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Contribution à la théorie des excitons de Wannier
dans les cristaux anisotropes

par J.-A. Déverin
Cyanamid European Research Institute, Cologny, Genève1)

(28 VIII 68)

Résumé. Sur la base d'un modèle simple, nous avons établi que l'influence de la discontinuité
du réseau sur l'énergie de liaison des excitons de Wannier était négligeable. En respectant les
règles de symétrie de la théorie des groupes et à l'aide de la méthode des perturbations, nous avons
calculé les corrections à apporter à l'énergie de liaison pour tenir compte de l'anisotropie, pour des
cristaux uniaxes et biaxes. Les résultats de ces calculs, appliqués aux CdS, CdSe et GaSe, permettent

d'interpréter les spectres excitoniques observés avec des valeurs des paramètres de bandes
raisonnables.

1. Introduction
Dans les spectres d'absorption et de réflexion de cristaux non métalliques, déterminés

au moyen de spectromètres de haute résolution, on peut quelquefois observer
une série de pics du côté des basses énergies photoniques des bandes d'absorption.
Ces lignes correspondent à une absorption d'énergie lumineuse nécessaire à la création
d'une paire électron-trou, liés par l'interaction de Coulomb, appelée exciton.

La théorie des excitons a été formulée, voici une trentaine d'années, par Frenkel
[1] et Wannier [2], sur la base de deux modèles différents. Frenkel a employé
l'approximation de la liaison étroite en représentant les états par des fonctions
atomiques localisées. Wannier, d'autre part, a utilisé des fonctions représentant des

états électroniques se propageant par onde dans le cristal, ce modèle est donc
représentatif pour des excitons délocalisés. Nous allons nous restreindre à l'étude de ce
modèle.

Considérons un cristal semi-conducteur ou isolant parfait, contenant 2N électrons
et tel que les atomes soient au repos dans leur position d'équilibre. On peut alors
écrire l'hamiltonien électronique H0:

H*=-Z *m K+Zv~ w + Z 4^iVm (L1)
V V V. [i v i f» y i

en négligeant les interactions spin-orbite. Le potentiel Vcrist (r„) représente l'interaction

entre l'électron v et le réseau, et le troisième terme représente l'interaction
entre électrons. On admet que la fonction d'onde s'écrit comme un produit anti-
symétrisé de fonctions uni-électroniques orthonormales avec spin; on a alors, pour
l'état fondamental:

^0 ^^*!»^»*!^»»^ • • • <f>nkNß (!-2)

Nouvelle adresse: Institut Battelle, 7, route de Drize, Carouge/Genève.
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où A est l'opérateur d'antisymétrisation et <f>nk „ est le produit d'une fonction de

Bloch un k. (r) exp i kt r de la bande de valence n et de vecteur d'onde kt par la fonction
de spin S(a). L'indice a prend les deux valeurs a 1/2 et ß — 1/2. A partir de l'état
fondamental W0, on peut obtenir (2N)2 états excités possibles de la forme:

y°:m(K,K) A<î>nkAni </>nk,.o</>„ <f>
n fe y ß (1.3)

tels qu'un électron de la bande de valence n, de spin — a et de moment kh a transité
dans un état de spin a' et de moment ke de la bande de conduction m. Le vecteur
d'onde du système est ke — kh K et la composante du spin le long de l'axe de
quantification est %j2 (a + a'). On peut montrer qu'une fonction d'onde de la forme

XJ/an' _ y jmnv ÌTfaa' /y yrmnv ~ Z*l tt k. *mn \Ke> Kli (1.4)

représente un état exciton. L'indice v représente l'ensemble des nombres quantiques
autres que mnaa' caractérisant le système. Avec cette fonction, on peut calculer
l'énergie d'excitation qui est:

Ee* [Es + em(m*; k,

!>mk

E\<j>nkAr) \2e*

^l^yrT <f>mke(re)d*red*r

E \<ßnk' (r)

^\-r-h-r\ -<{>„kh(rh)d*rhdH

-ô„ 27//«*. ('i)«*
k'JJ "

-Zlï*UArJft*(r*

^ 4JI£o|»-1-r2r^»*, '^»« d3r, d3r9

4ne0 | rx-r2
<l>nkSr2)<l>nk'(rl)d*rld*r2 (1.5)

où Sj(mf ; kj) représente l'énergie cinétique de l'électron de la bande j m, n contenant

la masse effective mf et Eg est la largeur de la bande interdite. Le second terme
représente la différence de deux énergies d'interaction de Coulomb et le troisième la
différence de deux énergies d'interaction d'échange.

Si on néglige le spin, on peut introduire un formalisme à deux particules - électron

et trou - dans lequel la fonction d'onde excitonique devient :

-yUno^h ,.WÄ>P»('.f. + k»f») (1.6)

Si on ignore la modulation du réseau, c'est-à-dire les oscillations rapides introduites
par les facteurs de Bloch u„k(r) la fonction (1.6) devient:

$mnv * y ZA?X exP * (*«r° + k»r» (1.7)

et est appelée fonction enveloppe.
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Nous montrerons dans 2b que l'influence des facteurs de Bloch est négligeable. On

peut alors chercher les fonctions &mnv qui minimisent la valeur moyenne de l'énergie
d'excitation (1.5) en introduisant un paramètre de Lagrange E'; de ce problème de
minimisation on obtient finalement l'équation dite de la masse effective:

E' ®mnv [Eg + em (m* ; - i Vr<) - e„ (m* ; - i Wr) - f__£_-J 0mnv. (1.8)

On a introduit dans le potentiel de Coulomb effectif une constante diélectrique s

supposée réelle qui rend compte de la polarisabilité du réseau cristallin. Si les bandes
de valence n et de conduction m sont isotropes et non dégénérées, on peut passer dans
le système des coordonnées du centre de masse R et relative r définies par

r - r - r R m*r« + m^r" n mr-r, rh, k- m%+m% A^)

de sorte que l'équation (1.8) devient:

[-£ V;- 2^ V2R- -jiL.] t(r) X(R) E"<f>(r) X(R) (1.10)

où pi m* mfjm* + m* est la masse réduite et M m* + mf est la masse totale et
où l'énergie est comptée à partir du bord de la bande de conduction.

Les fonctions propres du mouvement interne sont alors des fonctions hydro-
géniques </>nlm(r), où n, l, m sont respectivement les nombres quantiques principal,
azimutal et magnétique, et les solutions pour le mouvement du centre de gravité
sont des ondes planes %(R) l/J/V exp i K • R. Les valeurs propres de l'équation
(1.10) sont:

Comme nous nous intéressons aux niveaux excitoniques dûs au mouvement
interne, nous supposerons par la suite que la transition est directe et donne un état
final de moment K essentiellement nul et que nous pourrons ignorer l'énergie
cinétique de translation de la paire.

2. Théorie

a) Cristaux anisotropes

Dans un grand nombre de cristaux, les bandes de valence et de conduction ne
sont pas isotropes, de sorte que les masses effectives ont une forme tensorielle de

composantes mfi: et m*^. Si les extrema des bandes de valence et de conduction sont
situés au même point k0 de la zone de Brillouin, alors ces deux bandes sont invariantes

par les opérations de symétrie du groupe du vecteur k0, de sorte que les tenseurs m*^
et m*^ reflètent les mêmes propriétés de symétrie et ont les mêmes axes principaux.
En choisissant des axes de coordonnées parallèles à ces axes et en ignorant le mouvement

du centre de gravité, l'opérateur énergie cinétique s'écrit:

2 U„ dx^ „yy dy* +^zz dz*\ ¦ '

où (fiij)'1 (yn^ij)"1 + (m*ij)~x est Ie tenseur diagonal de la masse réduite.
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Dans un cristal anisotrope, la constante diélectrique peut aussi avoir une forme
tensorielle de composantes y. Si les extrema des bandes sont situés au centre de la
zone de Brillouin, en k0 0, alors les tenseurs y et m*^ ont mêmes axes principaux,
car ils reflètent tous les propriétés de symétrie du groupe ponctuel cristallin; en
revanche, si les extrema ne sont pas situés au centre de la zone de Brillouin, alors l'existence

d'un tenseur de masse m*^ n'entraîne pas nécessairement l'existence d'une
constante diélectrique anisotrope. L'équation de Poisson dans un milieu anisotrope,
rendue isotrope par le changement de coordonnées

(-7-X, r-y, --z)=(X,Y,Z),We, ]/cy y ' ]/ez / K ' "
donne alors, dans des axes de coordonnées parallèles aux axes principaux de y, un
potentiel de Coulomb qui s'écrit [3] :

Vir)
A'c4 «*i V y, s„ x* + ea ezz y* 4- exx y, -

(2.2)

Après avoir effectué une contraction des indices, l'équation de Schrödinger pour un
exciton de Wannier dans un cristal anisotrope est :

[ 2 U dx*

1 à*

'dy* +
d*

dz*

4ns0\/e,
<f>(r) E<t>(r). (2-3)

Nous allons traiter, pour commencer, le cas des cristaux uniaxes qui se prête plus
facilement à une solution analytique.

Cristaux uniaxes

Soit z la direction de l'axe unique-axe cristallographique c; ce sera aussi l'axe de

quantification du moment orbital des états hydrogénoïdes de l'exciton. Introduisons
les notations suivantes :

S. Eu

flx fly -

piz //||

¦Vx

Après avoir multiplié l'équation (2.3) par la quantité 2 fJ.±l?i2 et après avoir sorti
]/sj_ cy de la racine du potentiel, on peut écrire:

dx*
d* à* y a
dy* dz*

/«H \lx*~+y* + eJeA~z*

2 M

E'~E »
oc /y c* -|/2<"j_ t
2 4jt£0 J/yl^ n* J/ h*

fi-"^ ' R«,
m0 y Êy

(r) E't(r) (2.4 a)
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Roo est la constante de Rydberg et m0 la masse de l'électron libre. On peut encore
transformer cette équation au moyen d'une déformation de l'espace de long de l'axe z,

correspondant au changement de variables:

*'¦!/£•)- (f, 1,0-Q.
On obtient alors une concentration de l'anisotropie dans le potentiel et l'équation
(2.4a) devient:

d2 à2
</>(q) E'cß(Q). (2.4b)

d$* dt]* à? y^ +^+At?
Nous introduisons le paramètre d'anisotropie A défini par:

A *A_+ _l (2.5)
'"il £ll

Ce paramètre que nous supposons réel et positif, représente une mesure du degré
d'anisotropie d'un cristal.

Après avoir ajouté et soustrait à l'hamiltonien de (2.4b) un potentiel de Coulomb
isotrope dans les nouvelles coordonnées, l'équation (2.4b) devient:

¦ à* à* oc

de* drj* d!:* |/|2y^yfyi
P(A) <i>(Q) E'(Q) (2.6a)

avec

P(A) -. - (2.6b)

Nous proposons de traiter le potentiel P(A) comme une perturbation. On voit alors

que dans l'approximation zéro, les fonctions propres sont des fonctions hydrogé-
niques (f>nlm(Q) et les valeurs propres sont

Elnlm _ R
_

a* U* 1

0 n' 4 2 pi n*

où n est le nombre quantique principal, avec les dégénérescences accidentelles d'ordre
n2 dues à l'isotropie de l'espace Q. L'hamiltonien non perturbé appartient au groupe
infini de l'espace isotrope, invariant par toutes les opérations de symétrie. La perturbation

P(A) réduit la symétrie du système et va, par conséquent, lever des
dégénérescences. Elle appartient au groupe Dœh, où toutes les rotations autour de l'axe z -
ou C - laissent le système invariant, ou à un des groupes des systèmes hexagonal,
tetragonal ou trigonal, sous-groupes de Dœj. La théorie des groupes nous permet de

déterminer quelles seront les dégénérescences levées et quels seront les éléments de
matrice de P(A) non nuls:

(nlm 1 P(A) | n' V m'y =J(f>*nim P(A) <j>n,Vm. d*Q

De cette étude, on déduit que P(A) a des éléments de matrice diagonaux en l et m
non nuls et que, par conséquent, il y aura une correction du premier ordre à l'énergie;
ces éléments de matrice peuvent être non diagonaux en n, car le nombre quantique
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principal n'intervient pas dans la détermination de la symétrie d'un état. De plus,
les éléments non diagonaux sont non nuls si Al V — l est pair, car P(A) est une
fonction paire et Am m' — m 0, car P(A) ne dépend pas de la variable <f>.

Pour nos calculs de perturbation à partir d'états dégénérés, on en déduit que la
matrice de P(A) est diagonale pour les deux premiers niveaux excitoniques n 1, 2,

puisque le potentiel perturbateur ne couple pas des états s avec des états p, mais
qu'elle ne l'est plus, en revanche, à partir du niveau n 3. Nous avons calculé
explicitement ces éléments de matrice en fonction du paramètre A, pour les états s, p et d.

Pour les éléments de matrice diagonaux, les résultats sont donnés dans les relations
(2.7) à (2.12), où la fonction/'"1 (A) ne dépend que des nombres quantiques angulaires
/ et m.

(ns | P(A) | nsy - ££00 [2 - f00(A)]

r(A)
yA-i-ln

yA + yA-i
YA-yAT- 9

2

\/l-A
Arcsin |/1 — A

<np0 | P(A) | np0y - 3£r° [| - H^)]

r(A)

1

2 (A-
2

3

[2 ya A - 1) + ln ]/A-]/A-
YA+VA- ï)}

(1_^)3/2 [Arcsin ]/l - A - \/A (1 - A)]

<np±x | P(A) | np±xy - \ £0"°° [\ - fn(A)]

h-^^MI^fcf)
fu(A)

yA
yA-

4
3

A-l

M1" '

|/1

<nd0 | P(A)

1 I—— [
4 \ (A4 - 1 L

1-A

f»(A)

2(1_^)] Arcsini/1 ^ ^l

nd0y=-5E"0™[^-r(A)}
27 i / ya + ya ¦

A-l
3 ya

8 (A-
1 /IM+lM-Jy

l)2 J \ J//4 -1//4 -1 /

2(1-/1) I1 + TtJW]}

5

1 f 2 ['- 3

4 ya -1 1-/4
3 (M+ 2(1-/4)

+ 8(1-/4)'] Arcsinl71-^

['-^Wli

/4 >1
A 1

A <1

A>1

A =1

A<1

A>1

A 1

A<1

A>1

A =1

A<1

(2.7a)

(2.7b)

(2.8 a)

(2.8b)

(2.9 a)

(2.9b)

(2.10a)

(2.10b)
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<n d±1 j P(A) | n d±xy - 4f El*00 [-±- - /^)]

403

(2.11a)

f21(A)

2 (A- If

4

lT

[' 4 (/4-1
//4

3 1, / J//4 - yA - 1

ya + ya(-Ini r)

2 (/4- ^[ 2 (/4-1).

(i-!«)»/» i1 - T(i~âtÎ Arcsin ^~A
VA

J,
2 (1-/4)

1
2(1-/4)

/4>1

/4 1

A <1

(2.11b)

<»«*±81 P(/4) | w<?±2> _ il £*°° []y -/22(^)] (2.12 a)

r(/4)

//4-1

16

AJ
2

A/T^l'

/y4+y4-i
(/4-1) ' 8 (/4 — l)2 J \yA-YA

3 |//4

H

2 (/4-

r liW [ + 2 (/4 - 1) J

[x"^y +8(i--Â^]Arcsinl/1-^

+ -3^ [l-_i_l^ 2(1-/4) L 2 (1-/4) J

/4>1

A =1

/4<1.

(2.12b)

Pour les éléments de matrice non diagonaux, la fonction f"'m(A) dépend des trois
nombres quantiques /, V et m. Pour le troisième niveau, on a :

<3 s j P(A) ] 3 d0y

/020(/4) :

3 ya
A-l

0

-3 ya

VAMr-,- 1 +

| ^r p - /o2°(/4)]

3 1 / )//4 -|- yA - 1

2 (A-l)M ya-ya- 1)

1-/4 1/1-/4 [l-yï^r] Arcsin/1-/4

(2.13 a)

A>\
/4 1 (2.13b)

/4<1.

Dans ces relations, qui sont valables quel que soit le nombre quantique principal n,
Eq00 représente l'énergie non perturbée du niveau n. De ces éléments de matrice, on
déduit les énergies corrigées au premier ordre pour les deux premiers niveaux exci-

toniques «=1,2:
Enlm Enlm + <%lm j p^ |w/w>

rioo _ p-ioo r^oo/ a\ n (2 14)

(2.15)

Eum £iuo ryuu^j _ y
£f° £*°° [/00(/4) - 1]

El10 E'2Q00[3f10(A) -1]
e?11 =^r[i m-i].

(2.16)

(2.17)
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Pour le troisième niveau, la matrice du potentiel perturbateur n'est plus diagonale,

comme l'indique la théorie des groupes, car P(A) couple les états 3s et 3d0.
On obtient alors la correction du premier ordre en diagonalisant la partie non
diagonale de la matrice de P(A), c'est-à-dire la sous-matrice [4]:

E - <3s | P(A) | 3s> <3 s | P(A) \ 3d0y E - Vxx Vxi

<3d0 | P(A) | 3s> E - Od0 | P(A) \ 3d0y
'

Vx2 E - V2i
(2.18)

Ceci revient à chercher les combinaisons linéaires des états 3 s et 3d0 qui soient
des fonctions de base de l'hamiltonien perturbé ayant la bonne symétrie. On trouve
finalement que ces états hybrides normalisés et les valeurs propres sont :

_VXÎ U E+-V,-
VVh+lVlx-E+)*

E- - V,,

0>

o>:
YVN + {v22-E_y

3 s> -j-

3s> +

YV&+(V1X-E+
^12

VVN + (v22-E_.

3d0y

i>

£3±0 \ [Vu + V22 ± |/(FU - V22)2 + 4 Vx%]

(2.19a)

(2.19b)

(2.20)

Les signes + caractérisant les états mélanges se rapportent au signe de la racine dans
l'expression (2.20). Cette façon de repérer les états hybrides (2.19) emploie la relation
E3+0y E3~° et amène une discontinuité en A 1 dans les courbes El±0(A) ; ceci signifie
que l'état | 3 — 0> pour A < 1 correspond à l'état | 3 + 0> pour A > 1 et que ces
états contiennent une forte contribution de la fonction 3 s.

On constate que, à partir du niveau n 3 et pour des états du type s, les énergies
s'écartent des valeurs prédites par la loi hydrogénique en ljn2. Si les états s sont
permis, la ligne n 3 correspond à l'état j 3 — 0> pour A < 1 et j 3 + 0> pour A > 1.

Le reste de la matrice, sous-matrice sept sur sept, étant diagonal, les corrections
du premier ordre se calculent comme celles des deux premiers niveaux. Par
conséquent, les énergies corrigées au premier ordre sont:

£310 £300 [3 fX0{A) _ y (2.21)

£311 £300 J|_ fXX{A) _ jj (222)

£321 £300 [}5_ f21(A) _ XJ (223)

£322 £300 J
« f22{A) _ Xj (2 24)

r{i+i r(A) +5f20(A) -4± |/(/°V) -5/20(/4))2 + y (/020(^))2 )• (2-25)£3±0

Ces résultats sont résumés dans les Figures 1 à 3. Dans les deux premières, nous avons
représenté l'évolution du rapport de l'énergie perturbée à l'énergie non perturbée
EpjE0 en fonction du paramètre A, et dans la troisième le comportement des trois
premiers niveaux excitoniques E"lm(A) en fonction de l'anisotropie. Sachant que la
théorie des perturbations n'est valable que si la perturbation est petite, c'est-à-dire
tant que la correction apportée à une valeur propre est plus petite que l'intervalle
entre celle-ci et ses voisines, on peut tirer de la figure 3 une limite inférieure de validité

à nos calculs et la situer au voisinage de A 0.1; la limite supérieure se trouve
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au-delà de A 5. Si on considère l'évolution de l'énergie de l'état 1 s en fonction du
paramètre A, pour des valeurs de A < 1, on voit qu'à la limite /4=0 qui devrait
correspondre à un cristal bidimensionnel, on ne trouve pas la valeur El°° 4 Ryd-
berg, valeur propre d'une équation de Schrödinger à deux dimensions. Ceci provient
du fait que le modèle que nous proposons ne donne pas, pour A 0, un hamiltonien
à deux variables; seul le potentiel est bidimensionnel et, de plus, ce n'est pas un potentiel

de Coulomb bidimensionnel. Ainsi, il ne permet pas de passer continûment d'un
cristal à trois dimensions à un cristal bidimensionnel. Un calcul du second ordre
n'apporte pas de nouveau dédoublement des états dégénérés, les levées de
dégénérescences étant déterminées par la symétrie du potentiel perturbateur dès son
introduction, c'est-à-dire dès le premier ordre ; mais il donne une correction quantitative
à chaque valeur propre. Nous avons calculé cette correction pour le niveau ls:

£100. £ioo p _ /oo(j)]2 y5 + 0j03 + negl/j 4 10-2 + negl. (2.26)

La convergence est très rapide et les contributions provenant du couplage de l'état
ls avec des états ayant un nombre quantique principal n > 3 sont négligeables.
Dans le domaine de validité que nous avons attribué à ce modèle, la correction du
second ordre représente moins de 3% de la correction du premier ordre. Nous
proposons par conséquent de la négliger.

Cristoux uniaxes
2,5

Etats n=1,2

__ 1s perturbation cinétique

2,0"

1,5'

1,0"

^\ ——-____1s,2s

0,5-

^^\^Po

1 2 3 A

Figure 1

Evolution de l'énergie corrigée au premier ordre des perturbations et rapportée à l'énergie non
perturbée des deux premiers niveaux excitoniques.
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Remarquons encore que pour simplifier l'équation (2.4) nous aurions pu choisir
un autre changement de variables tel que (£, rj, f) (x, y, j/y/ey). Alors, après
addition et soustraction d'un terme en d2jdÇ2, l'équation (2.4) devient :

à*

dÇ*

d*

dr/*

à*
~ÖC2 y£*+v*+?

P'(A) cf>= E'(f>

P'(A) (1 - A) à:*

(2.27)

(2.28)

A ayant la même définition que précédement. Dans ce cas, l'énergie de l'état ls
corrigée au premier ordre est donnée par

4-/4
E\0 E-100 (2.29)

La correction est linéaire en A et la droite d'équation (2.29) est représentée dans la
Figure l2). Elle est tangente, au point A 1, à la courbe définie par la relation

Ip
to

Cristaux uniaxes
2,5-

Etats n=3

t>„ la

Apparition de l'hybridisation

2.0

V V
u w

1*1

1,0"

\ ^5^>«/~~~"" -^cl3.0>

0,5" \ "-•••-¦irw\ X~
Vî2

1 2 \ 3 A

Figure 2

Evolution de l'énergie corrigée au premier ordre et rapportée à l'énergie non perturbée du troi¬
sième niveau excitonique. Les états | 3 + 0> sont des mélanges des fonctions 3 s et 3d0.

2) Harper et Hilder [5] ont utilisé un potentiel perturbateur semblable à celui de la relation
(2.28). Ils n'ont pas diagonalisé exactement la matrice de P'(A) au moyen d'états mélanges.
En outre, il n'est pas possible de modifier leur paramètre d'anisotropie y sans affecter la
constante de Rydberg; il semble qu'ils n'aient pas pris garde à ce point, ce qui fait que, dans la
Figure 2 de leur article, l'énergie des états s n'est pas fonction de l'anisotropie.
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(2.15) ; (2.29) représente les deux premiers termes du développement en série de Taylor
de la courbe (2.15).

Les différents états dédoublés n'apparaissent pas nécessairement tous dans le

spectre excitonique. La possibilité de leur existence peut être déterminée par les

règles de sélection pour des transitions engendrées par une interaction lumineuse ; on
peut à nouveau utiliser la théorie des groupes. Si l'état initial appartient à la
représentation irréductible Tv du groupe ponctuel, l'état final à la représentation Fc et la
fonction enveloppe - ou état excitonique - à Fenv, on peut former le produit Tv X
renvxrc, et le décomposer en représentations irréductibles; la transition dipolaire
sera permise si la représentation rop à laquelle appartient le vecteur de polarisation de

l'opérateur d'interaction apparaît dans cette décomposition.

Cristaux biaxes

¦ Reprenons l'équation de Schrödinger (2.3). Dans les cristaux biaxes, on a pix =fi

/iy # /iz =£ pix et ex ^ ey / ez ^ e,. Après multiplication par 2 ptzj%2 et après avoir
sorti yexey de la racine du potentiel, (2.3) devient:

3 t
<f>= E'</> (2.30 a)

llz à* /iz à* d* X 1

/ix dx* piy dy* dz* f(ez/ex)x*+(ez/sy)y* + z*\

E'=^E
A

_ ftze* _ l/2piz R
2 Ane0]/exeyh* \ ^

R - — Rœ constante de Rydberg effect
m0 exey

Effectuons le changement de variables

d V, 0 - (x ]/*
et introduisons les paramètres d'anisotropie:

C

H

</>= E'<f>.

fz_ f^z "D _ £z J^Z

sx l*x
'

es Vy
'

L'équation (2.30a) peut alors s'écrire:
d* d* d* X__

d? dr,* dt,* ycëTL~Btf+P.
Nous allons de nouveau ajouter et soustraire un potentiel isotrope dans les nouvelles
coordonnées, de sorte que:

d* à*^ & A_

àÇ*
~~ ""

1et traiter
drf dt*

P(C, B)

YW+v*+t*

_k
fS* + ri*+l

+ P(C, B) <f>= E'(f>

(2.31)

(2.30b)

(2.32)

(2.33)
yCS*+Brj* + t*

comme une perturbation. Comme pour les cristaux uniaxes, les fonctions propres
d'ordre zéro sont des fonctions hydrogéniques et les valeurs propres

-pnlm _ _ E_ _ _ j^3 & \_
0 n* 4 2/1; n* '

avec une dégénérescence d'ordre n2.
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Le potentiel perturbateur P(C, B) appartient au groupe orthorhombique D2h. Par
la théorie des groupes, on trouve que la matrice de P(C, B) est diagonale pour les

deux premiers états n 1, 2 et que toutes les dégénérescences sont levées sans aucune
hybridisation. Pour le troisième état, par contre - et pour les états supérieurs - la
matrice n'est plus diagonale ; la partie non diagonale, pour n 3, est une sous-matrice
trois sur trois qui peut être diagonalisée en prenant pour fonctions de base des
combinaisons linéaires des états 3s, 3d et 3d «_ s.

E(Ryd)
Continu

3p..
3d»l

2Pi

.7
3Ptf

3.0)

Cristaux uniaxes

0,5

Figure 3

Evolution de l'énergie corrigée au premier ordre des trois premiers niveaux excitoniques.

Le calcul explicite des éléments de matrice pour les deux premiers états
excitoniques n 1 et n 2 donne les énergies, corrigées au premier ordre, suivantes :

E\s £J00[/00(C, B) - 1]

£2S £200 ryoO(Cf B) - 1]

ElPx=Ef°[3fx"(C,B) -1]
E2xpy= Ef° [3 /i»(C, B) - 1]

E**: E2m [3 f-*(C, B) 1]

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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où les fonctions des paramètres d'anisotropie sont :

/°°(C, B)
sing d6

2nJ ~r J |/(C cos*é+B srrr*6) sin264- cos28
0 0 T T

2n n

Ì- [d<f> [-=2 « J J Y(C cos2<£ 4- B sinV) sin2 d + cos*6

2n n

sin30 cos2(^ ddne, B)

j1y(C,B)=^nfd<f>J sin»flsinV</0

0 0

2 JT JT

p(C, B) 2n
d(f>

|/(C cos*(ß+B sm*(j>) sin2 d + cos2 6

cos2e sine de

|/(C cos*</>+B sin*<f>) sin2e + cos2_e
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(2.40)

(2.41)

(2.42)

(2.43)

Ces relations ne sont pas intégrables analytiquement et ont été calculées numériquement

pour différentes valeurs des paramètres C et B. Les résultats sont données dans
les Figures 4 et 5 où nous avons représenté le rapport de l'énergie perturbée à l'énergie

non perturbée en fonction de B, pour différentes valeurs de C. Les mêmes limitations

apparaissent que dans le cas des cristaux uniaxes; nous plaçons les limites de
validité de ce modèle au voisinage de C B 0,2, et C B 5.

2,5-

Cristaux biaxes

Etats 1s at 2s

C=ii.^»

fi.ïl

C=0.1

C=0.4

C=0.7
C=1,0

C=1.5

Cx2.0

3 B

Figure 4

Energie corrigée au premier ordre et rapportée à l'énergie non perturbée des états ls et 2s.
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2,5

2,0

S

s N
0,5

Cristaux biaxes

Etats 2p

— 2p*
— 2pv

2pz

C: 0,4

"""¦"¦"•-—C=1_-C 1

x C 2

<^ C=1

C=2

Figure 5

Energie corrigée au premier ordre et rapportée à l'énergie non perturbée des états 2p.

b) Discontinuité du milieu
Les niveaux discrets excitoniques peuvent être affectés non seulement par

l'anisotropie du cristal, mais aussi par la discontinuité du milieu. En effet, comme le
montre (1.6), la fonction d'onde excitonique est une fonction qui a le double de la
périodicité du réseau et dont l'enveloppe est hydrogénique ; toutes les valeurs propres
ont été calculées au-moyen de cette dernière seulement, en ignorant les oscillations
dues aux facteurs de Bloch uk(r) qui représentent la modulation par le réseau. La
question peut se poser de savoir si ces oscillations peuvent amener une correction
importante à l'énergie.

Nous désignons par cf>nlm la fonction enveloppe et par Wnlm la fonction totale ; elles
sont liées par .„ rnVnim- uco(rx) uvo(r2) <f>nlm(rx, r2) (2A4)

Nous supposons de nouveau le centre de masse immobile et nous n'étudions que le
mouvement interne de l'exciton. On sait que les valeurs propres sont données par:

Tfenv
nlm -

//«I H, ar d3R
(2.45)

Hex -^V2-^j (2.46)ex 2/i r \r\ v '

après passage au système des coordonnées relatives r et du centre de gravité R.
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De même, avec les fonctions totales (2.44) on a :

ptot If XJ/nlm Hex ^nlm d%T d*R
fo 47)

f/V;lmVHlm*rtPR

Pour déterminer l'effet des facteurs de Bloch sur l'énergie interne, nous allons étudier
le rapport :

ggj» ÎJV%lnH.x Vnlm *t d«R fJfâ, „, 0„ lm dH d?R y 4g)
EZm

' ffïïtinHeJnlm^l3* II ^nlr^ntm ** d"R

A l'aide du théorème de la moyenne, on trouve que le rapport des normes devient:

If<j>%lm<t>nlmdsrd?R
_

1 ^ ^f fip* xp d3r fPR ~ I m (i") |2 | u ir') |2 \ • I
J J x nlm xnlm ^ l co1 i; i »o1 2

'

Il ne dépend que de la valeur des facteurs de Bloch aux points r[ et r2, mais le choix
de ces points dépend de l'ensemble des nombres quantiques (nlm). Pour estimer le

rapport des éléments de matrice non normalisés, il nous faut faire appel au théorème
du viriel dans la forme établie par Morgan et Landsberg [6]. Si T représente
l'opérateur énergie cinétique et V le potentiel de Coulomb, ce théorème dit que:

2 <nl' \T\nly - <nl' \V\nly -2Enôn,,
où En est la valeur propre de l'énergie repérée par le nombre quantique n; l'indice l
représente l'ensemble des autres nombres quantiques et caractérise les dégénérescences.

Cette relation est indépendante de la forme explicite des fonctions d'onde.
Par conséquent :

'

II^imHexVnlmd^dm fj¥*im¥nlmVœxûd*rd?R
l!tot»H.xinlm*r*R Iß*nlm<t>„imVmu]d?rdSR

\ »K i) \ \ ,oi *> \ ¦ \ ¦ >

Le troisième terme de cette relation a été obtenu en faisant de nouveau usage du
théorème de la moyenne; ceci est possible, car l'intégrand ne contient plus d'operateur.

Le choix des points r" et r\ dépend aussi des nombres quantiques (nlm) ; ces

points sont différents des r', car les integrands des relations (2.49) et (2.50) ne sont

pas identiques.
Le rapport des énergies devient alors :

IT*0' j „ tr") 12 i „ tr»\ 12

penv
I „ lr,\ 12 I

m (r-) |2

et n'est pas égal à l'unité; il est fonction de chacun des trois nombres quantiques n,
l et m. Par conséquent, des états ayant même n ne sont pas dégénérés dans un milieu
discret, alors qu'ils le sont dans un cristal supposé continu où on ne considère que
la fonction enveloppe.

Nous allons calculer la forme explicite de ce rapport pour le cas simple suivant :

uco Ac cos (K ¦ r,) uvo Av cos (K ¦ rh) (2.52)

où K est un vecteur entier du réseau réciproque. Les facteurs de Bloch sont donc des

ondes planes dans la direction K. Il faut en fait, pour avoir un modèle représentatif
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d'un cristal à trois dimensions, prendre une superposition d'ondes planes ayant des

K différents en module et en direction. Mais nous allons nous restreindre à l'approximation

des plus proches voisins en ne considérant que les vecteurs K de l'étoile de

<100>; les ondes qui leur correspondent sont orthogonales et, en employant le principe

de superposition, on peut sommer les contributions de chacune des ondes
partielles pour trouver le rapport total. Chaque rapport partiel a même dépendance
fonctionnelle en nlm et en K.

On trouve finalement que le rapport total des énergies est donné par la relation :

EÏÏm =yj\ <f>nim\2icos*(K-r) + (lj2)]Vcoui d*r_ I\<t>nlm\*^r
EiZl Y M,zJ2^oul^ /|^;ra|[2cos2(Kr) + (l/2)]^
où la sommation s'étend à tous les vecteurs K de l'étoile de <100>.

On peut démontrer, en calculant explicitement le rapport (2.53) pour chaque
état nlm, que l'énergie calculée au moyen de la fonction enveloppe seule est une
approximation par défaut très peu différente de l'énergie calculée en tenant compte
des facteurs de Bloch. Cette différence est inférieure à 1 % de l'énergie interne R dès

que l'extension de l'exciton - rayon de Bohr - est supérieure à deux distances
interatomiques, pour autant que l'approximation (2.44) soit toujours valable pour des

excitons aussi localisés.
La réintroduction des facteurs de Bloch n'amenant pas de correction suffisamment

importante, nous les considérons comme négligeables.

3. Comparaison avec l'expérience
Parmi les cristaux uniaxes présentant des lignes excitoniques dans leur spectre,

nous n'en avons considéré que trois, à savoir: CdS, CdSe et GaSe. En effet, nous
n'avons trouvé dans la littérature des données suffisantes que pour ces trois composés
semiconducteurs. Outre la position en énergie des lignes, il nous faut les composantes
de la constante diélectrique et de la masse réduite. Lorsque trois lignes excitoniques
au moins sont observées, on peut déduire des énergies Enlm(A) les valeurs de R et
de A, donc deux des quatre grandeurs e±, eu, /i± et /i^ si les deux autres sont connues.
Nous n'avons pas considéré que la constante diélectrique peut être approchée par le
carré des indices de réfraction mesurés à la fréquence de la transition ; cette approxi-
maxion ne tient pas compte du fait que les indices sont complexes lorsqu'il y a absorption

et que le cristal n'est pas polarisé par le champ électrique lumineux. Nous avons
employé la constante diélectrique statique qui est une bonne approximation pour des

excitons de grande extension.
Nous n'avons trouvé aucune donnée utilisable pour des cristaux biaxes.

a) Sulfure de cadmium et séléniure de cadmium

Ces deux composés semiconducteurs cristallisent dans une structure hexagonale -
wurtzite - et sont, par conséquent, uniaxes. Ils présentent tous deux trois séries

excitoniques visibles, à 4,2 °K, entre 2,55 eV et 2,65 eV pour le CdS [7] et entre 1,82
eV et 2,28 eV pour le CdSe [8]. Ces séries correspondent à des transitions entre les
bandes de valence séparées sous l'effet du champ cristallin et de l'interaction spin-
orbite, appartenant aux représentations irréductibles F9, J7, et r7 du double groupe
C6t, en k 0, et la bande de conduction rn. La première série, appelée A, provient
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de la transition r9 — r7 et n'est permise que pour une polarisation perpendiculaire
à l'axe c; les deux autres sont appelées B et C et correspondent aux deux transitions
P: — F7 permises pour les deux polarisations parallèle et perpendiculaire à l'axe c.

La position des lignes des trois séries est donnée par les formules [7] :

ex A

EexB E, -AA>y -E.„ E | c, E

EexC E. - —T' - EiL, - Eur E i c, E

où Eg 2,582 eV, EAB 16 meV, EBC 57 meV pour le CdS et Eg 1,8411 eV,

EAB= 25 meV, EBC 4,33 meV pour le CdSe.
Les composantes du tenseur diélectrique sont e± 10,8 et g|j 7,8 pour le

CdS selon Masumi [9] et e± 9,7 et ey 10,65 pour le CdSe selon Wheeler et
Dimmock [8]. Nous avons obtenu les valeurs du paramètre d'anisotropie A et de

la constante de Rydberg R pour les séries A et B du CdS et pour la série A du CdSe

par un ajustement de l'énergie calculée à l'énergie observée de deux lignes (nlm) et
(n'I'm') ayant une paire de nombres quantiques Im et I'm' différente. Les énergies
calculées Eplm(A) et observées E"lf sont données dans les tableaux 1 à 3; nous y
avons aussi indiqué les raies ayant servi au calcul de A et R ainsi que les composantes

/i± et ^ii du tenseur de masse excitonique déduites. Ces composantes ont des valeurs
comparables à celles trouvées par Thomas et Hopfield [7] pour le CdS et par Wheeler

et Dimmock [8] pour le CdSe. Les autres séries excitoniques en présentent pas
assez de raies pour un ajustement sans équivoque de la théorie à l'expérience.

b) Séléniure de gallium

La structure du GaSe, très anisotrope, a été étudiée par Basinski et coll. [10].
Il est formé d'un empilement de couches liées par des forces de Van der Waals, chacune
de ces couches contenant deux sous-couches d'atomes de gallium et deux sous-couches

Tableau 1

Série A du Cd S. R 31 meV A 1,24

M 17nc0 Enlm (A 1;24) j7ti tm
^obsA

1 31 meV 28,8 meV 1 s 28,8 meV 1 s

2 7,75 meV
7,41 meV 2 p±1
7,20 meV 2 s

6,80 meV 2 p0

7,2 meV 2 s ajust.

3,28 meV 3 p±1
3,20 meV | 3-f0>

3,45 meV ì'ÌÌ^Z^t^ns 3,2 meV I 3 + 0> ajust.3,03 meV | 3 — 0> '

3,0 meV 3 pa
2,77 meV 3 d±2

/i_l 0,192 m0 /m 0,214 m0
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Tableau 2

Série B du Cd S R 32 meV A 1,24

» fn Enplm (A 1,24) j7n Im

1 32 meV 29,7 meV 1 s 29,7 meV 1 s ajust.

2 8 meV
7,64 meV 2 £±1
7,43 meV 2 s

7,02 meV 2 p„
7,4 meV 2 s

3,40 meV 3 p±x
3,31 meV | 34-0)

3,56 meV l^ì me^ fi** 3,3 meV I 3 + 0>
3,13 meV | 3 —0> '

3,10 meV 3 /»„
2,86 meV 3 d±2

pt± 0,198 m0 /ti| 0,221 m0

de sélénium, avec la séquence Se-Ga-Ga-Se; les liaisons dans une couche quadruple
sont covalentes. L'axe cristallographique c - direction d'anisotropie - est normal au
plan des couches. Il y a trois façons possibles d'empiler les couches quadruples et le

GaSe cristallise dans des structures hexagonale ou rhomboédrique.
Une telle anisotropie dans les forces de liaison peut amener à penser qu'un modèle

bidimensionnel est représentatif, comme l'a fait Ralph [11]. Nous ne pensons pas
que ce soit le cas, car une partition de la fonction d'onde en une fonction de z et une
fonction de x, y n'implique pas, à cause des relations d'orthogonalité et de fermeture,
que les propriétés optiques dans le plan des couches soient indépendantes de la
variable z.

On peut observer, dans le GaSe, deux séries excitoniques situées, à 1,7 °K, entre
2,10 eV et 2,13 eV, qui ont toutes deux la même limite 2,1293 eV. La première montre

Tableau 3

Série A du Cd Se R 14,1 meV A 0,76

n c0 Enplm (A 0,76) r?n Im^obsA

1 14,1 meV 15,4 meV 1 s 15,5 meV 1 s

2 3,53 meV
4,10 meV 2 p0
3,84 meV 2 s

3,70 meV 2 p±1

4,1 meV 2 p0 ajust.
3,9 meV 2 s {?)
3,7 meV 2 p±x ajust.

1,92 meV 3 d±2

1,825 meV 3 p0

r -7 v 1,81 meV| 3 4-0) „,1,37 meV _.
' 1,65 meV 3 *+,1,74 meV 3 a±1 r31L

1,70 meV | 3-0>
1,65 meV 3 p±ï

pij_ 0,107 m0 /i\\ 0,128 m0
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quatre lignes d'intensité moyenne qui sont permises pour une polarisation JE

perpendiculaire à l'axe c; la seconde n'a que deux lignes de forte intensité visibles pour
E | [ c, Le fait que les deux séries aient même limite indique qu'aucune des bandes de
valence et de conduction n'est dédoublée par l'interaction spin-orbite; ceci est
confirmé par la structure de bandes proposée par Bassani et Pastori [12] et corrigée
par Brebner [13], où, pour la transition directe, les points critiques des bandes de
conduction et de valence se trouvent au point r de la zone de Brillouin, k 0, et
appartiennent aux représentations irréductibles F2 et rx, respectivement, du groupe
simple de D3ll. Chacune de ces représentations est unidimensionnelle, de sorte que
les deux bandes sont non dégénérées.

Considérons tout d'abord la première série. A 4,2 °K, pour une polarisation E J_ c,

les énergies trouvées par Brebner et Mooser [13] sont Ex 2,1096 eV, E2 2,1244
eV, Ea 2,1271 eV, E4 2,1277 eV; on tire, d'après la loi hydrogénique, une
constante de Rydberg expérimentale R 19,7 meV.

A 1,7 °K, pour la même polarisation, les énergies [14] sont Ex 2,1099 eV, E2
2,1246 eV, E3 2,1273 eV, £4 2,1283 eV; on en tire la constante de Rydberg
expérimentale R 19,6 meV. La ligne n 2 est asymétrique et présente une queue
du côté des hautes énergies. On attribue cette queue à la transition aux états 2 p±x
permise par la symétrie. Néanmoins, il n'a pas été possible de trouver l'énergie
exacte de ces états. D'autre part, malgré le fait que la transition à l'état 2 p0 soit
symétriquement interdite, il a été possible de résoudre la ligne 2 p0 en présence d'un
champ magnétique perpendiculaire à l'axe c et de trouver son énergie E2 2.1238 eV
à champ nul par extrapolation. De mesures de capacité et de réflectivité infrarouge,
Leung et coll. [15] ont tiré les valeurs des composantes du tenseur diélectrique sta-
tique: y 10,2, Ê|i 7,6.

D'autre part, Halpern [16] propose un rapport des masses /iLj/i\\ x 0,2 et Brebner
et coll. [17] proposent une masse effective interbande dans le plan des couches /y
0,125 m0, déduite de l'espacement des lignes observées en présence d'un champ
magnétique. On peut donc calculer un ordre de grandeur du paramètre d'anisotropie
A et de la constante de Rydberg excitonique :

R x 21,9 meV A x 0,268

Une valeur de R x 21,9 meV entraine que A doit être supérieur à 1. Un ajustement
semblable à ce que nous avons fait précédemment effectué avec les deux lignes 2 s et
2 pQ donne :

A 0,51 R 16,2 meV /y 0,0925 m0 /^ 0,243 m0

Les énergies calculées et observées sont données dans le Tableau 4.
Dans n 4, les états | 4 + 0> représentent les états mélanges de 4 s et 4 d0; le;

états non calculés sont les hybrides de 4 p0 et 4/0 interdits, de 4 p±x avec 4/±t permis
ainsi que les états 4/±2 interdits et 4/±3 permis. Les énergies calculées sont en bon
accord avec les énergies observées et les masses excitoniques /i± et/^y sont raisonnables.

Les énergies des lignes de la seconde série sont [141 à 1,7 °K, Ex 2,1116 eV et
E2 2,1248 eV; la limite est la même que celle de la première série, à savoir 2,1295
eV. Les énergies internes sont donc E1obs 17,9 meV et E2obs 4,7 meV et les dé-
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Tableau 4

Série E J_ c du GaSe R 16,2 meV A 0,51

« J7M^0 Enlm (A 051) yn Im
*-ob s

1 16,2 meV 19,6 meV 1 s permis 19,6 meV 1 5

2 4,05 meV
5,70 meV 2 p0 interdit
4,90 meV 2 s permis
4,53 meV 2 p±x permis

5,7 meV 2 p0 ajust.
4,9 meV 2 s ajust.

Non résolue

2,68 meV 3 d±* permis
2,53 meV 3 p0 interdit

„ ™ ,r 2,52 meV I 3 +0> permis „„ „ „ „,^80 mcV
2.2J meV 3 d±1 interdit 2'2 meV I 3 " °>

2,17 meV | 3 —0> permis
2,01 meV 3 p±x permis

1,50 meV 4 d±2 permis
1,40 meV | 4+0> permis

1,01 meV 1,28 meV 4 d±1 interdit 1,2 meV | 4- 0>
1,21 meV | 4 — 0> permis
6 états non calculés

doublements entre la première et la deuxième série sont Ax 1,7 meV et Ax 0,2
meV. Il y a deux phénomènes possibles pour expliquer ce dédoublement : l'interaction
d'échange et le fait que le moment du photon incident n'est pas négligeable, de sorte

que l'exciton possède un vecteur d'onde petit, mais non nul, ce qui amène la distinction

entre exciton longitudinal et transversal [18].
Avant d'expliciter ces deux phénomènes, nous allons étudier les règles de sélection

pour les deux séries.

L'introduction du spin change les propriétés de symétrie des états excitoniques.
Les fonctions de spin sont a.ßh — a.hße pour un singulet et aecch, ßeßh et aeßh + cnhße

pour un triplet; elles appartiennent aux représentations rf pour le singulet, et r~,
r~ et F2 respectivement pour le triplet. Dans le groupe D3h, le triplet est dédoublé
en un singulet P£ et un doublet JHr. Sachant que, dans le GaSe, la bande de valence
appartient à la représentation rx du groupe simple de D3h, ou r& du double groupe,
la bande de conduction à F2 ou Ft du double groupe, l'opérateur de transition
E J_ c à .Tg" et l'opérateur E | J c à F2, les règles de sélection sont les suivantes :

Groupe simple

Sans spin Avec spin

s r2xr+xr+ r-E\\c s smgnietr2xr+xr+xr+ r2 e\\c
s doublet r2 x r+ x r+ xr- t+e ±c
s singulet r~ XF+ x T+ X T+ Fx interdit.

Double groupe (couplage spin-orbite)
s r,xFixr+ rx+rr + r+ e\\c, e±c.
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On voit que l'exciton appartenant à la représentation r£ qui est visible pour
E J_ c n'est permis que par l'introduction de l'interaction spin-orbite.

En comparant les données du double groupe et du groupe simple avec spin, puisque

l'interaction spin-orbite est faible, on constate que les excitons appartenant aux
représentations r~ et r3 sont principalement singulet, respectivement doublet. Le
singulet rx n'est jamais visible.

Si nous reprenons l'équation (1.5) pour un état singulet excitonique il faut introduire

l'interaction d'échange dans l'énergie d'excitation. En l'absence de couplage
spin-orbite, dans l'énergie totale, cette contribution prend la forme :

Z zjk fe. fe' fc'.J
rA™l*AZAkJ*mk(rx)cß*nk(r2) - °- ^

X tnH(rx) d*rxd*r2 x -1 - ZA^A^

r,-r,

ou

"" fc fe ' h e h J '""e "- "
Re Rh cell

G(r2)unkirQ(rx)dHxdH2

vcett I <f>ntm(Q) \2 Eich (atomique)

%ch (atomique) =^— j u*mo(rx) u*0(r2) j—^-- - um0(r2) uno(rx) dsrx d*r2
r, '2

est une combinaison d'énergies d'échange calculées entre des fonctions de Wannier,
c'est-à-dire, dans notre cas, avec des orbitales de Ga et Se. La contribution de l'intégrale

d'échange est non nulle lorsque l'électron de conduction a un spin anti-parallèle
à celui du trou ; c'est un état singulet excitonique. La contribution la plus importante
provient des états où le trou et l'électron ont une probabilité non nulle de se trouver
au même site. Seuls les excitons du type s subiront un déplacement énergétique important.

On peut donc écrire la formule donnant la position en énergie des états excitoniques

comme:
Enplm Eg- ^f^A) + -^ôXQO<TQ

où f310 signifie que la contribution d'échange est finie pour les états s seulement et
ô^Q signifie que seul l'état singulet ayant un spin total nul reçoit une contribution
de l'interaction d'échange.

L'écart observé entre les deux séries semble suivre la loi Eichjnz, car Ax x 1/8 Ax,
mais ceci n'est vérifié que pour deux lignes. Une estimation de l'énergie d'échange
[19] donne une valeur de l'ordre de 2 meV pour l'état 1 s, lorsque l'échange a lieu
dans la configuration 4 s (2S) 4 p du Ga"1.

De plus, la première série, correspondant aux états doublets aura un facteur de

Lande g différent de celui de la seconde série, formée de l'état singulet ; ce point est
en accord avec les observations faites en présence d'un champ magnétique [14].
L'intensité de la série doublet est faible relativement à l'intensité de la série singulet,
car, comme le montrent les règles de sélection, le doublet n'est permis que par
l'introduction d'une interaction spin-orbite.

Hopfield a proposé un modèle [19] d'interaction lumière-matière dans lequel il
considère un exciton comme une forme d'onde de polarisation se propageant à tra-
27
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vers le cristal; cette onde vibre selon deux modes, l'un transversal d'énergie %a> et
l'autre mixte-longitudinal et transversal - d'énergie

%cx> U1 H — sin2 r

où r est l'angle de réfraction, e une constante diélectrique et 4 nß la force de l'oscillateur.

Sur la base de ce modèle, on ne peut pas attribuer le dédoublement observé
Ax 1,7 meV aux deux modes transversal et mixte d'un seul oscillateur hco, car il
faudrait une force d'oscillateur de l'ordre de 10-1, beaucoup trop grande par rapport
aux valeurs (<10~3) usuellement admises. Si on tient compte de l'anisotropie cristalline,

on peut alors considérer deux oscillateurs virtuels Hco^ et %mx qui donnent trois
modes symétriquement permis, un transversal floj± et deux mixtes

Sö>x |/ l + —?A sin2 r et fico, 1/1 + ±3&L Cos2fi
Le mode transversal%a>1 est permis pour E J_ c, et les deux modes mixtes pour E\\c.
Le dédoublement entre les deux modes provenant de %wx est faible et peut ne pas
avoir été résolu: il doit augmenter avec l'angle d'incidence, ce qui n'a pas été observé.

L'énergie du mode mixte

feu,, l/l + —^ cos2 r

doit diminuer et son amplitude augmenter lorsque l'angle d'incidence croît; seul le
second point a été observé. Finalement, le dédoublement entre le mode transversal
Èa>± et le mode mixte

fico, l/l + —^L cos2 r

diminuera comme ljn% dans la série excitonique et les deux oscillateurs auront des
facteurs de Lande différents.

Chacun des deux effets - interaction d'échange et dispersion - peut expliquer
l'origine de la seconde série excitonique et de la constante de dédoublement AE. Les
règles de sélection et les ordres de grandeur calculés correspondent à l'observation.
Ces deux interactions peuvent aussi avoir lieu simultanément, sans qu'il soit possible
de savoir laquelle est la plus importante. Quoi qu'il en soit, les énergies des lignes
des deux séries sont données par la relation :

E„im Eg — -^ / m(A) + —-8- oE c

où ôE c signifie que le troisième terme du membre de droite disparaît pour une polarisation

perpendiculaire à l'axe c.

4. Conclusion

Notre étude a établi avec un modèle simple que l'influence de la discontinuité
du réseau sur l'énergie de liaison d'un exciton de Wannier est négligeable. En
respectant les règles de symétrie de la théorie des groupes, nous avons calculé les
corrections à apporter à l'énergie pour tenir compte de l'anisotropie cristalline; les va-
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leurs théoriques correspondent bien avec les valeurs expérimentales. Inversement on
peut, par un ajustement de la série calculée à la série observée, déterminer les

composantes de la masse réduite en l'absence de toute perturbation extérieure. A ce titre,
ce travail constitue une base pour l'explication du spectre excitonique et pour la
détermination des paramètres de bandes.

Remerciements

L'auteur remercie la direction de Cyanamid European Research Institute, Cologny,
pour l'occasion qui lui a été offerte d'y préparer la présente thèse. Il tient à remercier
aussi MM. les Professeurs B. Vittoz et P. Choquard pour leurs suggestions et
critiques. Il remercie tout particulièrement le Dr. E. Mooser et le Dr. J. L. Brebner
pour les nombreuses et fructueuses discussions et pour leur soutien. Sa gratitude va
aussi à Melles E. Pobitschka et M. Keil pour la préparation des graphiques et du
manuscrit.

Références

[1] J. Frenkel, Phys. Rev. 37, 17 (1931); Phys. Rev. 37, 1276 (1931).
[2] G. H. Wannier, Phys. Rev. 52, 191 (1937). Voir aussi: R. S. Knox, Theory of Excitons;

Solid State Phys. suppl. 5 (Academic Press 1963). R. J. Elliott, Excitons and Polarons;
C. G. Kuper and G. D. Whitfield; Edit. Oliver and Boyd (Edinburgh and London 1963).
G. F. Koster and J. C. Slater, Phys. Rev. 95. 1167 (1954). G. Dresselhaus, J. Phys.
Chem. Solids /, 14 (1956).

[3] Ph. Choquard, communication personnelle.
[4] Voir, par exemple, L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, 1949),

Chap. VII.
[5] P. G. Harper and J. A. Hilder, Phys. Stat. Sol. 26, 69 (1968).
[6j D. J. Morgan and P. T. Landsberg, Proc. Phys. Soc. 86, 261 (1965).
[7] D. G Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959); Phys. Rev. 128, 2135 (1962).

E. F. Gross, B. S. Razbirin, V. I. Safarov, Soviet Physics-Doklady 6, 900 (1962).
[8] R. G Wheeler and J. O. Dimmock, Phys. Rev. 725,1805 (1961) ; R. B. Parsons, W. Ward-

zinski, A. D. Yoffe, Proc. Roy. Soc. ^4 292, 120 (1961); L. T. Chadderton, R. B. Parsons
W. Wardzinski, A. D. Yoffe, J. Phys. Chem. Sol. 23, 416 (1962).

[9] T. Masumi, J. Phys. Soc. Japan 14, 1140 (1959).
[10] Z. S. Basinsky, D. B. Dove, E. Mooser, Helv. phys. Acta 34, 5 (1961).
[11] H. I. Ralph, J. Phys. (France) 28, C-3-57 (1967); suppl. au no. 5-6.
[12] F. Bassani, G. Pastori, Nuovo Cim. B50, 95 (1967).
[13] J. L. Brebner, communication privée.
[14] J". L. Brebner, E. Mooser, Phys. Lett. 24A, 274 (1967).
[15] J. L. Brebner, E. Mooser, communication privée.
[16] P. C. Leung, G. Andermann, W. G. Spitzer, C. A. Mead, J. Phys. Chem. Sol. 27, 849

(1966).
117] J. Halpern, Proc. of the International Conference on the Physics of Semiconductors, Kyoto

1966; J. Phys. Soc. Japan 21, suppl. 180 (1966).
[18] J. L. Brebner, J. Halpern, E. Moser, Helv. phys. Acta 40, 385 (1967).
[19] J. J. Hopfield, Phys. Rev. 772, 1555 (1958); J. J. Hopfield and D. G. Thomas, J. Phys.

Chem. Sol. 72, 276 (I960).
[20] Atomic Energy Levels, Vol. II, Circular 467, National Bureau of Standards, 1952.


	Contribution à la théorie des excitons de Wannier dans les cristaux anisotropes

