 " l’/12
P T OB PO T sy P GDD)
4 1 e
B30 = — [Vy + Vog ) (Vs — Vaal® + 4 V2] . (2.20)

Les signes | caractérisant les états mélanges se rapportent au signe de la racine dans
I'expression (2.20). Cette fagon de repérer les états hybrides (2.19) emploie la relation
E3+0) E3-0 et améne une discontinuité en 4 = 1 dans les courbes E3*+%(A4) ; cecisignifie
que I'état | 3 — 0» pour 4 < 1 correspond a 1'état | 3 + 0> pour 4 > 1 et que ces
états contiennent une forte contribution de la fonction 3s.

On constate que, & partir du niveau # = 3 et pour des états du type s, les énergies
s'écartent des valeurs prédites par la loi hydrogénique en 1/%2%. Si les états s sont per-
mis, la ligne # = 3 correspond a I'état |3 — 0> pour 4 < let |34 0> pour 4 > 1.

Le reste de la matrice, sous-matrice sept sur sept, étant diagonal, les corrections
du premier ordre se calculent comme celles des deux premiers niveaux. Par consé-
quent, les énergies corrigées au premier ordre sont:

EN = EX [3 f10(4) — 1] (2.21)
B3 a0 z f11(4) — 1] (2.22)
EoL . B0 :325_ (A — 1] (2.23)
E32 = g3 {,,,425, lez( Ay~ 1] (2.24)
E3£0 - EEOO{I%——; [}‘OO(A) +5/20(4)—4 + (fOO(Aj-;Sf20(A)).éﬂ+%(f02°(A))2” . (2.25)

Ces résultats sont résumés dans les Figures 1 4 3. Dans les deux premiéres, nous avons
représenté I'évolution du rapport de I'énergie perturbée a 1'énergie non perturbée
E,|E, en fonction du parametre 4, et dans la troisiéme le comportement des trois
premiers niveaux excitoniques E™*"(A4) en fonction de I'anisotropie. Sachant que la
théorie des perturbations n’est valable que si la perturbation est petite, c’est-a-dire
tant que la correction apportée 4 une valeur propre est plus petite que l'intervalle
entre celle-ci et ses voisines, on peut tirer de la figure 3 une limite inférieure de vali-
dité 4 nos calculs et la situer au voisinage de 4 = 0.1; la limite supérieure se trouve
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au-dela de 4 = 5. Si on consideére I'évolution de l'énergie de 'état 1s en fonction du
parametre A, pour des valeurs de A < 1, on voit qu’a la limite 4 = 0 qui devrait
correspondre & un cristal bidimensionnel, on ne trouve pas la valeur £} = 4 Ryd-
berg, valeur propre d'une équation de Schrodinger a deux dimensions. Ceci provient
du fait que le modele que nous proposons ne donne pas, pour A = 0, un hamiltonien
a deux variables; seulle potentiel est bidimensionnel et, de plus, ce n’est pas un poten-
tiel de Coulomb bidimensionnel. Ainsi, il ne permet pas de passer continument d’un
cristal a trois dimensions a un cristal bidimensionnel. Un calcul du second ordre
n’apporte pas de nouveau dédoublement des états dégénérés, les levées de dégéné-
rescences étant déterminées par la symétrie du potentiel perturbateur dés son intro-
duction, c’est-a-dire dés le premier ordre; mais il donne une correction quantitative
a chaque valeur propre. Nous avons calculé cette correction pour le niveau 1s:

CEI — EI%[2  oo(4)2[15 4 0,03 + negl] 410~ + negl.  (2.26)

La convergence est trés rapide et les contributions provenant du couplage de 'état
1s avec des états ayant un nombre quantique principal # > 3 sont négligeables.
Dans le domaine de validité que nous avons attribué & ce modele, la correction du
second ordre représente moins de 39, de la correction du premier ordre. Nous pro-
posons par conséquent de la négliger.

Ep
EO
Cristaux uniaxes
2,57
Etats n=1,2
A=fs S2

Mu n

—- 18 perturbation cinétique

1 2 3 A

L i

Figure 1

Evolution de I'énergie corrigée au premier ordre des perturbations et rapportée a I’énergie non
perturbée des deux premiers niveaux excitoniques.
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Remarquons encore que pour simplifier 'équation (2.4) nous aurions pu choisir
un autre changement de variables tel que (&, #, () = (x,y, ]/e /g 2)- Alors, apres
addition et soustraction d’un terme en 0%/0{2, 'équation (2.4) devient:

02 02 0* o

BT ] L A
, 0 ,
Pld) = (1 4) 55 (2.28)

A ayant la méme définition que précédement. Dans ce cas, I'énergie de I'état 1s
corrigée au premier ordre est donnée par
0 100 4—4
Bl E" —g=s (2.29)
La correction est linéaire en A et la droite d’équation (2.29) est représentée dans la

Figure 12). Elle est tangente, au point 4 = 1, & la courbe définie par la relation

Ep
EO
Cristaux uniaxes
2,5
Etats n=3
Aste €1

Apparition de I'hybridisation

Figure 2

Evolution de I'énergie corrigée au premier ordre et rapportée a I’énergie non perturbée du troi-
si¢me niveau excitonique. Les états | 3 4+ 0) sont des mélanges des fonctions 3s et 3d,.

2) HARPER et HILDER [5] ont utilisé un potentiel perturbateur semblable a celui de la relation
(2.28). Ils n’ont pas diagonalisé exactement la matrice de P’(A4) au moyen d’états mélanges.
En outre, il n’est pas possible de modifier leur paramétre d’anisotropie ¢ sans affecter la cons-
tante de Rydberg; il semble qu’ils n’aient pas pris garde a ce point, ce qui fait que, dans la
Figure 2 de leur article, I'énergie des états s n’est pas fonction de I’anisotropie.
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(2.15); (2.29) représente les deux premiers termes du développement en série de Taylor
de la courbe (2.15).

Les différents états dédoublés n’apparaissent pas nécessairement tous dans le
spectre excitonique. La possibilité de leur existence peut étre déterminée par les
reégles de sélection pour des transitions engendrées par une interaction lumineuse; on
peut a nouveau utiliser la théorie des groupes. Si ’état initial appartient a la repré-
sentation irréductible I', du groupe ponctuel, I'état final a la représentation /', et la
fonction enveloppe - ou état excitonique — a I',,,, on peut former le produit I", x
I, xI', et le décomposer en représentations irréductibles; la transition dipolaire
sera permise si la représentation [, a laquelle appartient le vecteur de polarisation de
I'opérateur d’interaction apparait dans cette décomposition.

Cristaux biaxes

- Reprenons I'équation de Schrodinger (2.3). Dans les cristaux biaxes, on a u, #
My # e F p1, €t £, F &, # &, # ¢, Aprés multiplication par 2 u,/k? et aprés avoir
sorti J/e, e, de la racine du potentiel, (2.3) devient:

[__ u, 0° u, 0% 0?

e Oy 0 0 (e et (eafey) ¥+ 28 ] p=Fy (2303)

2,
B gt
A me Vz_ﬁizﬁ}e
2 .o B2 h?
4 e, l/sxsy I3
avec i " 1 .
R=-=. R« = constante de Rydberg effective.
My E,8,

Effectuons le changement de variables

€m0 =(x %_ y]/E ‘)

Zz MZ
et introduisons les parametres d’anisotropie:
G s 8, B ="z # (2.31)
% P by My
L’équation (2.30a) peut alors s’écrire:
[_ O B A ] é=E'. (2.30D)
0&2 on? o0& ]/C E+ B+ 22

Nous allons de nouveau ajouter et soustraire un potentiel isotrope dans les nouvelles
coordonnées, de sorte que:

_E & 2 A L P(C B|d=E (2.32)
08 T o T 0 T Yeypelr ’ '
et traiter A 2
P(C, B) — e B, (2.33)

VaETEre | Vot B
comme une perturbation. Comme pour les cristaux uniaxes, les fonctions propres
d’ordre zéro sont des fonctions hydrogéniques et les valeurs propres
gprim_ _ R _ B B 1
0 n? 4+ 2p, ut’
avec une dégénérescence d’ordre #2.
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Le potentiel perturbateur P(C, B) appartient au groupe orthorhombique D,,. Par
la théorie des groupes, on trouve que la matrice de P(C, B) est diagonale pour les
deux premiers états » = 1, 2 et que toutes les dégénérescences sont levées sans aucune
hybridisation. Pour le troisieme état, par contre — et pour les états supérieurs — la
matrice n’est plus diagonale; la partie non diagonale, pour # = 3, est une sous-matrice
trois sur trois qui peut étre diagonalisée en prenant pour fonctions de base des combi-
naisons linéaires des états 3s, 3d . et 3d,._ ..

Continu

-2

0.5

1,0

Cristaux unioxes

1!.5

Figure 3

Evolution de 1’énergie corrigée au premier ordre des trois premiers niveaux excitoniques.

Le calcul explicite des éléments de matrice pour les deux premiers états exci-
toniques # = 1 et » = 2 donne les énergies, corrigées au premier ordre, suivantes:

Ey* = Ey[f(C, B) — 1]

EY* = Eg™[f*(C, B) — 1]

Ei*x = EX[3 fi*(C, B) — 1]

Ei?y = Eg" [3 f¥(C, B) — 1]

E3*z = E®[3 1+(C, B) — 1]
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ou les fonctions des parametres d’anisotropie sont:

sinf d6

L 2n T
“(C, B) = 5 [d
1o ) 2 :rr0 QSE)/ V/(C cos?¢ + B sin2¢) sin?f + cos?f

sin®f cos?¢ df

V(C cos®¢+ B sin¢) sin?6 +l cos?0

AC.B) = 5 [as [

F9(C, B) = 5 [a |

ki 4

sin®6 sin2¢ d6

T/?C cos’d+ B ;n%) Sin?0+ cos*0

2m 24
f1(C, B) = —z—%fd‘ﬁf cos2f sinf df
6 o

V(C cos*d+ B sin?$) sin%6 +cos?f

409

(2.40)

(2.41)

(2.42)

(2.43)

Ces relations ne sont pas intégrables analytiquement et ont été calculées numérique-
ment pour différentes valeurs des parametres C et B. Les résultats sont données dans
les Figures 4 et 5 ol nous avons représenté le rapport de 1'énergie perturbée a I'éner-
gie non perturbée en fonction de B, pour différentes valeurs de C. Les mémes limita-
tions apparaissent que dans le cas des cristaux uniaxes; nous plagons les limites de

validité de ce modele au voisinage de

Ge=B=02 et = B=5,

dng"

2'5.

2,01

1,51

1,07

0,51

Cristaux biaxes

Etats 1s et 2s

C=04
C=07
C=1,0
C=15
C=2,0

Figure 4

Energie corrigée au premier ordre et rapportée i 1’énergie non perturbée des états 1s et 2s.
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Ep

Pl |
\ Cristaux biaxes
\\ Etats 2p

2.5] c=E2. 42
\\ = Ex Ay

Figure 5

Energie corrigée au premier ordre et rapportée & 1’énergie non perturbée des états 2p.

b) Discontinuité du milien

Les niveaux discrets excitoniques peuvent étre affectés non seulement par I’ani-
sotropie du cristal, mais aussi par la discontinuité du milieu. En effet, comme le
montre (1.6), la fonction d’onde excitonique est une fonction qui a le double de la
périodicité du réseau et dont I’enveloppe est hydrogénique; toutes les valeurs propres
ont été calculées au-moyen de cette derniere seulement, en ignorant les oscillations
dues aux facteurs de Bloch u,(r) qui représentent la modulation par le réseau. La
question peut se poser de savoir si ces oscillations peuvent amener une correction
importante a 1’énergie.

Nous désignons par ¢,,,, la fonction enveloppe et par ¥,,,, la fonction totale; elles

sont lides par
i W i Rt (1) 1y o(Fa) B (T, o) - (2.44)

Nous supposons de nouveau le centre de masse immobile et nous n’étudions que le
mouvement interne de l'exciton. On sait que les valeurs propres sont données par:

eny fqu:lm H,y ¢nlm a*r d°R .

B 45
i ff ¢:lrr;¢nlmd3r d*R (2 )

avec B B oy a
| Hoe= =g Ve T (2.46)

apres passage au systéme des coordonnées relatives r et du centre de gravité R.
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De méme, avec les fonctions totales (2.44) on a:

Etot .[f 11 tm nlm a*r @R (24_7)

wim [[¥F i ¥y Pr @R

Pour déterminer I'effet des facteurs de Bloch sur I'énergie interne, nous allons étudier
le rapport:

Bl _ [ Vi e Tyin @ @R [[Giimbun @8R
E;nlvm ff¢nlm ng ¢ntm @r d*R ff nlm nlmdfng
A l'aide du théoréme de la moyenne, on trouve que le rapport des normes devient:
) BEimifnin P L 2.49)
ff "lm nim B3 3R [u ,-; |2 ] u, ,.,) !2

Il ne dépend que de la valeur des facteurs de Bloch aux points r, et r,, mais le choix
de ces points dépend de 'ensemble des nombres quantiques (nim). Pour estimer le
rapport des éléments de matrice non normalisés, il nous faut faire appel au théoreme
du viriel dans la forme établie par MORGAN et LANDSBERG [6]. Si T représente 1'opé-
rateur énergie cinétique et V' le potentiel de Coulomb, ce théoreme dit que:

2<nl T%nl) = — <nl'§V!nl> =—2E,0,,,

ol E, est la valeur propre de I'énergie repérée par le nombre quantique #; I'indice /
représente l'ensemble des autres nombres quantiques et caractérise les dégénéres-
cences. Cette relation est indépendante de la forme explicite des fonctions d’onde.
Par conséquent:-

ff nim d3rd3R ff ntm rzlm couidrdR
ff¢ﬂlmHex¢nlmd3rd3R ff¢ntm¢n1m couldsrdaR

Le troisiéme terme-de cette relation a été obtenu en faisant de nouveau usage du
théoréme de la moyenne; ceci est possible car I'intégrand ne contient plus d’opera-
teur. Le choix des points ] et r; dépend aussi des nombres quantiques (nim); ces
points sont différents des r], car les intégrands des relations (2.49) et (2.50) ne sont
pas identiques.

Le rapport des énergies devient alors:

- lMCO(r;) |2 | uUO(r;) }2' (2'51)

Exim _ %0 [P |4, o) P

ESS, Lot B oy, ofr)) |2

(2.50)

MCO

et n’est pas égal 4 'unité; il est fonction de chacun des trois nombres quantiques #,
I et m. Par conséquent, des états ayant méme # ne sont pas dégénérés dans un milieu
discret, alors qu’ils le sont dans un cristal supposé continu ou on ne considére que
la fonction enveloppe.

Nous allons calculer la forme explicite de ce rapport pour le cas simple suivant:

=4 cos (K -r,) w,, = A, cos (K -r,) (2.52)

ol K est un vecteur entier du réseau réciproque. Les facteurs de Bloch sont donc des
ondes planes dans la direction K. Il faut en fait, pour avoir un modele représentatif
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d'un cristal a trois dimensions, prendre une superposition d’ondes planes ayant des
K différents en module et en direction. Mais nous allons nous restreindre a 'approxi-
mation des plus proches voisins en ne considérant que les vecteurs K de 'étoile de
<1005 ; les ondes qui leur correspondent sont orthogonales et, en employant le prin-
cipe de superposition, on peut sommer les contributions de chacune des ondes par-
tielles pour trouver le rapport total. Chaque rapport partiel a méme dépendance
fonctionnelle en nlm et en K.

On trouve finalement que le rapport total des énergies est donné par la relation:
Enim 2 [ buim [ [c0s* (K - 1)+ (1/2)] Voot 1 [1$nim 2 &r

EH‘U

nml ” ¢rzlrn | coul asr | [i¢n£m 1[2 cos? (K 1‘)—|—(]_/2)] dsr

ou la sommation s’étend a tous les vecteurs K de I'étoile de <100>.

On peut démontrer, en calculant explicitement le rapport (2.53) pour chaque
état nlm, que l'énergie calculée au moyen de la fonction enveloppe seule est une
approximation par défaut trés peu différente de I'énergie calculée en tenant compte
des facteurs de Bloch. Cette différence est inférieure & 19, de 'énergie interne R dés
que I'extension de l'exciton — rayon de Bohr - est supérieure & deux distances inter-
atomiques, pour autant que l'approximation (2.44) soit toujours valable pour des
excitons aussi localisés.

La réintroduction des facteurs de Bloch n’amenant pas de correction suffisamment
importante, nous les considérons comme négligeables.

(2.53)

3. Comparaison avec 1’expérience

Parmi les cristaux uniaxes présentant des lignes excitoniques dans leur spectre,
nous n’en avons considéré que trois, a savoir: CdS, CdSe et GaSe. En effet, nous
n’avons trouvé dans la littérature des données suffisantes que pour ces trois composés
semiconducteurs. Outre la position en énergie des lignes, il nous faut les composantes
de la constante diélectrique et de la masse réduite. Lorsque trois lignes excitoniques
au moins sont observées, on peut déduire des énergies E"'™(A4) les valeurs de R et
de 4, donc deux des quatre grandeurs ¢, ¢, ¢, et y siles deux autres sont connues.
Nous n’avons pas considéré que la constante diélectrique peut étre approchée par le
carré des indices de réfraction mesurés a la fréquence de la transition; cette approxi-
maxion ne tient pas compte du fait que les indices sont complexes lorsqu’il y a absorp-
tion et que le cristal n’est pas polarisé par le champ électrique lumineux. Nous avons
employé la constante diélectrique statique qui est une bonne approximation pour des
excitons de grande extension.

Nous n’avons trouvé aucune donnée utilisable pour des cristaux biaxes.

a) Sulfure de cadmium et séléniure de cadmium

Ces deux composés semiconducteurs cristallisent dans une structure hexagonale —
wurtzite — et sont, par conséquent, uniaxes. Ils présentent tous deux trois séries
excitoniques visibles, 4 4,2°K, entre 2,55 eV et 2,65 eV pour le CdS [7] et entre 1,82
eV et 2,28 eV pour le CdSe [8]. Ces séries correspondent a des transitions entre les
bandes de valence séparées sous 'effet du champ cristallin et de l'interaction spin-
orbite, appartenant aux représentations irréductibles I'y, I'; et I, du double groupe
Cg, €n B = 0, et la bande de conduction [7,. La premiére série, appelée 4, provient
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de la transition Iy — I7, et n’est permise que pour une polarisation perpendiculaire
a I'axe c; les deux autres sont appelées B et C et correspondent aux deux transitions
I'. — I'; permises pour les deux polarisations paralléle et perpendiculaire a l'axe c.
La position des lignes des trois séries est donnée par les formules [7]:

Ryd 4

EexA:Eg_ 02 EJ—C
Ryd
EexB: g_—f;—g'zb;_EAB B 1% EHC
: Ryd
EexC: 7 —né""c'—_EAB_EBC E—J—C’ EHC

ot E, = 2,582 eV, E 5= 16 meV, Exc = 57 meV pour le CdS et £, = 1,8411 eV,
E p=25meV, Eg- = 4,33 meV pour le CdSe.

Les composantes du tenseur diélectrique sont &, = 10,8 et g = 7,8 pour le
CdS selon Masumr [9] et &, = 9,7 et g = 10,65 pour le CdSe selon WHEELER et
Dimmock [8]. Nous avons obtenu les valeurs du paramétre d’anisotropie 4 et de
la constante de Rydberg R pour les séries A et B du CdS et pour la série 4 du CdSe
par un ajustement de 1'énergie calculée A 1'énergie observée de deux lignes (nim) et
(n'l'm’) ayant une paire de nombres quantiques /m et I'm’ différente. Les énergies
calculées E*™(A) et observées E};” sont données dans les tableaux 1 a 3; nous y
avons aussi indiqué les raies ayant servi au calcul de 4 et R ainsi que les composarnites
p, et py du tenseur de masse excitonique déduites. Ces composantes ont des valeurs
comparables a celles trouvées par THoMAS et HOPFIELD [7] pour le CdS et par WHEE-
LER et DiMMocK [8] pour le CdSe. Les autres séries excitoniques en présentent pas
assez de raies pour un ajustement sans équivoque de la théorie a 1'expérience.

b) Séléniure de gallium

La structure du GaSe, trés anisotrope, a été étudiée par BASINSKI et coll. [10].
Il est formé d'un empilement de couches liées par des forces de Van der Waals, chacune
de ces couches contenant deux sous-couches d’atomes de gallium et deux sous-couches

Tableau 1
Série A du Cd S. R = 31 meV A = 1,24

n EY ERim (4 = 1,24) Efin,

1 31 meV 28,8 meVls 28,8 meV 1s
7,41 meV 2 py,

2 7,75 meV 7,20 meV 2 s 7,2 meV 2 s ajust.
6,80 meV 2 p,

3,28 meV 3 py,
3,20 meV | 3+ 0>
3,13 meV 3 dy,
3,03 meV | 3-0>
3,0 meV 3 p,
2,77 meV 3 d,

3 3,45 meV 3,2 meV | 3+0) ajust.

u = 0,192 m, )| = 0,214 m,
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Tableau 2
Série Bdu Cd S R = 32 meV A = 1,24

" E} ERim (4 = 1,24) 2%

1 32 meV 29,7 meV 1s 29,7 meV 1 s ajust.
7,64 meV 2 py,

2 8 meV 7,43 meV 25 7.4 meV 2 s
7,02 meV 2 p,

3,40 meV 3 pyy
3,31 meV | 3+0)
3,23 meV 3 dy,;
3,13 meV | 3-0)
3,10 meV 3 p,
2,86 meV 3dy,

3 3,56 meV 3,3 meV | 3+0)

p = 0,198 my, )| = 0,221 m,

de sélénium, avec la séquence Se-Ga-Ga-Se; les liaisons dans une couche quadruple
sont covalentes. L’axe cristallographique ¢ — direction d’anisotropie — est normal au
plan des couches. Il y a trois fagons possibles d’empiler les couches quadruples et le
GaSe cristallise dans des structures hexagonale ou rhomboédrique.

Une telle anisotropie dans les forces de liaison peut amener a penser qu'un modeéle
bidimensionnel est représentatif, comme l'a fait RaLpu [11]. Nous ne pensons pas
que ce soit le cas, car une partition de la fonction d’onde en une fonction de z et une
fonction de #, y n'implique pas, a cause des relations d’orthogonalité et de fermeture,
que les propriétés optiques dans le plan des couches soient indépendantes de la
variable z.

On peut observer, dans le GaSe, deux séries excitoniques situées, a 1,7°K, entre
2,10 eV et 2,13 eV, qui ont toutes deux la méme limite 2,1293 eV. La premiére montre

Tableau 3
Série A du Cd Se R = 14,1 meV A = 0,76

n Ef E3lm (4 = 0,76) e
1 14,1 meV 154 meV 1ls 15,5 meV 1s
4,10 meV 2 p, 4,1 meV 2 p, ajust.
2 3,53 meV 3,84 meV 2 s 3,9 meV 2s (?)
3,70 meV 2 py, 3,7 meV 2 p,, ajust.

1,92 meV 3 dy,
1,82, meV 3 p,
1,81 meV |3+ 0>
1,74 meV 3 dy,
1,70 meV | 3-0)
1,65 meV 3 py,

3 1,57 meV 1,65 meV 3 py,

u = 0,107 m, wy = 0,128 m,
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quatre lignes d’intensité moyenne qui sont permises pour une polarisation E perpen-
diculaire a l'axe ¢; la seconde n’a que deux lignes de forte intensité visibles pour
E | | ¢, Le fait que les deux séries aient méme limite indique qu’aucune des bandes de
valence et de conduction n'est dédoublée par l'interaction spin-orbite; ceci est con-
firmé par la structure de bandes proposée par BassaNT et PAsTORI [12] et corrigée
par BREBNER [13], ou, pour la transition directe, les points critiques des bandes de
conduction et de valence se trouvent au point /" de la zone de Brillouin, k = 0, et
appartiennent aux représentations irréductibles I'; et I'], respectivement, du groupe
simple de Dsg,. Chacune de ces représentations est unidimensionnelle, de sorte que
les deux bandes sont non dégénérées.

Considérons tout d’abord la premiére série. A 4,2°K, pour une polarisation E | ¢,
les énergies trouvées par BREBNER et MOOSER [13] sont £, = 2,1096 eV, E, = 2,1244
eV, Eg = 2,1271 eV, E, = 2,1277 eV ; on tire, d’apres la loi hydrogénique, une cons-
tante de Rydberg expérimentale R = 19,7 meV.

A 1,7°K, pour la méme polarisation, les énergies [14] sont £, = 2,1099 eV, E, =
2,1246 eV, E, = 21273 eV, E, = 2,1283 e¢V; on en tire la constante de Rydberg
expérimentale R = 19,6 meV. La ligne » = 2 est asymétrique et présente une queue
du coté des hautes énergies. On attribue cette queue a la transition aux états 2 p4,
permise par la symétrie. Néanmoins, il n’a pas été possible de trouver I'énergie
exacte de ces états. D’autre part, malgré le fait que la transition a I'état 2 p, soit
symétriquement interdite, il a été possible de résoudre la ligne 2 p, en présence d'un
champ magnétique perpendiculaire 4 I'axe ¢ et de trouver son énergie E, = 2.1238 eV
a champ nul par extrapolation. De mesures de capacité et de réflectivité infrarouge,
LEUNG et coll. [15] ont tiré les valeurs des composantes du tenseur diélectrique sta-

tique: g, =104, g = 7,6 .

D’autre part, HALPERN [16] propose un rapport des masses u , /i ~ 0,2 et BREBNER
et coll. [17] proposent une masse effective interbande dans le plan des couches u |, =
0,125 m,, déduite de l'espacement des lignes observées en présence d'un champ
magnétique. On peut donc calculer un ordre de grandeur du parametre d’anisotropie
A et de la constante de Rydberg excitonique:

R =~ 21,9 meV A =~ 0,268. .

Une valeur de R = 21,9 meV entraine que A doit étre supérieur a 1. Un ajustement

semblable & ce que nous avons fait précédemment effectué avec les deux lignes 2 s et
2 p, donne:

A=051  R=162meV  pu, =00925m,  w =0243m.

Les énergies calculées et observées sont données dans le Tableau 4.

Dans #n = 4, les états | 4 + 0> représentent les états mélanges de 4 s et 4 d; les
états non calculés sont les hybrides de 4 p, et 4 /, interdits, de 4 p, avec 4 f1, permis
ainsi que les états 4 f., interdits et 4 f., permis. Les énergies calculées sont en bon
accord avec les énergies observées et les masses excitoniques u ; et y sont raisonnables.

Les énergies des lignes de la seconde série sont [14] a 1,7°K, E, = 2,1116 eV et
E, = 2,1248 eV; la limite est la méme que celle de la premiére série, a savoir 2,1295

eV. Les énergies internes sont donc E!, = 17,9 meV et E%, = 4,7 meV et les dé-
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Tableau 4
Série E | ¢ du GaSe R = 16,2 meV A = 0,51

" En E%m (4 = 0,51) Enjm
1 16,2 meV 19,6 meV 1 s permis 19,6 meV 15
3,70 meV 2 p, interdit 5,7 meV 2 p, ajust.
2 4,05 meV 4,90 meV 2 s permis 4,9 meV 2 s ajust.
4,53 meV 2 p, permis Non résolue

2,68 meV 3 d, permis
2,53 meV 3 p, interdit
2,52 meV | 3+ 0> permis
2,27 meV 3 d, interdit
2,17 meV | 3— 0> permis
2,01 meV 3 py, permis

3 1,80 meV 2,2 meV | 3-0>

1,50 meV 4 d, permis
1,40 meV | 44 0) permis
4 1,01 meV 1,28 meV 4 d,, interdit 1,2 meV [ 4-0> (?)
1,21 meV | 4 -0} permis
6 états non calculés

M = 0,0925 m, H = 0,243 m,

doublements entre la premiére et la deuxiéme série sont A, = 1,7 meV et 4, = 0,2
meV. Il y a deux phénomenes possibles pour expliquer ce dédoublement : I'interaction
d’échange et le fait que le moment du photon incident n’est pas négligeable, de sorte
que l'exciton posséde un vecteur d’onde petit, mais non nul, ce qui ameéne la distinc-
tion entre exciton longitudinal et transversal [18].

Avant d’expliciter ces deux phénomeénes, nous allons étudier les régles de sélec-
tion pour les deux séries.

L’introduction du spin change les propriétés de symétrie des états excitoniques.
Les fonctions de spin sont «,f, — «,8, pour un singulet et o, (.8, et «f, + o8,
pour un triplet; elles appartiennent aux représentations /7 pour le singulet, et Iy,
I'; et I') respectivement pour le triplet. Dans le groupe Dy, le triplet est dédoublé
en un singulet Iy et un doublet I'y. Sachant que, dans le GaSe, la bande de valence
appartient a la représentation I} du groupe simple de Dy, ou I's du double groupe,
la bande de conduction & I, ou I, du double groupe, 'opérateur de transition
E | cal'f et l'opérateur E || c & I, les reégles de sélection sont les suivantes:

Groupe simple
Sans spin Avec spin
s IgxI'txly=I,E]||c s singulet Iy x I x i x I =I5 E||¢c
s doublet I'y X I'txI'fxIy=1I7E | ¢
s singulet Iy x I'f x I'f x I'y = I'T interdit.
Double groupe (couplage spin-orbite)
ssxIyxI'f =7+ I+ Iy El|le, E | c.
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On voit que l'exciton appartenant a la représentation I'y qui est visible pour
E | ¢ n’est permis que par l'introduction de I'interaction spin-orbite.

En comparant les données du double groupe et du groupe simple avec spin, puis-
que l'interaction spin-orbite est faible, on constate que les excitons appartenant aux
représentations 'y et I') sont principalement singulet, respectivement doublet. Le
singulet I n’est jamais visible. '

Si nous reprenons 'équation (1.5) pour un état singulet excitonique il faut intro-
duire l'interaction d’échange dans I'énergie d’excitation. En 'absence de couplage
spin-orbite, dans I'énergie totale, cette contribution prend la forme:

r 3 o
20 2 A A B (1) T, (1) S bl
e"h TeTh

1

1 *
A9 dB, A3, S 2 Ll e u* r
X ¢nkk( 1) 1 %1y NV e k,k, Ck,k, mkfo( 1)
e h cell

oL
X %:khxo(rz) Tri=r] ”mke~o("2) U, kh:()(rl) adry d3r,

= Kell ‘ qsnlm(o) 12 ‘Eéch (atomique)

i— T Uy, o(rZ) U, 0(1'1) d31'1 d3l‘2

: 1
Eéch (atomlque) - T2 %;0(1‘1) /M’::o(rz) T
cell P {

| 7y
cell

est une combinaison d’énergies d’échange calculées entre des fonctions de WANNIER,
c’est-a-dire, dans notre cas, avec des orbitales de Ga et Se. La contribution de l'inté-
grale d’échange est non nulle lorsque 1’électron de conduction a un spin anti-paralléle
a celui du trou; c’est un état singulet excitonique. La contribution la plus importante
provient des états o1 le trou et I'électron ont une probabilité non nulle de se trouver
au méme site. Seuls les excitons du type s subiront un déplacement énergétique impor-
tant. On peut donc écrire la formule donnant la position en énergie des états excito-
niques comme:
i Eglm =E,— ‘52_ FA) + ’”J%Tm“ 010 050

ol 9,, signifie que la contribution d’échange est finie pour les états s seulement et
0,9 signifie que seul 1’état singulet ayant un spin total nul regoit une contribution
de I'interaction d’échange.

L’écart observé entre les deux séries semble suivre la loi E ;/n?, car 4, ~ 1/8 A;;
mais ceci n'est vérifié que pour deux lignes. Une estimation de 1'énergie d’échange
[19] donne une valeur de I'ordre de 2 meV pour 1'état 1 s, lorsque I’échange a lieu
dans la configuration 4 s (2S) 4 p du Ga-1.

De plus, la premiére série, correspondant aux états doublets aura un facteur de
Landé g différent de celui de la seconde série, formée de 1'état singulet; ce point est
en accord avec les observations faites en présence d'un champ magnétique [14].
L’intensité de la série doublet est faible relativement a I'intensité de la série singulet,
car, comme le montrent les régles de sélection, le doublet n’est permis que par I'intro-
duction d’une interaction spin-orbite.

HOPFIELD a proposé un modele [19] d’interaction lumiére-matiére dans lequel il
considére un exciton comme une forme d’onde de polarisation se propageant a tra-

27
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vers le cristal; cette onde vibre selon deux modes, I'un transversal d’énergie hw et
I'autre mixte-longitudinal et transversal — d’énergie

how l/l + — 6 sin? 7

ou 7 est I'angle de réfraction, ¢ une constante diélectrique et 4 zf la force de l'oscilla-
teur. Sur la base de ce modele, on ne peut pas attribuer le dédoublement observé
A, = 1,7 meV aux deux modes transversal et mixte d'un seul oscillateur %w, car il
faudrait une force d’oscillateur de 1'ordre de 10—, beaucoup trop grande par rapport
aux valeurs (<10-3) usuellement admises. Si on tient compte de ’anisotropie cristal-
line, on peut alors considérer deux oscillateurs virtuels % et Aw, qui donnent trois
modes symétriquement permis, un transversal Aw | et deux mixtes

) l/l + — sm2 r et foy l/l + iZL!L cos? 7 .
Il
Le mode transversal Ziw | est permis pour E | ¢, et les deux modes mixtes pour E || c.
Le dédoublement entre les deux modes provenant de 7w | est faible et peut ne pas
avoir été résolu: il doit augmenter avec ’angle d’incidence, ce qui n’a pas été observé.
L’énergie du mode mixte

hw” l/ 1+ 4—361 cos? 7
Il
doit diminuer et son amplitude augmenter lorsque 1'angle d’incidence croit; seul le
second point a été observé. Finalement, le dédoublement entre le mode transversal
fiw , et le mode mixte

fiy l/i + 42:8” cos? 7
diminuera comme 1/#3 dans la série excitonique et les deux oscillateurs auront des
facteurs de Landé différents.

Chacun des deux effets — interaction d’échange et dispersion — peut expliquer
'origine de la seconde série excitonique et de la constante de dédoublement AE. Les
régles de sélection et les ordres de grandeur calculés correspondent & 1'observation.
Ces deux interactions peuvent aussi avoir lieu simultanément, sans qu’il soit possible °

de savoir laquelle est la plus importante. Quoi qu’il en soit, les énergies des lignes
des deux séries sont données par la relation:

AE
s

Enlm:Eg_f flm( ) 6E

, €

ou dg . signifie que le troisitme terme du membre de droite disparait pour une polari-
sation perpendiculaire 4 I'axe c.

4. Conclusion

Notre étude a établi avec un modele simple que l'influence de la discontinuité
du réseau sur l'énergie de liaison d’un exciton de WANNIER est négligeable. En res-
pectant les régles de symétrie de la théorie des groupes, nous avons calculé les cor-
rections a apporter a ’énergie pour tenir compte de I'anisotropie cristalline; les va-
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leurs théoriques correspondent bien avec les valeurs expérimentales. Inversément on
peut, par un ajustement de la série calculée a la série observée, déterminer les com-
posantes de la masse réduite en I'absence de toute perturbation extérieure. A ce titre,
ce travail constitue une base pour l'explication du spectre excitonique et pour la
détermination des parameétres de bandes.
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