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Analyse des résultats d'une mesure du moment magnétique
de l'hypéron A0

par Gérard Charrière
Institut de Physique Nucléaire de l'Université, Lausanne

(22 VII 68)

Abstract. A method is described for the kinematic reconstruction of 874 A decays observed in
nuclear emulsions. Their angular distribution is studied in order to determine the A magnetic
moment.

Selecting 151 events, we obtain ßA — 0,50 + 0.28 nuclear magneton.
A discussion of the systematic errors is given and the method of selection of the events is

justified.
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Introduction

La mesure du moment magnétique des hypérons est d'un intérêt capital pour la
connaissance de leur structure et de leurs interactions.

L'importance de ces mesures est encore rehaussée actuellement par la possibilité
qu'elles offrent de tester certains modèles de symétries unitaires.
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Une expérience consistant en la mesure du moment magnétique de l'hypéron A
a été effectuée en collaboration entre les laboratoires de Bristol, Munich et Lausanne,
et le groupe «Emulsions» du CERN [2]. Les principes généraux de cette expérience
ont été exposés de façon détaillée par Rosselet [11. L'irradiation des emulsions a été
faite au S.P. du CERN, le dépouillement et les mesures des événements dans les

quatre laboratoires susmentionnés.
Pour notre part, nous avons été chargé du traitement des données provenant de

ces mesures, de leur analyse, de l'interprétation des résultats et de l'estimation du
moment magnétique. Ce travail est l'objet du présent article.

Nous verrons tout d'abord l'importance réelle que revêt la mesure du moment
magnétique du A ; puis, après un rappel expérimental, nous exposerons la technique
du dépouillement et des mesures. Dans une deuxième partie, nous décrirons les

méthodes devant nous permettre l'estimation du moment magnétique. La troisième
partie décrira l'utilisation de ces méthodes pour faire une analyse détaillée des

résultats des mesures (ajustement cinématique, calcul des probabilités de détection,
calcul de l'amplitude et du déphasage (~ moment magnétique) de la distribution
angulaire des désintégrations) et évaluer les erreurs statistiques; nous discuterons
également des erreurs systématiques.

I. Aspect théorique

Dans le modèle de classification des particules élémentaires basé sur le groupe
SU(3) [3] où p, n, A, E et E sont associés dans une représentation de dimension 8,

on établit un certain nombre de relations entre les moments magnétiques des baryons.
Ce sont:

Pz* ~ Pp

-9 - -? JLPs° z Pa" z Pz° .y Pa z ~ Pn

Pz- Ps- Pn Pp

(Paz est le moment de transition entre A0 et 27°, et détermine la vie du 27° pour sa

désintégration 27° -> /1° + y).
Nous constatons qu'on peut exprimer tous les moments magnétiques en fonction

de ceux du p et du n.
En ce qui concerne SU (6), les prédictions sont les mêmes, avec une relation

supplémentaire entre le moment magnétique du n et celui du p,

2
Pn -~ ~ 3" Pp

relation qui est en excellent accord avec les valeurs expérimentales

ptp 2,793 et pt„= - 1,913

exprimées en magneton nucléaire.
La mesure du moment magnétique du A est, comme l'on peut facilement s'en

rendre compte, un test très important de SU (3) et doit permettre, de plus, d'éliminer
définitivement des modèles antérieurs qui prédisent piA — 0 [4] et ptA pin [5].
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A un stade ultérieur des mesures beaucoup plus précises pourront être faites

pour tester les modèles de violation de SU (3).

Ajoutons que les mesures des moments magnétiques ptA, ptE+ et pts- sont les seules

possibles pour des raisons expérimentales connues.

II. Aspect expérimental
Le principe de la mesure est bien connu [1] :

Des hypérons A polarisés produits dans une cible de polyethylene par un faisceau
de mésons ji~ de 1,05 GeV/c se déplacent dans un champ magnétique puisé de 150 kG.
La direction de la polarisation tourne d'un angle proportionnel au moment magnétique
des/1.

La direction initiale de la polarisation est connue ; la direction finale est déduite de

l'observation, dans des emulsions ionographiques, de la distribution angulaire des

désintégrations A -> p + n~, distribution asymétrique par suite de la non-conservation
de la parité dans les interactions faibles.

7. Production, précession et détection

Les hypérons A produits dans la réaction n~ + p -> A0 + K° sont fortement
polarisés dans une direction normale au plan de production.

De façon à maximiser le rapport nombre de /1/bruit de fond, il est évidemment
avantageux de détecter les hypérons produits dans un petit intervalle angulaire
limité supérieurement par l'angle maximum d'émission. Ce dernier étant de 21°,
nous avons choisi d'observer l'intervalle 13°-23° auquel correspond une région
angulaire dans le système du centre de masse de la réaction où la polarisation des A
approche 100%.

Le mouvement de précession du vecteur polarisation S d'une particule A dans un
champ magnétique H peut être décrit par l'équation différentielle suivante [1] :

dt

avec

mc \ y \ Pa

où pA est la quantité de mouvement du A et pi son moment magnétique, en magnetons
intrinsèques si m est la masse du A.

Dans notre cas nous avons utilisé un champ magnétique transverse, c'est-à-dire
perpendiculaire à la ligne de vol moyenne des A pour produire un effet de «balayage»
des particules chargées parasites, entre la cible et le détecteur.

Il s'en suit que „Q u —.' mc

Après que la particule a parcouru une distance / dans le champ magnétique, à une
vitesse ß c, ce qui correspond à un temps de vol t Ijß c, l'angle de précession cp0 entre
les directions finale et initiale du vecteur polarisation s'exprime par:

e HI
CpQ Q t pi¬

rn c
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et sa mesure va nous permettre de déterminer le moment magnétique pi (ejm c2

15,4°/Mgauss. cm. magneton A).
Pour produire par impulsion le champ magnétique H nécessaire, des bobines ont

été construites, produisant un champ de 150 kG sur une longueur d'environ 16 cm
comprenant la cible et le détecteur [7, 8].

La désintégration des hypérons A par le processus A0 -> p + n" n'est pas isotrope.
Dans le système du centre de masse, les mésons ji~ ont une distribution angulaire
de la forme :

N(6)dQ= A- (1 + a. P cos d) dQ (1)

où: S est l'angle compris entre le vecteur polarisation et la direction d'émission, p*,
du méson de désintégration ; P la polarisation des A ; a une constante caractéristique
du mode de désintégration, qui vaut — 0,663 + 0,022 [6].

L'observation de la distribution (1) va nous permettre de déterminer la direction
finale du vecteur polarisation des A.

La détection de la désintégration des A s'est faite dans des empilements d'émulsions
ionographiques, constitués chacun de 18 pellicules 7,5 X 2,8 X 0,12 cm3. Les pellicules
ont été placées de telle façon que leur plan contienne le vecteur polarisation. Une
trentaine de lots ont été irradiés, le sens du champ magnétique étant inversé après
l'irradiation de chacun d'entre eux.

2. Dépouillement et mesures

Le domaine de quantité de mouvement des hypérons A produits se situe entre
450 et 900 MeV/c, et dans ce cas les protons de désintégration sont émis, en avant,
à de relativement petits angles dans le système du laboratoire; par exemple, pour
un A de 650 MeV/c, l'angle d'émission maximum du proton est 10,5°. Par contre le
méson n~ peut être émis dans n'importe quelle direction. Il s'ensuit que seule une
trace de proton à petit angle peut servir comme une première et utile indication d'une
désintégration possible d'un A pour un dépouillement «le long des traces». Ajoutons
que l'énergie des protons des désintégrations est telle que la densité de grains est
comprise entre 1,4 et 3,6 fois le minimum.

Définissons plus précisément la méthode de dépouillement utilisée : on choisit un
plan dans l'émulsion approximativement perpendiculaire à la ligne de vol moyenne
des particules provenant de la cible et à une certaine distance (1 cm ou 2 cm) du bord
d'entrée des pellicules. L'intersection de ce plan avec l'émulsion est appelée, abusivement

(par commodité), ligne de dépouillement. Les traces traversant cette ligne sont
choisies si leurs angles par rapport à la direction moyenne des A au point d'observation
sont dans l'intervalle attendu pour des protons de désintégration A. Toutes ces traces
sont suivies, en arrière, jusqu'à ce qu'elles sortent de la plaque, présentent une
interruption, ou au maximum sur 1 cm.

Pour éviter de suivre un nombre excessif de traces parasites, il est nécessaire de
choisir un intervalle d'angle en projection (c'est-à-dire dans le plan de l'émulsion,
donc perpendiculaire au champ magnétique) hors duquel la plupart des particules
chargées du bruit de fond a été «balayée» par l'action du champ magnétique. A une
distance donnée de la cible, les limites de cet intervalle sont déterminées par l'impulsion
des particules les plus énergétiques atteignant ce point. Ces particules sont des mésons



Vol. 42, 1969 Analyse des résultats d'une mesure du moment magnétique 343

tt diffusés élastiquement, d'un côté de la direction moyenne des A, et des protons de
reculs de diffusions élastiques, de l'autre côté.

Ainsi les conditions angulaires du choix des traces à suivre sont définies par:
a) un angle d'inclinaison compris dans un intervalle (+ 15°, — 15°) par rapport au
plan de l'émulsion; ces limites, dues à la cinématique, tiennent compte, également,
de la dimension de la cible.

b) un angle en plan compris dans un intervalle asymétrique par rapport à la direction
du centre de la cible au point considéré. Cet intervalle, compris entre les pics p et n~,
s'étend de — 4° à + 13°, pour une ligne de dépouillement à 1 cm du bord d'entrée
des pellicules. Pour une orientation contraire du champ magnétique, il suffit de changer
les signes de ces limites.

c) une densité de grains supérieure à 1,2 fois le minimum. Cette dernière condition
permet d'éliminer la plupart des électrons ainsi que tous les pions diffusés qui sont
également au minimum d'ionisation.

Toutes les traces sélectionnées selon ces critères ont été suivies, et chaque événement

se présentant sous la forme d'un V a été enregistré et mesuré (1 pour 15 traces
suivies environ).

Pour chaque pellicule, une mesure de la dilatation latérale et de la contraction de

l'épaisseur est effectuée pour déterminer les coefficients qui entrent dans les calculs
de reconstitution géométrique des événements. De plus, au début du dépouillement
de chaque nouvelle plaque, 1000-1500 grains sont comptés sur des traces d'électrons
(facilement identifiables) afin de déterminer l'ionisation au plateau. Pour chaque
microscopiste, la relation entre la densité de grains normalisée et la vitesse des

particules est établie à l'aide de n+ de 70 MeV s'arrêtant dans des pellicules identiques
à celles utilisées pour l'expérience.

Pour chaque événement V trouvé, on mesure :

1) La position à l'intérieur du stack.

2) L'angle en plan et l'angle d'inclinaison de chaque trace; le premier se mesure
à un demi degré près ; pour calculer le second, on mesure la variation de cote pour une
distance en projection horizontale donnée, l'incertitude est de quelques pour-cents.

3) La densité de grains de chaque trace avec une précision statistique de 5%.
4) Le parcours de la branche du V non suivie, lorsqu'elle s'arrête et que son aspect

est celui d'un méson n~ ; une telle mesure, permettant une détermination très précise
de l'énergie du pion, est possible pour 10 à 15% des événements A.

5) L'effet combiné de la courbure due au champ magnétique et de la diffusion
multiple pour les traces peu inclinée et assez longues [9].

Les mesures 3), 4) et 5) permettent de calculer la quantité de mouvement de

chaque particule.

III. Méthodes d'analyse

/. Introduction [10, 14, 17, 20]

Lors d'une expérience, il arrive souvent qu'une ou plusieurs grandeurs physiques
que l'on désire déterminer ne peuvent être mesurées directement. L'analyse d'une
telle expérience pose essentiellement deux problèmes :
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Le premier est de transformer les quantités mesurées en paramètres utiles pour
l'étude que l'on se propose de faire. Cette transformation consiste, à partir d'un
ensemble de grandeurs expérimentales entachées d'une certaine erreur, à rechercher
l'ensemble correspondant le plus «probable», ensemble pouvant comprendre à la fois
les valeurs ajustées des grandeurs observées, et aussi les valeurs estimées de grandeurs
non-observées.

Le second est l'étude des propriétés de ce nouvel ensemble et conduit aux résultats
proprement dits de l'expérience.

De façon générale les problèmes de statistique qui se posent sont essentiellement de
deux sortes, soit des tests d'hypothèses, soit des estimations de paramètres, l'imbrication

des deux étant en fait très grande.
Les exemples que l'on peut donner sont nombreux et variés: test d'hypothèses

concernant certains types d'interactions nucléaires, ajustement de fonctions théoriques
ou empiriques sur des courbes expérimentales, analyse de distributions angulaires
observées, calcul de déphasages ou de longueurs de diffusion, etc.

La résolution de ces problèmes peut être guidée par différents principes, les plus
courants étant le principe du maximum de vraisemblance et le principe des moindres
carrés.

Un problème important consiste donc à trouver des valeurs de n paramètres
xx, xn de telle façon que la valeur d'une fonction f(xx, xn) soit minimum.

Les méthodes de minimisation d'une fonction se répartissent en deux classes:

a) Celles qui tentent (en utilisant une forme approximative de la fonction)
d'atteindre un minimum directement en un pas et répètent l'opération un certain nombre
de fois si cela est nécessaire en utilisant un procédé itératif. Toutes ces méthodes
nécessitent généralement la connaissance des dérivées premières, et parfois des
dérivées secondes, de la fonction par rapport à tous les paramètres du problème.

La plus classique de ces méthodes est celle qui consiste à résoudre df 0. La
résolution d'un tel système dépend naturellement de la complexité de la fonction et

peut être différente suivant les cas traités.
De façon générale, on procède par approximations successives en linéarisant les

équations à l'aide d'un développement limité de Taylor. De tels processus conviennent
particulièrement bien au calcul numérique à l'aide d'un ordinateur électronique. Il
existe cependant certaines difficultés lorsque l'on se trouve assez loin de la solution
(du minimum) car l'hypothèse de linéarité est souvent gravement en défaut, et, de

plus, il est souvent très laborieux ou pratiquement impossible de calculer les dérivées
de la fonction ; il est donc nécessaire de posséder des méthodes de minimisation qui ne
les requièrent pas. Ce sont :

b) Celles qui approchent un minimum graduellement, par une série de pas. Ces

méthodes sont aussi très indiquées lorsque la fonction possède plusieurs minima, ou si
des paramètres ne sont définis que dans certaines régions.

Le principe de telle méthodes est toujours du même type: le processus part d'un
ensemble de valeurs initiales des paramètres. A chacun de ces paramètres est attribué
un pas de dimension choisie. Le premier paramètre est augmenté ou diminué d'une
quantité correspondant à son pas afin de trouver une plus petite valeur de la fonction.
Si c'est le cas, la nouvelle valeur de ce paramètre est utilisée et la même opération
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est répétée pour le paramètre suivant et ainsi de suite jusqu'au dernier. Ce cycle est

répété tant que la fonction décroit. Lorsque l'on s'approche du minimum, les pas
initialement choisis sont réduits d'un facteur choisi et le processus continue jusqu'à
ce que l'on trouve une solution satisfaisante. Le critère de convergence ultime consiste
à arrêter le processus dès que la différence entre deux valeurs successives est inférieure
à une grandeur fixée.

2. Méthode des moindres carrés et signification de x2 [15, 18, 19, 21]

Cette méthode est basée sur le principe dit des moindres carrés qui admet une
courbe de Gauss pour la probabilité de distribution des grandeurs mesurées. On peut
aisément montrer que dans un tel cas, cette méthode est équivalente à celle du
maximum de vraisemblance que nous verrons dans le paragraphe suivant. Cependant
il faut tout de suite noter que si les fonctions de distributions ne sont pas exactement
gaussiennes le principe des moindres carrés donne cependant une méthode raisonable
d'estimation. C'est une des raisons pour lesquelles cette méthode est l'une des plus
utilisées, une autre de ces raisons étant la simplicité de sa formulation.

Si l'on se trouve en présence d'une seule grandeur inconnue, on peut énoncer le

principe des moindres carrés de la façon suivante: la meilleure estimation, x, de cette
grandeur inconnue est telle que la somme des carrés des déviations des observations x{
par rapport à cette valeur soit minimum.

Parmi de nombreuses utilisations et généralisations que l'on peut faire de ce

principe, nous nous contenterons, ici, de développer la méthode d'ajustement par
moindres carrés qui est la méthode de base de l'analyse cinématique des interactions
nucléaires détectées par des chambres à bulles ou par des emulsions ionographiques.

Considérons une interaction nucléaire; pour une hypothèse donnée expliquant la
configuration des traces, les impulsions et les angles des traces mesurées ne sont
généralement pas compatibles avec les lois de conservation d'énergie et d'impulsion.
En effet, ces lois imposent un certain nombre de contraintes sur les variables. Il est
donc nécessaire d'ajuster ces dernières, en tenant compte des incertitudes de mesures.
L'ajustement doit donc remplir les deux conditions suivantes:

1) Les équations de conservation d'énergie et d'impulsion doivent être satisfaites.

2) Les valeurs ajustées des variables cinématiques doivent être aussi proches que
possible des valeurs mesurées.

Dans un formalisme matriciel, la première condition s'exprime par une équation
du type:

g(x, y) 0. (1)

La deuxième condition s'exprime par le minimum de la fonction

f=(x- x«f G-1 (x - xm) (2)

xm est le vecteur des valevrs mesurées originales, x celui des valeurs ajustées, y celui
des grandeurs inconnues. G est la matrice d'erreurs des grandeurs mesurées (s'il n'y
a pas de corrélations entre les grandeurs mesurées, G est une matrice diagonale).

Pour procéder à un tel ajustement, on cherche le minimum de la fonction

X2(x, y, X) (x - x™)T G-1 (x-xm)+2X g(x, y) (3)



346 Gerard Charrière H. P. A.

en résolvant le système suivant :

(4)

\ df {x _ 3»)T G;i + x W*.y) 0 (5)
dx y ' x dx

*£ i dJ^A o (6)
dy dy v '

^- - g(*. y) 0 (7)

La résolution d'un tel système ne peut, généralement, se faire que par approximations

successives. Nous dénoterons, par la suite, par un indice v toutes les grandeurs
calculées à la vèrae étape itérative.

Les équations de contraintes peuvent être développées de la façon suivante :

% v+1 - ^ + lx v+1 ~xV)-° w

les équations (5) donnent:
T

xv+l xm _ Qx W_ r + l (9)

en remplaçant xv+1 par cette expression dans (8), on obtient

En posant
ï^'-i' + ï^-i +ï (/«-/

«-«•+J£ (»"-»'I « S.^Crf^ v d^ dx

on peut écrire

r+1=s-1[^ + -Ç(/+1-/)]
et, en introduisant ce vecteur X dans les équations (6), on obtient:

""-'-(£*" ¦£)"£*-'*• (10)

La méthode de résolution est ainsi clairement définie. Il suffit de calculer le

vecteur y"+1 à l'aide de la relation (10), puis le vecteur X et enfin le vecteur xv+1 avec
la relation (9). Chaque étape itérative donne une solution approximative du problème
et l'on peut se rendre compte de l'évolution du processus en calculant chaque fois la
valeur que prend la fonction %2 définie par la relation (3) :

X2 (x - xm)T G'1 (x - xm) + 2 X g -J (xm - x) X + 2 X g X (R + g)

Nous avons ainsi déterminé les valeurs des grandeurs inconnues et les valeurs
ajustées des grandeurs mesurées. On pourrait, de plus, calculer les matrices d'erreurs
et la matrice de corrélations intervenant sur ces résultats et montrer que, lors de

l'ajustement, les erreurs sur les grandeurs mesurées diminuent, des corrélations entre
les grandeurs x (s'il n'y en avait pas déjà) et des corrélations entre les grandeurs y et a;

apparaissent.
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La valeur finale de la grandeur %2 présente un très grand intérêt, puisqu'elle
permet de se rendre compte de la qualité de l'ajustement.

En effet, lorsque ce dernier est achevé, la valeur de x2 caractérise, par définition,
les différences entre les valeurs ajustées et mesurées de chaque grandeur. On peut
associer à la valeur de x2 trouvée une probabilité, en utilisant la distribution théorique :

L(f)äf--^-~e^df
où n est le nombre de degrés de liberté de la loi de x2- H existe des tables donnant la
probabilité en fonction de x2 et de n [14].

De façon générale, n est la différence entre le nombre de variables aléatoires
indépendantes et le nombre de paramètres inconnus indépendants.

Si Nx nombre de variables aléatoires (mesures)

Cx nombre de liaisons algébriques entre ces variables

N2 nombre de paramètres inconnus (que l'on veut estimer)

C2 nombre de liaisons entre ces paramètres

alors: n (Nx-Cx) - (N2 - C2)

3. Méthode du maximum de vraisemblance [16]

La vraisemblance d'un ensemble de grandeurs est un nombre proportionnel à la
probabilité d'observation de cet ensemble.

Si cette probabilité est fonction d'un certain nombre de paramètres inconnus, leur
meilleure estimation est celle qui rend maximum la vraisemblance du résultat
expérimental. Tel est l'énoncé du principe du maximum de vraisemblance.

Considérons un phénomène caractérisé par une loi de distribution F{x, y, ;

0X, dh) de forme analytique connue, fonction des variables aléatoires x, y, et
dépendant des h paramètres 6.

La probabilité d'observer un échantillon de N valeurs des grandeurs x, y, est

proportionnelle à

l_\ fF(x,y, ...;Qx,...,eh)dxdy...-

La détermination des valeurs 6X, 6hest donc possible en cherchant le maximum
de la fonction L par rapport aux paramètres 6. Il est souvent plus pratique de chercher
le maximum de C In L.

Si l'on considère une expérience de physique nucléaire, il arrive souvent que la
probabilité de détection d'un événement dépende de ses caractéristiques (énergie,
angles, position dans le détecteur). Une telle probabilité, qui peut être soit le résultat
d'un calcul, soit détermir ée expérimentalement, va naturellement intervenir dans la
formulation de la fonction de vraisemblance. Désignons-la par d(x, y, La nouvelle
fonction de vraisemblance s'écrit:

L Tj d(xt, y., F(x(, yt, ; 0X, ...,6h)

ij fd(x, y, F(x,y,. ; 6X 8h)dxdy
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d'où:

C ln L =Z{ln d(xlt y,-, + ln F(x„ y,, ; 6X, 6h)

- ln [/ d(x, y, F(x, y, ; dx, 0h) dx dy ...]} (I)

Remarquons que le premier terme ne dépend pas des paramètres 0, et qu'ainsi,
pour la recherche du maximum de £ par rapport aux paramètres 0, la probabilité de

détection d(x, y, n'intervient que dans le terme de normalisation. Il est souvent
très difficile d'évaluer cette expression. On peut alors utiliser une fonction de vraisemblance

sous la forme simplifiée suivante :

L=n F(x., y.,

JF(x, y, ; 8X, ¦ ¦ ¦, 6h) dx dy

lld{xt,v,

Cette dernière expression est très intuitive puisque l'on a simplement pondéré
chaque observation par l'inverse de sa probabilité de détection. Les valeurs estimées
0' des paramètres 0 obtenues à l'aide de la fonction C ln L' ne sont pas biaisées,
si l'on peut montrer que idC/ddy tj 6Vrai

0.

L'utilisation d'une fonction du type L' se justifie pour autant que la fonction
d(x, y, ne soit pas trop proche de zéro pour certaines valeurs de x, y, Dans un
tel cas, on a alors intérêt à éliminer les événements ayant ces faibles probabilités de

détection, malgré la perte d'information qui en résulte.

En plus de la valeur des paramètres qui rendent la fonction de vraisemblance
maximum, on peut tirer une information très utile de la forme de la fonction au
voisinage de son maximum. Les physiciens considèrent souvent, qu'en bonne approximation,

la matrice des covariances (ou matrice des erreurs) de l'échantillon est

l'inverse de la matrice dont les éléments sont

(-ïï-w),-** (M 1,....*).

Une telle hypothèse est bonne si L est une fonction approximativement multi-
gaussienne.

4. Ajustement d'une fonction par moindres carrés

Nous allons maintenant considérer un cas particulier, très courant, d'application
de la méthode des moindres carrés: l'ajustement de fonctions théoriques ou empiriques
sur des résultats expérimentaux. Cet exemple va nous permettre de montrer
l'équivalence de cette méthode avec celle du maximum de vraisemblance.

Considérons m mesurés yx, ,ym en des points xx, xm, et supposons les

résultats expérimentaux distribués de façon gaussienne avec des déviations standards

ax,... ,am, et appelons y,'^,-; 6X,... ,dh) les valeurs données par une fonction théorique
(ou empirique) dépendant de h paramètres 0. Dans ce cas, la fonction de vraisemblance
s'écrit :

il 1/2na. 1 2 a? J
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d'où:

C= - \ T (Vj-yù + constante ---M + constante.
2 ai aï 2

On voit donc que les valeurs 0*, 0* qui redent L maximum sont les mêmes

que celles qui rendent M minimum. Cette valeur, M*, est bien la somme des moindres
carrés. Nous avons déjà parlé des méthodes possibles de résolution d'un tel problème
dans un paragraphe précédent, en particulier lorsque la résolution analytique n'est
pas possible.

Un exemple qui nous intéresse est le suivant: le comptage, dans des emulsions,
des densités de grains sur des traces de particules dont nous connaissons les vitesses
ßx, ßm donnent les résultats

gi±ox, ,gm±am[ai -è= N, nombre de grains comptés

Il est alors possible de déterminer les paramètres 8X et 02 de la fonction

fO,-log (1/0»-1) A
S -°i\— J2 xi

et ainsi d'obtenir la courbe g g(ß), (on appelle calibration un tel procédé), en
cherchant le minimum de

2

M=Z(~±
par rapport à 6X et 02. On peut naturellement remplacer g' par toute autre fonction

P

théoriquement mieux justifiée ou par un polynôme g' 0O + £ dj ßJ'.

i-l
5. Méthode de Monte Carlo [11, 12, 13]

Le principe d'une telle méthode est de simuler un processus que l'on observe, par
exemple la diffusion multiple d'une particule chargée ou des cascades intranucléaires.

Pour étudier en réalité de tels phénomènes, on observe et on compte un certain
nombre d'événements d'un type donné, les résultats étant sujets aux erreurs
statistiques. La méthode de Monte Carlo fonctionne de la même façon: on génère un
grand nombre de pseudo-événements selon un modèle de simulation choisi. Ces

événements sont, ensuite, étudiés selon les mêmes critères que les événements réels.
Les résultats peuvent alors être comparés à la réalité ou utilisés comme prédiction
pour une expérience à faire (en supposant que le modèle établi simule suffisamment
bien la nature!).

Considérons une variable v, dont la distribution P(v) est connue. Si l'on veut
introduire cette variable dans un processus de simulation, le choix d'une valeur v doit
être tel que cette valeur ne soit pas connue a priori. Pour satisfaire cette exigence, on

compare la distribution initiale à une distribution de nombres aléatoires. Plus
exactement: on affirme que la probabilité que la variable ait une valeur comprise
entre v et v + dv est proportionnelle à la probabilité que le nombre aléatoire NA ait
une valeur comprise entre n et n + dn:

P(v) dv K(n) dn (1)
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Dans la plupart des cas on choisit la distribution des nombres aléatoires uniforme
et définie entre 0 et + 1 ; K(n) est alors simplement une constante de normalisation.

Le principal problème de la méthode de Monte Carlo consiste à écrire correctement
l'équation fondamentale (1) pour le problème que l'on étudie, qui nous permet ainsi
de transformer une série de nombres aléatoires en une distribution de la variable v.

Un exemple très simple est donné par une distribution isotrope de l'angle polaire 0 :

l'équation (1) s'écrit:
P(6) d6 ~ d (cosd) =Kdn

en intégrant, on obtient :

ou

d(cosB) K / dn

cos 0 + 1 K n.

Pour COS0 — 1, n 0, et pour cos0 + 1, n 1 d'où le résultat évident: cos0
2 (NA) - 1.

IV. Analyse des résultats

Dans notre expérience, nous nous trouvons en présence des deux problèmes
essentiels dont nous avons parlé au début du chapitre précédent. A savoir:
- transformation de quantités mesurées en paramètres utiles pour l'étude que l'on
se propose de faire.

- étude des propriétés des ces paramètres.

1. Ajustement cinématique et reconstitution

Nous avons donné précédemment les lois générales, régies par le principe des
moindres carrés, qui nous permettent, à partir des grandeurs mesurées, de les ajuster
et de calculer les grandeurs inconnues (c'est-à-dire les grandeurs non-mesurées).
Pour le cas particulier qui nous intéresse, où les grandeurs mesurées sont des énergies
(ou des impulsions) et des angles et où nous faisons l'hypothèse que les événements

que nous observons sont des désintégrations A0 -> p + n~, les équations de contraintes
sont:

sT Pa cosò,! cosa,! — pp cosc^, cosa^ — pn cosbn cosa„ 0

&2 Pa œsf^i sina^ — pp cosrJ^ sina^ — p„ cosò,, sina^ 0

g3 pA sinâ^ - pp siaôp - pn sin<5„ 0

g* M + < - ÌP\ + ™\ - iìTAml 0

Les grandeurs mA, mp et m„ sont supposées connues. pp, ôp, ap, p„, ôn et a.„ sont les
valeurs ajustées des mesures pp, dp*, a", p", ô" et a*. pA, ôA et y.A sont inconnues.
Le nombre de degrés de liberté est n 1.

En fait, les erreurs de mesures (aa ax as as sur les angles sont la plupart du

temps négligeables, dans les emulsions, comparativement à celles (ap, aA sur les

impulsions du proton et du pion. Seules seront considérées comme variables aléatoires
mesurées les impulsions pp et p^. De plus, nous supposerons aucune corrélation entre
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ces deux grandeurs. Il est à noter que nous avons toujours n 1. Le minimum de la
fonction

a P
PP - Pp

Pn~P
gi

t=(Pp-pmp,P,-Pl)\ x\\ ]+2(Xx,X2,Xz,X.

est obtenu en utilisant la méthode que nous avons développée dans le paragraphe III-2,
avec:

cosòp cosa^,

— cosòp sina^,

~dx 1 — sinr^

-Pp

cosa, cosa

— cosó_ sma

sm

-Pn
m+

et
ypp+i

— pA cosr3^ sina^ — pA sino,, cosay

cosòA sina.A pA cosó^ cosa^ — pAsmôAsincnA

~dAf ~ | sino,, 0 pA cosò^

Pa

AfP\+i
0 0

Le résultat d'un tel calcul nous permet ainsi pour chaque événement trouvé, que
l'on suppose être une désintégration A, de calculer le vecteur impulsion de l'hypéron/l
ainsi qu'une grandeur caractéristique (x2) donnant la probabilité pour que, l'hypothèse

étant exacte, on trouve une valeur de x2 plus grande que celle obtenue.

Rappelons la forme de la distribution angulaire des désintégrations A :

dN(6, C) 4*- (1 + a P cos 0) sin 0 dd dÇ (1)

où C est l'angle azimuthal autour de SA.
Considérant notre champ transverse, il est utile de projeter la distribution (1)

sur le plan défini par SA et pA, qui est en moyenne perpendiculaire à H, puisque c'est
dans ce plan que se produit la précession du vecteur polarisation. Redéfinissons la
direction du n émis, p*, par cp, angle entre sa projection sur le plan (pA, SA) etpA,
et y>, son angle d'inclinaison par rapport à ce plan. Avec ces nouvelles variables, la
distribution devient:

dN(tp, y>) ~— (1 — a P sinq) cosy) cosy dtp dxp

Intégrant sur y entre les limites — ip0 et + f0, on obtient la distribution de <p suivante:

dN(<pjfo) ^> [1 - a P %„) sincp] dcp
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en posant

X(y>0) \ (cosy0 + -£A
Nous avons vu dans un paragraphe précédent que l'effet de la précession se

manifeste par la rotation du vecteur polarisation, dans le plan (SA,pA), d'un angle
cpQ pt (e H Ijm c2 ß) ; il s'en suit que la distribution angulaire de désintégration devient
simplement :

dN(cplWo) S12nJo [1 - a P A(vo) sin (cp - cp0)] dcp (2)

Ainsi, nous voyons clairement comment la mesure de la distribution (2) permet la
détermination de pt.

Ayant reconstitué la désintégration A dans le système du laboratoire, il nous est
possible, de calculer les angles caractéristiques de la désintégration dans le système
du centre de masse. Tenant compte de la position de l'événement dans l'empilement
de pellicules, il est aussi possible de vérifier si l'hypéron provient de la cible. Nous

pouvons alors, si c'est le cas, trouver les coordonnées de son origine dans le plan
perpendiculaire à l'axe de la cible et passant par son centre effectif. Nous pouvons
également évaluer son temps de vol. Définissons et calculons la quantité suivante:
^2 (Einc + ™p- EA)2 - | plnc - pA \2 - m\ où p{nc(Einc) est l'impulsion (énergie) du
pion incident (\pinc\ 1,05 GeV/c); les indices p, A et K se réfèrent aux particules
correspondantes. Cette grandeur va nous permettre de tester si l'hypéron que l'on
considère a été produit dans la réaction tv + p -> /1° + K°. En effet, si l'on ignore les

erreurs de mesures et si l'on considère un proton libre, on doit obtenir A2 0.

Pour 874 événements mesurés nous avons calculé: les impulsions ajustées pp et pn;
l'impulsion du A, pA ; son origine dans la cible ; son temps de vol, tA ; les angles cp ettp
caractérisant la direction d'émission du n dans le système du centre de masse du A ;

la grandeur A2 attachée à la production du A ; et la valeur x2 caractérisant l'ajustement
à la désintégration A.

2. Probabilité de détection

Etant donné que la probabilité de détection varie d'un événement à l'autre, il
nous faut attribuer un poids statistique à chaque événement trouvé.

La probabilité de détection dépend de deux effets indépendants. Le premier est dû
à la dimension finie des pellicules (1200pi d'épaisseur). En effet, les traces des protons
peuvent quitter une pellicule (par la surface ou le fond) avant d'avoir atteint la ligne
de dépouillement ; de tels événements ne sont pas détectés puisque les traces ne sont
pas suivies d'une plaque à l'autre. La probabilité d'un tel phénomène dépend
essentiellement de l'angle entre les traces du A et du proton et des coordonnées de l'événement.

C'est une fonction de l'angle cp dont il faut tenir compte. Le second effet est dû
aux critères de dépouillement. En dépouillant l'intervalle angulaire projeté allant de
— 4° à + 13° et en acceptant tous les angles d'inclinaison compris entre — 15° et + 15°,

on introduit un biais dans la distribution angulaire des n. En effet, dans le système
du A, une partie de la distribution des angles cp n'est pas du tout observée. Les limites
de cet intervalle ignoré dépendent naturellement de l'impulsion de l'hypéron et de

l'angle que fait sa direction avec le rayon vecteur joignant le centre de la cible. Le
nombre de variables (cp, y>, pA, òp, coordonnées de l'événement) qui interviennent
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finalement dans la probabilité de détection étant important, il semble plus judicieux
de la calculer par une méthode de Monte Carlo plutôt que d'en chercher une expression
analytique. On peut ainsi trouver la probabilité d(cp, pA) en fonction de l'angle q> et
de l'impulsion pA, en prenant des valeurs moyennes pour toutes les autres variables.
Nous avons fait un tel calcul et nous allons en donner le principe.

Pour une quantité de mouvement du A, pA, choisie, on génère un grand nombre
de désintégrations A (par exemple 10000 pour chaque intervalle de pA) en tirant au
hasard, pour chaque événement, les coordonnées de la désintégration dans l'émulsion,
la direction de l'hypéron, les angles cp et y> définissant la direction du pion émis dans
le système du A.

Le tirage se fait, pour chaque quantité q, en prenant un nombre aléatoire n compris
entre 0 et 1, et en le transformant selon une loi: w -> q(n). Pour les coordonnées de la
désintégration, les angles définissant la direction du/1 et l'angle cp:q(n) qx + n(q2— qx),
où q2 et qx sont les limites supérieure et inférieure de q. Pour l'angle tp, cosq(n) 2n — l.
Pour chaque événement ainsi généré, on peut alors estimer la direction du proton dans
le système du laboratoire et son impulsion. En tenant compte de l'effet du champ
magnétique, on peut ensuite vérifier si oui ou non la trace du proton traverse la ligne
de dépouillement dans la fenêtre angulaire, c'est-à-dire, en d'autres termes, calculer sa

probabilité de détection d(cp, pA). Il suffit ensuite de recommencer le même processus
pour d'autres valeurs de l'impulsion du A. Il est, de plus, facile d'inclure certaines

coupures dues, par exemple, au fait d'ignorer, à la ligne de dépouillement, les traces
qui sont à moins de 50 pt de la surface ou du fond, ou à la limitation sur %p que nous
verrons plus loin. Nous avons résumé, sur la figure 1, un exemple de résultats de

notre calcul.
3. Fonction de vraisemblance

Si, parmi les événements trouvés lors du dépouillement nous en sélectionnons un
nombre N pour l'analyse finale, le logarithme de la fonction de vraisemblance s'écrit:

P — V\ <%i, ßj) [1 - a sin {<fj + pc ejm c2 (H l)ilßj)~\ ,j>
<_1 f d(<p, ßt) [1-a sin {up + pi ejm c2 {H /)./&}] d<p

Va

avec a cnpX(ip0). Le signe (y) correspond aux deux orientations possibles du champ
magnétique. Les limites cpa et q>b définissent l'intervalle angulaire que l'on observe.
En dehors de ces limites, les probabilités de détection sont très faibles et mal
déterminées.

La fonction de vraisemblance permet de tenir compte du fait que toutes les

particules A n'ont pas passé le même temps dans le champ magnétique et que la
probabilité de détection n'est pas constante.

Comme nous l'avons déjà relevé précédemment, le logarithme de la fonction de
vraisemblance peut également s'écrire :

p, _ y 1
j

1 - a sin {<pt ± fiejmc^ (H l) jjpj}^ ~f* d(q>.,ß.)
n

p
~ [ '

4 1 / [1 - a sin {<p ±fiejmci (H Z);/ft}] dp
fa

Remarques: les paramètres à considérer sont pt et a. Ce dernier est connu approximativement.

Cependant il est utile de la déterminer afin de voir si le degré de polarisation
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des A que l'on considère est bien celui que l'on a prévu. La recherche du maximum de
la fonction de vraisemblance a été effectuée en utilisant une méthode d'approche
graduelle pas à pas dont nous avons déjà donné le principe. Nous avons, en fait,
utilisés les relations (I) et (II), en remplaçant les intégrales par des sommes sur des
intervalles où d ~ constante, et constaté que pour les valeurs de d que l'on considère (voir
paragraphe concernant les résultats) ces deux formes sont équivalentes. Il est évident que
le domaine des valeurs possibles de a (physiquement) est tel que — 1 < a < 4- 1.

Pour des valeurs ne satisfaisant pas cette condition, les fonctions de vraisemblance,
telles que nous les avons définies, ne sont pas correctes. Il faut alors prendre certaines
précautions et ignorer les régions où cp est tel que la probabilité partielle
{1 — a sin (9? — 9?0)} n'est pas positive. Cependant de telles difficaltés disparaissent
lorsque le nombre N est assez grand.

08O060

900

040
0.92

800

020

700
010

600

500-

180°

Figure 1

Probabilité de détection d'un A.

360°

4. Résultats et erreurs

La figure 2 montre la distribution des x2 des 874 événements mesurés, ainsi que
la distribution théorique donnée pour un degré de liberté. Nous avons choisi une
échelle telle que cette dernière soit une droite (trait interrompu). On voit immédiatement

que l'ajustement est très satisfaisant jusqu'à des valeurs de x2 — 4. Pour des

valeurs supérieures (en particulier pour %2 > 10) il est évident que les événements en

question font partie du bruit de fond dont nous reparlerons. Des 874 événements
mesurés, 324 sont considérés comme étant des désintégrations A. Les critères de ce

premier choix étant: a) x2 ^ 4, b) direction ajustée du A provenant du volume de la
cible. Il est, de plus, possible de montrer la cohérence interne de cet ensemble de

désintégrations A.
Tout d'abord, pour 60 d'entre eux, présentant des conditions géométriques

favorables et ayant un cp2 < 10, il a été possible de faire des mesures de courbures qui
ont montré que les signes des charges des deux particules sont en complet accord avec
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l'interprétation que l'on en donne: trace suivie proton, seconde trace pion.
Dans 20 cas, il a été possible de suivre la seconde trace jusqu'à l'arrêt, ce qui a permis
des mesures de parcours très précises, et chaque fois on a constaté qu'il s'agissait bien
de la trace d'un itr.

Nombre

d'événements
100

Nombre

d'événements (b)

50-

16 84.5 P%

2. 3.4.x2

Nombre

d'événements

(GeVf

(a)

L

-0,1 0,1 (GeV)2

Figure 2

Distribution des %2.

Figure 3

Distribution des valeurs As

(a) pour des événements ayant y^ < 10

(b) pour des événements ayant %2 > 10

Sur la figure 3 nous avons représenté, séparément, les distributions des valeurs A2

pour des événements ayant x2 ^ 10 et x2 > 10- La seconde de ces distributions est

tout à fait ce que l'on peut attendre pour des événements appartenant au bruit de
fond. La première, elle, est compatible avec l'hypothèse que l'on a des événements A
produits par collision n~ + p. Elle est effectivement centrée autour de A2 0. Sa

largeur (~ 0,04 (GeV/c)2) s'explique parfaitement par les erreurs de mesures. Elle est,

par contre, relativement plus étroite que celle que l'on devrait observer si la réaction
de production se faisait sur un proton lié.

Appelons p'A pA + ôpA la vraie valeur de pA, et E'A EA + ôEA la vraie valeur
de E, où ôpA et ôEA sont les incertitudes de mesures. (ôpA est un vecteur dont la
direction est aléatoire.) Par définition:

(Ein EA)2 - m„ 0.

En développant cette expression on obtient :

(Einc + mp- EA)2 - 2 EK ÔEA + ÒE\ - \pinc Pa I2 + 2 àpA -pK-ôp2A-m2K 0
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d'où:
A* 2 EK ÔEA - ÒE\ + òp\ -2òpA-pK.

La largeur de la distribution est donc proportionnelle à òpA ¦ pK, terme qui donne la
contribution essentielle. En considérant des valeurs moyennes, pour obtenir un ordre
de grandeur, on trouve que la largeur de la distribution des z]2 est égale à 0,04 (GeV/c)2.

Par contre, si l'on développe, en supposant les mesures infiniment précises,

(Einc + mp+TF- EAf - \pinc +pF-pA\2-m2K 0

où l'indice F se réfère au mouvement de Fermi d'un proton lié, on obtient: A2

— 2 TF EK — Tp + 2 pF ¦ pK + pp (pp est un vecteur dont la direction est aléatoire).
Dans ce cas, en prenant TF 20 MeV, la largeur de la distribution (~ pF • pK)
devrait être environ 0,14 (GeV)2.

Nous pouvons donc conclure que les événements que nous avons choisi proviennent
essentiellement de l'hydrogène de la cible (proton libre, mouvement de Fermi nul) ;

la largeur de la distribution desZl2 obtenue est, répétons-le, due aux erreurs de mesures.
De l'ensemble, très pur, des 324 désintégrations, 212 ont une impulsion supérieure

à 650 MeV/c. Rosselet [1] a montré que l'erreur statistique sur la mesure ç?0 est
minimum lorsque ip0 65°. Cette constatation peut se comprendre intuitivement,
l'information sur la direction de la polarisation étant essentiellement fournie par les

désintégrations se produisant dans le plan contenant cette dernière. Nous avons donc
imposé la condition supplémentaire: |siny| y 0,9, ce qui réduit le nombre d'événements

à 196. Nous avons choisi des limites de l'intervalle angulaire que nous utilisons
pour la fonction de vraisemblance telles que tous les événements que nous considérons
ont une probabilité de détection d supérieure ou égale à 0,7, quelles que soient leurs
impulsions. Cette nouvelle condition réduit le nombre de A de 196 à 151.

Utilisant ces 151 désintégrations A, nous avons cherché les valeurs de pi et xp qui
rendent maximum la fonction £.
Ce sont :

piA — 0,50 + 0,28 magneton nucléaire,

— 0,59 +_ 0,33 magneton intrinsèque

et ap 0,59 + 0,15. La figure 4 montre la forme de la fonction £. Les erreurs sont
celles données par les valeurs de pt et a p où la fonction C est 1/e de son maximum.

Cette valeur de pi correspond à un angle moyen de précession égal à 22°. Ajoutons
que la vitesse moyenne des A est 0,558 c et que la valeur H l effective vaut
1,37 MGauss • cm.

Si l'on compare la valeur obtenue pour piA et la prédiction théorique donnée par
SU(3) qui est — 0,95, on constate que l'accord est bon. En faisant une telle comparaison,
il faut se rappeler que la valeur donnée par SU(3) suppose les masses du multiplet
baryonique égales, c'est-à-dire, entre autre, mp mA; comme l'unité «magneton» est
inversement proportionnelle à la masse de la particule, plus exactement égale à
e %/m c, on obtient une imprécision d'environ 20% sur la valeur théorique. La façon
la plus intuitive (et la plus simple!) de tenir compte de la différence des masses du
proton et du A est de multiplier la prédiction piA — 0,95 par le rapport mpjmA,
ce qui donne — 0,80. Cette opération n'est, naturellement, pas nécessaire si l'on
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Figure 4

Contours de C(pi, a P).

exprime, comme nous l'avons également fait, le moment magnétique en magneton
intrinsèque.

Il est intéressant de noter que la moyenne pondérée de toutes les valeurs du moment
magnétique du A actuellement disponibles est — 0,73 + 0,17 magneton nucléaire
[22, 23, 24, 25].

5. Erreurs systématiques et faux événements

Les sources les plus importantes de biais systématiques qui peuvent intervenir
dans le résultat de notre expérience sont les suivantes :

a) incertitude dans la mesure du champ magnétique ;

b) événements V, produits par collisions de neutrons sur des noyaux de l'émulsion,
pouvant simuler des désintégrations A ;

c) erreur dans la calibration g* -> ß ;

d) biais dans la distribution angulaire des A dû aux critères de sélection des traces
lors du dépouillement.

Nous avons déjà vu précédemment comment calculer et utiliser les corrections
dues au cas d). Ajoutons que les critères d'angle en plan ont été appliqués avec une
précision meilleure que l°/2 ; les limites que nous avons donné à la fenêtre angulaire
sont plus grandes que l'angle maximum d'émission pour tous les protons de
désintégrations A, du moins pour l'hémisphère complètement observé.
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Nous verrons plus loin que le cas b) n'apporte aucune contribution dans notre
échantillon de désintégrations A.

Le champ magnétique a été mesuré avec une précision d'environ 2% par deux
méthodes différentes. Pour couvrir les effets de l'inhomogénéité à l'intérieur de la
cible nous avons utilisé Hl f H(l) dl, pour chaque événement.

Pour ce qui concerne c), nous avons éprouvé la validité de la conversion g* ->ß
en étudiant l'effet d'un changement systématique de l'ordre de 10% sur les quantités
de mouvements utilisées. Nous avons constaté qu'après ajustement les mêmes

désintégrations étaient sélectionnées et que la valeur obtenue pour pt était à moins de

10% du résultat que nous avons donné, mais que la distribution des x2 était moins
bonne.

Finalement nous pouvons donc affirmer qu'une erreur systématique, si elle existe,
ne doit certainement pas dépasser 10%.

Nous avons également éprouvé la cohérence de nos résultats lorsque l'on change
les critères de sélection des désintégrations qui interviennent dans l'analyse, afin de

voir si le choix que nous avons fait n'est pas critique. Aussi nous avons répété l'analyse
pour différents domaines d'impulsions des A et pour différentes régions angulaires.
Nous avons constaté qu'il n'y a aucune indication d'un effet systématique entre
l'échantillon que nous avons choisi et tout autre échantillon fourni par les 324 A.
Les résultats obtenus ne différent pas de plus de 20% de la valeur que nous avons
donné.

Si l'on s'intéresse aux sources de bruit de fond possible parmi les événements V,
nous pouvons tout de suite dire que les paires d'électrons sont éliminées facilement
lors du dépouillement. Il ne peut donc exister qu'une seule source de bruit de fond,
donnée par des réactions du type :

particule noyau initial noyau plusieurs
incidente

'

(dans l'émulsion) résiduel particules,

les particules émises pouvant être des mésons n, des mésons K, des nucléons, des

hypérons, ainsi que des particules composées telles que deutérons, particules alpha,
etc.

Les événements du type (1) qui nous intéressent sont ceux qui possèdent : - un
primaire neutre et deux secondaires chargés ; - un primaire et un secondaire chargés.

En imposant, après ajustement cinématique, les conditions a) ^2 ^ 4 et b)
impulsion pA venant de la cible, le second cas est quasiment exclu. Il reste donc à

considérer les réactions qui produisent des étoiles avec un neutron comme primaire
et qui ont deux branches secondaires visibles (chargées) telles que la résultante de

leurs impulsions satisfasse la condition b) ci-dessus et que la masse invariante M*
soit proche de celle du A afin de satisfaire la condition a). De plus, comme nous
l'avons déjà écrit, dans un échantillon de 60 désintégrations des tests sur la courbure
des traces de ces événements ont montré que la paire de particules était constituée
d'une particule chargée positivement et d'une particule chargée négativement.
On peut donc immédiatement se restreindre à la réaction suivante :n + n^-n + p + n~.

Pour des neutrons incidents d'énergie cinétique inférieure à 400 MeV seuls des

protons sortent des cascades intranucléaires et donnent donc deux branches chargées

positivement. La création de mésons n intervenant pour des neutrons d'énergie
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cinétique supérieure à cette limite, la source la plus importante résulte des neutrons
du pic de diffusion (n~ p -> n° n et n~~ n ^-7i~ n) qui ont une énergie cinétique
d'environ 600 MeV. R. Weill [26] en a calculé le flux et il a estimé un nombre
d'environ 300 neutrons par plaque. Rappelons que nous avons observé en moyenne
un A par plaque. Avec une section efficace de 800 mb, 15% des étoiles produites par
ces neutrons ont deux branches chargées et 2% de ces événements-F ont une branche
chargée positivement (p) et une branche chargée négativement (n~)- On voit ainsi

que le nombre d'étoiles à deux branches (positive et négative) est très faible. De plus,
seule une petite portion d'entre elles sont susceptibles de satisfaire les conditions a)

etb).
Nous pouvons donc conclure que la contribution, dans notre échantillon A, de

faux événements dus à des étoiles à deux branches est absolument négligeable.

Conclusion

L'analyse détaillée des résultats des mesures faites dans les emulsions pour
évaluer dans la phase finale la valeur du moment magnétique a été faite en résolvant
d'importants problèmes, jusqu'alors non considérés. Ce sont:

- ajustement cinématique des grandeurs mesurées,

- calcul des probabilités de détection,

- définition d'une fonction de vraisemblance utilisant ces probabilités de détection,

- maximisation d'une fonction quelconque d'un nombre variable de paramètres.
Avec une rigueur aussi grande que possible, nous avons sélectionné un échantillon

très pur d'événements A qui nous a permis de calculer une valeur non biaisée du
moment magnétique et son erreur.
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