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Analyse des résultats d’une mesure du moment magnétique

de I’hypéron A°

par Gérard Charriére

Institut de Physique Nucléaire de 1’Université, LLausanne

(22 VII 68)

339

Abstract. A method is described for the kinematic reconstruction of 874 A decays observed in
nuclear emulsions. Their angular distribution is studied in order to determine the /1 magnetic

moment.

Selecting 151 events, we obtain 4 = —0,50 -+ 0.28 nuclear magneton.

A discussion of the systematic errors is given and the method of selection of the events is

justified.
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La mesure du moment magnétique des hypérons est d'un intérét capital pour la

connaissance de leur structure et de leurs interactions.

L'importance de ces mesures est encore rehaussée actuellement par la possibilité

qu’elles offrent de tester certains modéles de symétries unitaires.
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Une expérience consistant en la mesure du moment magnétique de ’hypéron A
a été effectuée en collaboration entre les laboratoires de Bristol, Munich et Lausanne,
et le groupe «Emulsions» du CERN [2]. Les principes généraux de cette expérience
ont été exposés de facon détaillée par RosseLET [1]. L’irradiation des émulsions a été
faite au S.P. du CERN, le dépouillement et les mesures des événements dans les
quatre laboratoires susmentionnés. _

Pour notre part, nous avons été chargé du traitement des données provenant de
ces mesures, de leur analyse, de l'interprétation des résultats et de I'estimation du
moment magnétique. Ce travail est I’'objet du présent article.

Nous verrons tout d’abord l'importance réelle que revét la mesure du moment
magnétique du /; puis, aprés un rappel expérimental, nous exposerons la technique
du dépouillement et des mesures. Dans une deuxiéme partie, nous décrirons les
méthodes devant nous permettre 'estimation du moment magnétique. La troisiéme
partie décrira l'utilisation de ces méthodes pour faire une analyse détaillée des
résultats des mesures (ajustement cinématique, calcul des probabilités de détection,
calcul de I'amplitude et du déphasage (~ moment magnétique) de la distribution
angulaire des désintégrations) et évaluer les erreurs statistiques; nous discuterons
également des erreurs systématiques.

I. Aspect théorique

Dans le modele de classification des particules élémentaires basé sur le groupe
SU(3) (3] ot p, =, A, 2 et Z sont associés dans une représentation de dimension 8,
on établit un certain nombre de relations entre les moments magnétiques des baryons.

Ce sont:
Mxe = Uy
2
Mge =2Uy 0= — 2 Uz, = _VTMAZ:/%
MUy = Ug. = — Uy — Uy

(45 est le moment de transition entre A° et 20, et détermine la vie du 2° pour sa
désintégration X0 - /1° + ).

Nous constatons qu’on peut exprimer tous les moments magnétiques en fonction
de ceux du $ et du =.

En ce qui concerne SU(6), les prédictions sont les mémes, avec une relation
supplémentaire entre le moment magnétique du » et celui du 2,

2
My = — 37/“17

relation qui est en excellent accord avec les valeurs expérimentales
#p = 2,793 et pu, = — 1,913

exprimées en magnéton nucléaire.

La mesure du moment magnétique du / est, comme 'on peut facilement s’en
rendre compte, un test trés important de SU(3) et doit permettre, de plus, d’éliminer
définitivement des modéles antérieurs qui prédisent u, = 0 [4] et u, = u, [5].
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A un stade ultérieur des mesures beaucoup plus précises pourront étre faites
pour tester les modeéles de violation de SU(3).

Ajoutons que les mesures des moments magnétiques u 4, p s+ et uz- sont les seules
possibles pour des raisons expérimentales connues.

I1. Aspect expérimental

Le principe de la mesure est bien connu [1]:

Des hypérons / polarisés produits dans une cible de polyéthyléne par un faisceau
de mésons 7~ de 1,05 GeV/c se déplacent dans un champ magnétique pulsé de 150 kG.
La direction de la polarisation tourne d’un angle proportionnel au moment magnétique
des A.

La direction initiale de la polarisation est connue; la direction finale est déduite de
I'observation, dans des émulsions ionographiques, de la distribution angulaire des
désintégrations A = p + 7, distribution asymétrique par suite de la non-conservation
de la parité dans les interactions faibles.

1. Production, précession et détection

Les hypérons A produits dans la réaction 7z~ + p - A° + K° sont fortement
polarisés dans une direction normale au plan de production.

De fagon a maximiser le rapport nombre de /A/bruit de fond, il est évidemment
avantageux de détecter les hypérons produits dans un petit intervalle angulaire
limité supérieurement par I'angle maximum d’émission. Ce dernier étant de 21°,
nous avons choisi d’observer l'intervalle 13°-23° auquel correspond une région
angulaire dans le systéme du centre de masse de la réaction ol la polarisation des A
approche 1009,

Le mouvement de précession du vecteur polarisation § d’'une particule /4 dans un

champ magnétique H peut étre décrit par I'équation différentielle suivante [1]:
as

avec

e y—1 pa-H
2 - {H -5 e i)
ou p , est la quantité de mouvement du A et u son moment magnétique, en magnétons
intrinséques si m est la masse du /.

Dans notre cas nous avons utilisé un champ magnétique transverse, c’est-a-dire
perpendiculaire a la ligne de vol moyenne des /1 pour produire un effet de «balayage»
des particules chargées parasites, entre la cible et le détecteur.

Il s’en suit que

Apres que la particule a parcouru une distance / dans le champ magnétique, a une
vitesse f# ¢, ce qui correspond a un temps de vol £ = [/ ¢, I'angle de précession g, entre
les directions finale et initiale du vecteur polarisation s’exprime par:

e HI
%ZQtZMW"“E"
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et sa mesure va nous permettre de déterminer le moment magnétique u (e/m c® =
15,4°/Mgauss. cm. magnéton A).

Pour produire par impulsion le champ magnétique H nécessaire, des bobines ont
été construites, produisant un champ de 150 kG sur une longueur d’environ 16 cm
comprenant la cible et le détecteur [7, 8].

La désintégration des hypérons A par le processus A% - $ + z~ n’est pas isotrope.
Dans le systeme du centre de masse, les mésons #— ont une distribution angulaire

de la forme: 1

N(0) df2 = s (1 + « P cosB) dQ (1)
ou: 0 est 'angle compris entre le vecteur polarisation et la direction d’émission, p¥,
du méson de désintégration; P la polarisation des A; « une constante caractéristique
du mode de désintégration, qui vaut — 0,663 -+ 0,022 [6].

L’observation de la distribution (1) va nous permettre de déterminer la direction
finale du vecteur polarisation des A.

La détection de la désintégration des /1 s’est faite dans des empilements d’émulsions
ionographiques, constitués chacun de 18 pellicules 7,5 x 2,8 x 0,12 cm3. Les pellicules
ont été placées de telle facon que leur plan contienne le vecteur polarisation. Une
trentaine de lots ont été irradiés, le sens du champ magnétique étant inversé apres
l'irradiation de chacun d’entre eux.

2. Dépoullement et mesures

Le domaine de quantité de mouvement des hypérons /A produits se situe entre
450 et 900 MeV/c, et dans ce cas les protons de désintégration sont émis, en avant,
a de relativement petits angles dans le systéme du laboratoire; par exemple, pour
un /A de 650 MeV/c, I'angle d’émission maximum du proton est 10,5°. Par contre le
méson s~ peut étre émis dans n’importe quelle direction. Il s’ensuit que seule une
trace de proton a petit angle peut servir comme une premiére et utile indication d’une
désintégration possible d'un A pour un dépouillement «le long des traces». Ajoutons
que l'énergie des protons des désintégrations est telle que la densité de grains est
comprise entre 1,4 et 3,6 fois le minimum.

Définissons plus précisément la méthode de dépouillement utilisée: on choisit un
plan dans I'émulsion approximativement perpendiculaire a la ligne de vol moyenne
des particules provenant de la cible et & une certaine distance (1 cm ou 2 cm) du bord
d’entrée des pellicules. L’intersection de ce plan avec ’émulsion est appelée, abusive-
ment (par commodité), ligne de dépouillement. Les traces traversant cette ligne sont
choisies si leurs angles par rapport a la direction moyenne des / au point d’observation
sont dans I'intervalle attendu pour des protons de désintégration /. Toutes ces traces
sont suivies, en arriere, jusqu’'a ce qu’elles sortent de la plaque, présentent une inter-
ruption, ou au maximum sur 1 cm.

Pour éviter de suivre un nombre excessif de traces parasites, il est nécessaire de
choisir un intervalle d’angle en projection (c’est-a-dire dans le plan de I'’émulsion,
donc perpendiculaire au champ magnétique) hors duquel la plupart des particules
chargées du bruit de fond a été «balayée» par l'action du champ magnétique. A une
distance donnée de la cible, les limites de cet intervalle sont déterminées par I'impulsion
des particules les plus énergétiques atteignant ce point. Ces particules sont des mésons
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7~ diffusés élastiquement, d’un c6té de la direction moyenne des /1, et des protons de
reculs de diffusions élastiques, de 'autre coté.
Ainsi les conditions angulaires du choix des traces a suivre sont définies par:

a) un angle d’inclinaison compris dans un intervalle (+ 15°, — 15°) par rapport au
plan de I'émulsion; ces limites, dues 4 la cinématique, tiennent compte, également,
de la dimension de la cible.

b) un angle en plan compris dans un intervalle asymétrique par rapport a la direction
du centre de la cible au point considéré. Cet intervalle, compris entre les pics p et ™,
s’étend de — 4° & + 13°, pour une ligne de dépouillement a 1 cm du bord d’entrée
des pellicules. Pour une orientation contraire du champ magnétique, il suffit de changer
les signes de ces limites.

c) une densité de grains supérieure 4 1,2 fois le minimum. Cette derniére condition
permet d’éliminer la plupart des électrons ainsi que tous les pions diffusés qui sont
¢galement au minimum d’ionisation.

Toutes les traces sélectionnées selon ces critéres ont été suivies, et chaque événe-
ment se présentant sous la forme d’un V' a été enregistré et mesuré (1 pour 15 traces
suivies environ).

Pour chaque pellicule, une mesure de la dilatation latérale et de la contraction de
I'épaisseur est effectuée pour déterminer les coefficients qui entrent dans les calculs
de reconstitution géométrique des événements. De plus, au début du dépouillement
de chaque nouvelle plaque, 1000-1500 grains sont comptés sur des traces d’électrons
(facilement identifiables) afin de déterminer I'ionisation au plateau. Pour chaque
microscopiste, la relation entre la densité de grains normalisée et la vitesse des
particules est établie 4 I'aide de =zt de 70 MeV s’arrétant dans des pellicules identiques
a celles utilisées pour I'expérience.

Pour chaque événement V' trouvé, on mesure:

1) La position a l'intérieur du stack.

2) L’angle en plan et I'angle d’inclinaison de chaque trace; le premier se mesure
a un demi degré pres; pour calculer le second, on mesure la variation de cote pour une
distance en projection horizontale donnée, I'incertitude est de quelques pour-cents.

3) La densité de grains de chaque trace avec une précision statistique de 5%,.

4) Le parcours de la branche du V' non suivie, lorsqu’elle s’arréte et que son aspect
est celui d’'un méson z—; une telle mesure, permettant une détermination trés-précise
de I'énergie du pion, est possible pour 10 & 15%, des événements /.

5) L’effet combiné de la courbure due au champ magnétique et de la diffusion
multiple pour les traces peu inclinée et assez longues [9].

Les mesures 3), 4) et 5) permettent de calculer la quantité de mouvement de
chaque particule.

ITI. Méthodes d’analyse
1. Introduction [10, 14, 17, 20]

Lors d'une expérience, il arrive souvent qu'une ou plusieurs grandeurs physiques
que 'on désire déterminer ne peuvent étre mesurées directement. L’analyse d'une
telle expérience pose essentiellement deux problémes:
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Le premier est de transformer les quantités mesurées en parametres utiles pour
I'étude que l'on se propose de faire. Cette transformation consiste, a partir d'un
ensemble de grandeurs expérimentales entachées d'une certaine erreur, a rechercher
I'ensemble correspondant le plus «probable», ensemble pouvant comprendre a la fois
les valeurs ajustées des grandeurs observées, et aussi les valeurs estimées de grandeurs
non-observées.

Le second est ’étude des propriétés de ce nouvel ensemble et conduit aux résultats
proprement dits de 'expérience.

De fagon générale les problemes de statistique qui se posent sont essentiellement de
deux sortes, soit des tests d’hypotheses, soit des estimations de parameétres, 'imbrica-
tion des deux étant en fait tres grande.

Les exemples que 'on peut donner sont nombreux et variés: test d’hypotheses
concernant certains types d'interactions nucléaires, ajustement de fonctions théoriques
ou empiriques sur des courbes expérimentales, analyse de distributions angulaires
observées, calcul de déphasages ou de longueurs de diffusion, etc.

La résolution de ces problemes peut étre guidée par différents principes, les plus
courants étant le principe du maximum de vraisemblance et le principe des moindres
carrés.

Un probleme important consiste donc a trouver des valeurs de » parameétres
Xy, ..., %, de telle facon que la valeur d’une fonction f(x,, ..., x,) soit minimum.

Les méthodes de minimisation d’une fonction se répartissent en deux classes:

a) Celles qui tentent (en utilisant une forme approximative de la fonction) d’at-
teindre un minimum directement en un pas et répétent 'opération un certain nombre
de fois si cela est nécessaire en utilisant un procédé itératif. Toutes ces méthodes
nécessitent généralement la connaissance des dérivées premieres, et parfois des
dérivées secondes, de la fonction par rapport a tous les parametres du probléme.

La plus classique de ces méthodes est celle qui consiste a résoudre df = 0. La
résolution d'un tel systéme dépend naturellement de la complexité de la fonction et
peut étre différente suivant les cas traités.

De facon générale, on proceéde par approximations successives en linéarisant les
équations a 'aide d'un développement limité de Taylor. De tels processus conviennent
particulierement bien au calcul numérique & 'aide d’'un ordinateur électronique. Il
existe cependant certaines difficultés lorsque I'on se trouve assez loin de la solution
(du minimum) car ’hypothese de linéarité est souvent gravement en défaut, et, de
plus, il est souvent trés laborieux ou pratiquement impossible de calculer les dérivées
de la fonction; il est donc nécessaire de posséder des méthodes de minimisation qui ne
les requierent pas. Ce sont:

b) Celles qui approchent un minimum graduellement, par une série de pas. Ces
méthodes sont aussi trés indiquées lorsque la fonction posséde plusieurs minima, ou si
des parametres ne sont définis que dans certaines régions.

Le principe de telle méthodes est toujours du méme type: le processus part d'un
ensemble de valeurs initiales des paramétres. A chacun de ces parametres est attribué
un pas de dimension choisie. Le premier parametre est augmenté ou diminué d'une
quantité correspondant a son pas afin de trouver une plus petite valeur de la fonction.
Si c’est le cas, la nouvelle valeur de ce parametre est utilisée et la méme opération
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est répétée pour le parametre suivant et ainsi de suite jusqu’au dernier. Ce cycle est
répété tant que la fonction décroit. Lorsque 'on s’approche du minimum, les pas
initialement choisis sont réduits d'un facteur choisi et le processus continue jusqu’a
ce que I'on trouve une solution satisfaisante. Le critére de convergence ultime consiste
a arréter le processus dés que la différence entre deux valeurs successives est inférieure
a une grandeur fixée.

2. Méthode des moindres carvés et signification de y* [15, 18, 19, 21]

Cette méthode est basée sur le principe dit des moindres carrés qui admet une
courbe de Gauss pour la probabilité de distribution des grandeurs mesurées. On peut
aisément montrer que dans un tel cas, cette méthode est équivalente a celle du
maximum de vraisemblance que nous verrons dans le paragraphe suivant. Cependant
il faut tout de suite noter que si les fonctions de distributions ne sont pas exactement
gaussiennes le principe des moindres carrés donne cependant une méthode raisonable
d’estimation. C’est une des raisons pour lesquelles cette méthode est 1'une des plus
utilisées, une autre de ces raisons étant la simplicité de sa formulation.

Si l'on se trouve en présence d’une seule grandeur inconnue, on peut énoncer le
principe des moindres carrés de la facon suivante: la meilleure estimation, », de cette
grandeur inconnue est telle que la somme des carrés des déviations des observations x;
par rapport a cette valeur soit minimum.

Parmi de nombreuses utilisations et généralisations que l'on peut faire de ce
principe, nous nous contenterons, ici, de développer la méthode d’ajustement par
moindres carrés qui est la méthode de base de I'analyse cinématique des interactions
nucléaires détectées par des chambres A bulles ou par des émulsions ionographiques.

Considérons une interaction nucléaire; pour une hypothése donnée expliquant la
configuration des traces, les impulsions et les angles des traces mesurées ne sont
généralement pas compatibles avec les lois de conservation d’énergie et d’'impulsion.
En effet, ces lois imposent un certain nombre de contraintes sur les variables. Il est
donc nécessaire d’ajuster ces derniéres, en tenant compte des incertitudes de mesures.
L’ajustement doit donc remplir les deux conditions suivantes:

1) Les équations de conservation d’énergie et d’impulsion doivent étre satisfaites.

2) Les valeurs ajustées des variables cinématiques doivent étre aussi proches que
possible des valeurs mesurées.
Dans un formalisme matriciel, la premiere condition s’exprime par une équation

du type:
glx, ¥) = 0. (1)
La deuxiéme condition s’exprime par le minimum de la fonction
2= — 2" G (x — 2" (2)

x™ est le vecteur des valeurs mesurées originales, x celui des valeurs ajustées, y celui

des grandeurs inconnues. & est la matrice d’erreurs des grandeurs mesurées (s’il n'y

a pas de corrélations entre les grandeurs mesurées, G est une matrice diagonale).
Pour procéder a un tel ajustement, on cherche le minimum de la fonction

220y, A) = (x — 2T G (x — a™) + 24 ¢(x, y) (3)
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en résolvant le systéme suivant:

[ dy? T e de(x, ’
"'ng = (x—aMTG1+ A ____é’_(;fxi) =0 (5)
dy® _ . dglxy)
O 2 N (6)
d 2
% = g(x,v)=0. (7)

La résolution d’un tel systéme ne peut, généralement, se faire que par approxima-
tions successives. Nous dénoterons, par la suite, par un indice » toutes les grandeurs
calculées a la véme étape itérative.

Les équations de contraintes peuvent étre développées de la fagon suivante:

v d v v v d 4 v v
S+ O =+ @ ) =0 (8)
les équations (5) donnent:
I’T
oG, B (9)

en remplagant x”*! par cette expression dans (8), on obtient

ag® dg"T v v ag¥ v agy v
T G T = gy W =2+ U =¥
En posant
v, 98 om v _dg” g’
R=g'+ (" —2) et S=——6—

on peut écrire
v i d ¢ v v
Atl=8§ 1[R+—;;—(y+1—y)]

et, en introduisant ce vecteur 4 dans les équations (6), on obtient:

i ]
v+l dg¥” -1 dg¥ g’ ~—1
y ﬂy—(dy 5 dy) — ST R. (10)

La méthode de résolution est ainsi clairement définie. Il suffit de calculer le
vecteur y” 7! A T'aide de la relation (10), puis le vecteur A et enfin le vecteur x”** avec
la relation (9). Chaque étape itérative donne une solution approximative du probléme
et I'on peut se rendre compte de I'évolution du processus en calculant chaque fois la

valeur que prend la fonction y2 définie par la relation (3):

= -G (x—a™) +21g= % (" —x)A+24g=A(R+g).

Nous avons ainsi déterminé les valeurs des grandeurs inconnues et les valeurs
ajustées des grandeurs mesurées. On pourrait, de plus, calculer les matrices d’erreurs
et la matrice de corrélations intervenant sur ces résultats et montrer que, lors de
I'ajustement, les erreurs sur les grandeurs mesurées diminuent, des corrélations entre
les grandeurs x (s'il n’y en avait pas déja) et des corrélations entre les grandeurs y et x
apparaissent.
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La valeur finale de la grandeur 2 présente un trés grand intérét, puisqu’elle
permet de se rendre compte de la qualité de 1'ajustement.

En effet, lorsque ce dernier est achevé, la valeur de #2 caractérise, par définition,
les différences entre les valeurs ajustées et mesurées de chaque grandeur. On peut
associer a la valeur de y2 trouvée une probabilité, en utilisant la distribution théorique:

(x2){nl2]—1

fn(xz) xz = Tonz T(ni2)” [ dZ2

ol # est le nombre de degrés de liberté de la loi de 2. Il existe des tables donnant la
probabilité en fonction de y2 et de » [14].

De fagon générale, # est la différence entre le nombre de variables aléatoires
indépendantes et le nombre de paramétres inconnus indépendants.

S1 N, = nombre de variables aléatoires (mesures)
C, = nombre de liaisons algébriques entre ces variables
N, = nombre de parameétres inconnus (que l'on veut estimer)

C, = nombre de liaisons entre ces parametres

alors: n=(N;—C,) — (N, — C,).

3. Méthode du maximum de vraisemblance [16]

La vraisemblance d'un ensemble de grandeurs est un nombre proportionnel a la
probabilité d’observation de cet ensemble.

Si cette probabilité est fonction d’un certain nombre de parameétres inconnus, leur
meilleure estimation est celle qui rend maximum la vraisemblance du résultat ex-
périmental. Tel est I'énoncé du principe du maximum de vraisemblance.

Considérons un phénomeéne caractérisé par une loi de distribution F(x,y, ...;
0, ..., 0,) de forme analytique connue, fonction des variables aléatoires %, v, ..., et
dépendant des % parameétres 6.

La probabilité d’observer un échantillon de N valeurs des grandeurs x, y, ... est
proportionnelle &

(o Wy 52050 w5 0 Oy
L= Hfoy,..., o) drdy LT

La détermination des valeurs é,, ..., 0, est donc possible en cherchant le maximum
de la fonction L par rapport aux parameétres 0. Il est souvent plus pratique de chercher
le maximum de L =1n L.

Si l'on considere une expérience de physique nucléaire, il arrive souvent que la
probabilité de détection d’un événement dépende de ses caractéristiques (énergie,
angles, position dans le détecteur). Une telle probabilité, qui peut étre soit le résultat
d’un calcul, soit détermir ée expérimentalement, va naturellement intervenir dans la
formulation de la fonction de vraisemblance. Désignons-la par d(x, v, ...). La nouvelle
fonction de vraisemblance s’écrit:

ﬁ xt, Ypp - ) Flay ¥ o x5 5 Opz we 02 B)
axy, ...) F(x9,...;0;, ...,0,)dvay ...
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d’ou:

N
L=InL zz{ln d(x;, v;,...) +In Flx;,v;,...;04,...,0,)
=1

=10 [f Ay Vs won) Bl Dy ros § By o o O) ddyt .01} (I)

Remarquons que le premier terme ne dépend pas des parametres ), et qu’ainsi,
pour la recherche du maximum de £ par rapport aux parametres 0, la probabilité de
détection d(x, v, ...) n'intervient que dans le terme de normalisation. Il est souvent
tres difficile d’évaluer cette expression. On peut alors utiliser une fonction de vraisem-
blance sous la forme simplifiée suivante:

N - J T
B e ﬁ Pl Py v nom ) By <53 B Yz, -00)
- fF(x,y,...;01,...,9k)dxdy...

1=1

Cette derniére expression est trés intuitive puisque l'on a simplement pondéré
chaque observation par l'inverse de sa probabilité de détection. Les valeurs estimées
6’ des parametres 0 obtenues A 1'aide de la fonction £ = In L’ ne sont pas biaisées,
si I'on peut montrer que <0L'/06>, ,yrai = 0.

L’utilisation d’une fonction du type L’ se justifie pour autant que la fonction
d(x, v, ...) ne soit pas trop proche de zéro pour certaines valeurs de x, y, ... . Dans un
tel cas, on a alors intérét a éliminer les événements ayant ces faibles probabilités de
détection, malgré la perte d’information qui en résulte.

En plus de la valeur des parameétres qui rendent la fonction de vraisemblance
maximum, on peut tirer une information trés utile de la forme de la fonction au
voisinage de son maximum. Les physiciens considérent souvent, qu’en bonne approxi-
mation, la matrice des covariances (ou matrice des erreurs) de I'échantillon est
I'inverse de la matrice dont les éléments sont

( 0% L

- sa;a'a;)wm i=1....4).

Une telle hypothese est bonne si L est une fonction approximativement multi-
gaussienne.

4. Ajustement d'une fonction par moindres carrés

Nous allons maintenant considérer un cas particulier, trés courant, d’application
de la méthode des moindres carrés: 'ajustement de fonctions théoriques ou empiriques
sur des résultats expérimentaux. Cet exemple va nous permettre de montrer I'équi-
valence de cette méthode avec celle du maximum de vraisemblance.

Considérons m mesures vy, ..., v, en des points x4, ..., x,, et supposons les
résultats expérimentaux distribués de fagon gaussienne avec des déviations standards
Oy, ...,0,, et appelons y/(x;; 6;, ..., 0,) les valeurs données par une fonction théorique

(ou empirique) dépendant de & parametres . Dans ce cas, la fonction de vraisemblance
s’écrit
m

i-<1 V2no; l 207 |
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d’ou:
1 O 1
2 1 + constante = — > M + constante.
i=1
On voit donc que les valeurs 65, ..., 6F qui redent L maximum sont les mémes

que celles qui rendent M minimum. Cette valeur, M*, est bien la somme des moindres
carrés. Nous avons déja parlé des méthodes possibles de résolution d’'un tel probléeme
dans un paragraphe précédent, en particulier lorsque la résolution analytique n’est
pas possible.

Un exemple qui nous intéresse est le suivant: le comptage, dans des émulsions,
des densités de grains sur des traces de particules dont nous connaissons les vitesses
B, ---, B, donnent les résultats

N,
g toy, .., 8, =0, (0' ~ —l/ , N; = nombre de grains comptés).
N;

I1 est alors possible de déterminer les paramétres 6, et 0, de la fonction

. 0,—1lo 2_
¢ =0, {_!_g ap-1 1}

et ainsi d’obtenir la courbe g = g(f), (on appelle calibration un tel procédé), en
cherchant le minimum de
M — Z (“ )

par rapport a 6, et 6,. On peut naturellement remplacer g’ par toute autre fonction

?
théoriquement mieux justifiée ou par un polynéme g’ = 6, + 36, f7.
i1

5. Méthode de Monte Carlo [11, 12, 13]

Le principe d’une telle méthode est de simuler un processus que I'on observe, par
exemple la diffusion multiple d’une particule chargée ou des cascades intranucléaires.

Pour étudier en réalité de tels phénomenes, on observe et on compte un certain
nombre d’événements d’un type donné, les résultats étant sujets aux erreurs sta-
tistiques. La méthode de Monte Carlo fonctionne de la méme facon: on génére un
grand nombre de pseudo-événements selon un modele de simulation choisi. Ces
événements sont, ensuite, étudiés selon les mémes critéres que les événements réels.
Les résultats peuvent alors étre comparés a la réalité ou utilisés comme prédiction
pour une expérience a faire (en supposant que le modele établi simule suffisamment
bien la nature!).

Considérons une variable v, dont la distribution P(v) est connue. Si 'on veut
introduire cette variable dans un processus de simulation, le choix d’une valeur v doit
étre tel que cette valeur ne soit pas connue a priori. Pour satisfaire cette exigence, on
compare la distribution initiale 4 une distribution de nombres aléatoires. Plus
exactement: on affirme que la probabilité que la variable ait une valeur comprise
entre v et v 4 dv est proportionnelle a la probabilité que le nombre aléatoire NA ait
une valeur comprise entre n et #n + dn:

P(v) dv = K(n) dn . , (1)
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Dans la plupart des cas on choisit la distribution des nombres aléatoires uniforme
et définie entre O et + 1; K(n) est alors simplement une constante de normalisation.

Le principal probléme de la méthode de Monte Carlo consiste a écrire correctement
I'’équation fondamentale (1) pour le probléme que 'on étudie, qui nous permet ainsi
de transformer une série de nombres aléatoires en une distribution de la variable .

Un exemple tres simple est donné par une distribution isotrope de 'angle polaire 6:
I’équation (1) s’écrit:

P(0) d6 ~ d (cosl) = K dn

en intégrant, on obtient:

cos 8 n
[ dcost)=K [ dn
~1 0
ou
cosf+1=Kmn.
Pour cosfl = — 1, n = 0, et pour cos@ =+ 1, n =1 d’olt le résultat évident: cosf =
2 (NA) — 1.

IV. Analyse des résultats

Dans notre expérience, nous nous trouvons en présence des deux problemes
essentiels dont nous avons parlé au début du chapitre précédent. A savoir:
— transformation de quantités mesurées en parametres utiles pour I'étude que 'on
se propose de faire.
— étude des propriétés des ces parametres.

1. Ajustement cinématique et reconstitution géométrique

Nous avons donné précédemment les lois générales, régies par le principe des
moindres carrés, qui nous permettent, a partir des grandeurs mesurées, de les ajuster
et de calculer les grandeurs inconnues (c’est-a-dire les grandeurs non-mesurées).
Pour le cas particulier qui nous intéresse, ot les grandeurs mesurées sont des énergies
(ou des impulsions) et des angles et ol nous faisons ’hypothése que les événements
que nous observons sont des désintégrations /° > p + n~, les équations de contraintes
sont:

g1 = P4 C0sd, cosay — p, €08d, cosa, — P, cos), cosa, =0,

g2 = P4 €080, sinay — p, cosd, sina, — P, cosd,, sina, = 0

g3 = p,8ind, — p,sind, — p, sind, =0,

ga= o+ — )b+ my— P+ mE=0.
Les grandeurs m 4, m, et m, sont supposées connues. Dps Ops %y, Pa, On €t a, sont les
valeurs ajustées des mesures gy, 0%, oy, pn, Oy et oay. 4, 04 et o, sont inconnues.

Le nombre de degrés de liberté est » = 1.
En fait, les erreurs de mesures (g, p? Oayr T8y os ) sur les angles sont la plupart du

temps négligeables, dans les émulsions, comparativement a celles (g,, ;) sur les
impulsions du proton et du pion. Seules seront considérées comme variables aléatoires
mesurées les impulsions p, et p,.. De plus, nous supposerons aucune corrélation entre
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ces deux grandeurs. Il est a noter que nous avons toujours # = 1. Le minimum de la
fonction

i £1
52 0 by — Ph 2,
752= (Pp—p;’:: Pw—}b’:) d 1 +2(Z'1:2'2:A3:/14)
0 5/ \ ba— 1% 83
' 8a

est obtenu en utilisant la méthode que nous avons développée dans le paragraphe IT1-2,
avec:

— €080, cosx,  — COSJ, Cosa,
— cosd, sina, ~ — cosd,, sina,
dg
dx — sind, — sind,
_— P ———fn_
Vb +my V5+ms
et
cosd , cosa, — p,cosd, sina, — p,sind, cosa,
cosd , sina,  p,cosd,cosa, — p,sind,sina,
ag
dy sind , 0 P, c0S0
% 0 0
Vo +m¥

Le résultat d’un tel calcul nous permet ainsi pour chaque événement trouvé, que
I'on suppose étre une désintégration /1, de calculer le vecteur impulsion de ’hypéron A
ainsi qu'une grandeur caractéristique (x3) donnant la probabilité pour que, I'hypo-
these étant exacte, on trouve une valeur de g% plus grande que celle obtenue.

Rappelons la forme de la distribution angulaire des désintégrations /1:

dN(6,8) = ;- (1+a P cos) sinf 6 & (1)

ou { est 'angle azimuthal autour de § .

Considérant notre champ transverse, il est utile de projeter la distribution (1)
sur le plan défini par §, et p,, qui est en moyenne perpendiculaire a H, puisque c’est
dans ce plan que se produit la précession du vecteur polarisation. Redéfinissons la
direction du 7 émis, p¥, par ¢, angle entre sa projection sur le plan (p,, §,) et p,,
et p, son angle d’inclinaison par rapport a ce plan. Avec ces nouvelles variables, la
distribution devient:

AN (@, p) = 11; (1 — a P sing cosy) cosy dy dyp .
Intégrant sur y entre les limites — y, et 4 9,, on obtient la distribution de ¢ suivante:

sin

aN(plpe) = =

%0 [1 — o P A(y,) sing] do

4
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en posant
1
HMyo) = 5 (cospy + gho-).

sinwy,

Nous avons vu dans un paragraphe précédent que l'effet de la précession se
manifeste par la rotation du vecteur polarisation, dans le plan (§,, p,), d'un angle
o = u (¢ H Ijm c? B); il s’en suit que la distribution angulaire de désintégration devient
simplement :

dN(plye) = =70 (1 — o P Ayy) sin(p — ¢o)] dp - 2)

Ainsi, nous voyons clairement comment la mesure de la distribution (2) permet la
détermination de u.

Ayant reconstitué la désintégration / dans le systéme du laboratoire, il nous est

possible, de calculer les angles caractéristiques de la désintégration dans le systéme
du centre de masse. Tenant compte de la position de 'événement dans I'empilement
de pellicules, il est aussi possible de vérifier si I'hypéron provient de la cible. Nous
pouvons alors, si c’est le cas, trouver les coordonnées de son origine dans le plan
perpendiculaire a 'axe de la cible et passant par son centre effectif. Nous pouvons
également évaluer son temps de vol. Définissons et calculons la quantité suivante:
A2 = (E, +my, — E ) — | Pipe — Pa|> — mik ot p,,(E,,,) est 'impulsion (énergie) du
pion incident (| p;,.| = 1,05 GeV/c); les indices p, A et K se référent aux particules
correspondantes. Cette grandeur va nous permettre de tester si 'hypéron que 'on
considere a été produit dans la réaction 7~ + p > A" + K°. En effet, si I'on ignore les
erreurs de mesures et si 'on considére un proton libre, on doit obtenir 4% = 0.
Pour 874 événements mesurés nous avons calculé: les impulsions ajustées p, et p,;
I'impulsion du A, p ,; son origine dans la cible; son temps de vol, £,; les angles g et
caractérisant la direction d’émission du 7z dans le systéme du centre de masse du 4;
la grandeur A2 attachée a la production du 4 ; et la valeur y2 caractérisant 'ajustement
a la désintégration A.

2. Probabilité de détection

Etant donné que la probabilité de détection varie d’'un événement a l'autre, il
nous faut attribuer un poids statistique a chaque événement trouvé,

La probabilité de détection dépend de deux effets indépendants. Le premier est dit
a la dimension finie des pellicules (1200 u d’épaisseur). En effet, les traces des protons
peuvent quitter une pellicule (par la surface ou le fond) avant d’avoir atteint la ligne
de dépouillement; de tels événements ne sont pas détectés puisque les traces ne sont
pas suivies d’une plaque a 'autre. La probabilité d’un tel phénomene dépend essen-
tiellement de ’angle entre les traces du /1 et du proton et des coordonnées de 1’événe-
ment. C’est une fonction de I'angle ¢ dont il faut tenir compte. Le second effet est di
aux criteres de dépouillement. En dépouillant I'intervalle angulaire projeté allant de
—4°a 4 13° et en acceptant tous les angles d’inclinaison compris entre — 15° et + 15°,
on introduit un biais dans la distribution angulaire des . En effet, dans le systéme
du A, une partie de la distribution des angles ¢ n’est pas du tout observée. Les limites
de cet intervalle ignoré dépendent naturellement de I'impulsion de ’hypéron et de
I'angle que fait sa direction avec le rayon vecteur joignant le centre de la cible. Le
nombre de variables (¢, ¥, p,, d,, coordonnées de I'événement) qui interviennent
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finalement dans la probabilité de détection étant important, il semble plus judicieux
de la calculer par une méthode de Monte Carlo plutdt que d’en chercher une expression
analytique. On peut ainsi trouver la probabilité d(p, p,) en fonction de I'angle ¢ et
de I'impulsion p 4, en prenant des valeurs moyennes pour toutes les autres variables.
Nous avons fait un tel calcul et nous allons en donner le principe.

Pour une quantité de mouvement du 4, p 4, choisie, on génére un grand nombre
de désintégrations A (par exemple 10000 pour chaque intervalle de p,) en tirant au
hasard, pour chaque événement, les coordonnées de la désintégration dans I’émulsion,
la direction de I’hypéron, les angles ¢ et y définissant la direction du pion émis dans
le systéme du A.

Le tirage se fait, pour chaque quantité ¢, en prenant un nombre aléatoire » compris
entre 0 et 1, et en le transformant selon une loi: # - ¢(»). Pour les coordonnées de la
désintégration, les angles définissant la direction du A et'angle ¢ : g(n) = ¢, + 7 (9. — ¢4),
ol g, et g, sont les limites supérieure et inférieure de ¢. Pour 'angle , cosgq(n) = 2n—1.
Pour chaque événement ainsi généré, on peut alors estimer la direction du proton dans
le systéme du laboratoire et son impulsion. En tenant compte de l'effet du champ
magnétique, on peut ensuite vérifier si oui ou non la trace du proton traverse la ligne
de dépouillement dans la fenétre angulaire, c’est-a-dire, en d’autres termes, calculer sa
probabilité de détection d(g, p ;). Il suffit ensuite de recommencer le méme processus
pour d’autres valeurs de I'impulsion du A. Il est, de plus, facile d’inclure certaines
coupures dues, par exemple, au fait d'ignorer, a la ligne de dépouillement, les traces
qui sont & moins de 50 u de la surface ou du fond, ou a la limitation sur g que nous
verrons plus loin. Nous avons résumé, sur la figure 1, un exemple de résultats de
notre calcul.

3. Fonction de vraisemblance

Si, parmi les événements trouvés lors du dépouillement nous en sélectionnons un
nombre N pour l’analyse finale, le logarithme de la fonction de vraisemblance s’écrit:

c— 211’1 ) [1—asin{p; 4+ we/mc® (H1);|fi}] (I)
f dlg, ;) [1—asin {p + pejmc® (HI);/B;}] dp

(pa
avec a = o P A(y,). Le signe (4) correspond aux deux orientations possibles du champ
magnétique. Les limites ¢, et ¢, définissent l'intervalle angulaire que 1'on observe.
En dehors de ces limites, les probabilités de détection sont tres faibles et mal déter-
minées. _

La fonction de vraisemblance permet de tenir compte du fait que toutes les
particules 4 n’ont pas passé le méme temps dans le champ magnétique et que la
probabilité de détection n’est pas constante.

Comme nous I'avons déja relevé précédemment, le logarithme de la fonction de
vraisemblance peut également s’écrire:

N

c 22 d((p.l . T, = %1 asin{p; & wefme® (H)ifi} | (1D)
1 v f [(1—asin{p L uefme® (H1),[B,}] dp

Pa

Remarques: les parametres a considérer sont u et a. Ce dernier est connu approxima-
tivement. Cependant il est utile de la déterminer afin de voir si le degré de polarisation

23
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des A que 'on considere est bien celui que I'on a prévu. La recherche du maximum de
la fonction de vraisemblance a été effectuée en utilisant une méthode d’approche
graduelle pas & pas dont nous avons déja donné le principe. Nous avons, en fait,
utilisés les relations (I) et (1I), en remplagant les intégrales par des sommes sur des inter-
valles ot d ~ constante, et constaté que pour les valeurs de d que 1'on considere (voir pa-
ragraphe concernant les résultats) ces deux formes sont équivalentes. Il est évident que
le domaine des valeurs possibles de a (physiquement) est tel que — 1 << a < 4 1.
Pour des valeurs ne satisfaisant pas cette condition, les fonctions de vraisemblance,
telles que nous les avons définies, ne sont pas correctes. Il faut alors prendre certaines
précautions et ignorer les régions ol ¢ est tel que la probabilité partielle
{1 — asin(p — @,)} n'est pas positive. Cependant de telles difficultés disparaissent
lorsque le nombre IV est assez grand.

|
Bl
9001 Mev/c
092

800+
7001
6001
500 /\

5 T T T T T . q‘

0 180° 360°

Figure 1
Probabilité de détection d’un /1.

4. Résultats et evveurs

La figure 2 montre la distribution des 2 des 874 événements mesurés, ainsi que
la distribution théorique donnée pour un degré de liberté. Nous avons choisi une
échelle telle que cette derniére soit une droite (trait interrompu). On voit immédiate-
ment que l'ajustement est trés satisfaisant jusqu’a des valeurs de y? = 4. Pour des
valeurs supérieures (en particulier pour 2 > 10) il est évident que les événements en
question font partie du bruit de fond dont nous reparlerons. Des 874 événements
mesurés, 324 sont considérés comme étant des désintégrations /. Les critéres de ce
premier choix étant: a) ¥ < 4, b) direction ajustée du /A provenant du volume de la
cible. Il est, de plus, possible de montrer la cohérence interne de cet ensemble de
désintégrations A.

Tout d’abord, pour 60 d’entre eux, présentant des conditions géométriques
favorables et ayant un ¢? <C 10, il a été possible de faire des mesures de courbures qui
ont montré que les signes des charges des deux particules sont en complet accord avec
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I'interprétation que l'on en donne: trace suivie = proton, seconde trace = pion.
Dans 20 cas, il a été possible de suivre la seconde trace jusqu’a 'arrét, ce qui a permis
des mesures de parcours treés précises, et chaque fois on a constaté qu'il s’agissait bien
de la trace d'un 7.

Nombre
d'événements (b)
20+
10
T T z
-0 0 2
: v
N Nombre i
] d'événements
Nombre 1004
d'événements
1 (a)
_ SRR 501
10+ A
7 BOR 16 845PY K
5 P% ; ! ;
i 5 01 2 34q -0l 0 0 (eevy
Figure 2 Figure 3
Distribution des 2. Distribution des valeurs A2

(a) pour des événements ayant y* < 10
(b) pour des événements ayant y2 > 10

Sur la figure 3 nous avons représenté, séparément, les distributions des valeurs A2
pour des événements ayant 2 < 10 et x> > 10. La seconde de ces distributions est
tout a fait ce que 'on peut attendre pour des événements appartenant au bruit de
fond. La premiére, elle, est compatible avec I'hypothése que I'on a des événements /1
produits par collision z~ + p. Elle est effectivement centrée autour de 4% = 0. Sa
largeur (~ 0,04 (GeV/c)?) s’explique parfaitement par les erreurs de mesures. Elle est,
par contre, relativement plus étroite que celle que 1'on devrait observer si la réaction
de production se faisait sur un proton lié.

Appelons p’y = p, + 6p , la vraie valeur de p, et E'y = E , + OF 4 la vraie valeur
de E ,, ou dp, et 6E ; sont les incertitudes de mesures. (dp, est un vecteur dont la
direction est aléatoire.) Par définition:

(Einc G mp - E;1)2 - {Pinc _"P’A \2 - m?( =0 2
En développant cette expression on obtient:

(Eie+my — E)> —2Ex0E , + 0E — [Py — P42+ 20p, - Px — 0% — mp = 0
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d’otur:
A =2 Ey 0E, — 6E* + 6p —26p, P -

La largeur de la distribution est donc proportionnelle a dp 4, - px, terme qui donne la

contribution essentielle. En considérant des valeurs moyennes, pour obtenir un ordre

de grandeur, on trouve que la largeur de la distribution des A2 est égale 4 0,04 (GeV/c)2.
Par contre, si I'on développe, en supposant les mesures infiniment précises,

(Einc+mp+ I‘F—EA)z_ |pinc+pF_pA|2_m§{:O

ou l'indice F se référe au mouvement de Fermi d'un proton lié, on obtient: A% =
— 2T Ex — T# + 2 pr - px + Pr (Prest un vecteur dont la direction est aléatoire).
Dans ce cas, en prenant Tp = 20 MeV, la largeur de la distribution (~ pg - pg)
devrait étre environ 0,14 (GeV)2.

Nous pouvons donc conclure que les événements que nous avons choisi proviennent
essentiellement de I’hydrogéne de la cible (proton libre, mouvement de Fermi nul);
la largeur de la distribution des /12 obtenue est, répétons-le, due aux erreurs de mesures,

De I'ensemble, tres pur, des 324 désintégrations, 212 ont une impulsion supérieure
a 650 MeV/c. ROSSELET [1] a montré que l'erreur statistique sur la mesure g, est
minimum lorsque y, = 65°. Cette constatation peut se comprendre intuitivement,
I'information sur la direction de la polarisation étant essentiellement fournie par les
désintégrations se produisant dans le plan contenant cette derniére. Nous avons donc
imposé la condition supplémentaire: |siny| << 0,9, ce qui réduit le nombre d’événe-
ments & 196. Nous avons choisi des limites de 'intervalle angulaire que nous utilisons
pour la fonction de vraisemblance telles que tous les événements que nous considérons
ont une probabilité de détection d supérieure ou égale a 0,7, quelles que soient leurs
impulsions. Cette nouvelle condition réduit le nombre de A de 196 a 151.

Utilisant ces 151 désintégrations /1, nous avons cherché les valeurs de u et o p qui
rendent maximum la fonction L.

Ce sont: ts = — 0,50 4 0,28 magnéton nucléaire,

= — 0,59 4+ 0,33 magnéton intrinséque

et ap = 0,59 4 0,15. La figure 4 montre la forme de la fonction L. Les erreurs sont
celles données par les valeurs de u et o p o1 la fonction L est 1/e de son maximum.

Cette valeur de u correspond a un angle moyen de précession égal a 22°. Ajoutons
que la vitesse moyenne des /A est 0,558 ¢ et que la valeur H! effective vaut
1,37 MGauss - cm.

Si I'on compare la valeur obtenue pour u 4 et la prédiction théorique donnée par
SU(3) quiest — 0,95, on constate que l’accord est bon. En faisant une telle comparaison,
il faut se rappeler que la valeur donnée par SU(3) suppose les masses du multiplet
baryonique égales, c’est-a-dire, entre autre, m, = m ,; comme I'unité «magnéton» est
inversément proportionnelle 4 la masse de la particule, plus exactement égale a
e h/m c, on obtient une imprécision d’environ 209, sur la valeur théorique. La fagon
la plus intuitive (et la plus simple!) de tenir compte de la différence des masses du
proton et du A est de multiplier la prédiction u, = — 0,95 par le rapport m,[/m 4,
ce qui donne — 0,80. Cette opération n’est, naturellement, pas nécessaire si 1'on
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Contours de C(u, oo P).

exprime, comme nous l'avons également fait, le moment magnétique en magnéton
intrinséque,

Il est intéressant de noter que la moyenne pondérée de toutes les valeurs du moment
magnétique du /A actuellement disponibles est — 0,73 + 0,17 magnéton nucléaire
[22, 23, 24, 25].

5. Erveurs systématiques et faux événements

Les sources les plus importantes de biais systématiques qui peuvent intervenir
dans le résultat de notre expérience sont les suivantes:

a) incertitude dans la mesure du champ magnétique;

b) événements V, produits par collisions de neutrons sur des noyaux de I’émulsion,
pouvant simuler des désintégrations A;

c) erreur dans la calibration g* > §;

d) biais dans la distribution angulaire des /A dii aux critéres de sélection des traces
lors du dépouillement.

Nous avons déja vu précédemment comment calculer et utiliser les corrections
dues au cas d). Ajoutons que les critéres d’angle en plan ont été appliqués avec une
précision meilleure que 1°/2; les limites que nous avons donné a la fenétre angulaire
sont plus grandes que 'angle maximum d’émission pour tous les protons de désinté-
grations /, du moins pour I’hémisphére complétement observé.
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Nous verrons plus loin que le cas b) n’apporte aucune contribution dans notre
échantillon de désintégrations /.

Le champ magnétique a été mesuré avec une précision d’environ 29, par deux
méthodes différentes. Pour couvrir les effets de I'inhomogénéité a l'intérieur de la
cible nous avons utilisé Hl = [ H(l) dl, pour chaque événement.

Pour ce qui concerne c), nous avons éprouvé la validité de la conversion g* -
en étudiant I'effet d’'un changement systématique de I'ordre de 10%, sur les quantités
de mouvements utilisées. Nous avons constaté qu’apres ajustement les mémes
désintégrations étaient sélectionnées et que la valeur obtenue pour u était & moins de
109, du résultat que nous avons donné, mais que la distribution des x?* était moins
bonne.

Finalement nous pouvons donc affirmer qu’une erreur systématique, si elle existe,
ne doit certainement pas dépasser 109,.

Nous avons également éprouvé la cohérence de nos résultats lorsque 1'on change
les critéres de sélection des désintégrations qui interviennent dans l’analyse, afin de
voir si le choix que nous avons fait n’est pas critique. Aussi nous avons répété 'analyse
pour différents domaines d’impulsions des A et pour différentes régions angulaires.
Nous avons constaté qu’il n’y a aucune indication d'un effet systématique entre
I’échantillon que nous avons choisi et tout autre échantillon fourni par les 324 /.
Les résultats obtenus ne différent pas de plus de 20%, de la valeur que nous avons
donné. _

Si l'on s’intéresse aux sources de bruit de fond possible parmi les événements V,
nous pouvons tout de suite dire que les paires d’électrons sont éliminées facilement
lors du dépouillement. Il ne peut donc exister qu'une seule source de bruit de fond,
donnée par des réactions du type:

particule noyau initial noyau plusieurs 1
incidente (dans I'émulsion) 7 résiduel particules, ()
les particules émises pouvant étre des mésons z, des mésons K, des nucléons, des
hypérons, ainsi que des particules composées telles que deutérons, particules alpha,
etc.

Les événements du type (1) qui nous intéressent sont ceux qui possédent: — un
primaire neutre et deux secondaires chargés; — un primaire et un secondaire chargés.

En imposant, aprés ajustement cinématique, les conditions a) y%* <4 et b)
impulsion p, venant de la cible, le second cas est quasiment exclu. Il reste donc a
considérer les réactions qui produisent des étoiles avec un neutron comme primaire
et qui ont deux branches secondaires visibles (chargées) telles que la résultante de
leurs impulsions satisfasse la condition b) ci-dessus et que la masse invariante M*
soit proche de celle du A afin de satisfaire la condition a). De plus, comme nous
I'avons déja écrit, dans un échantillon de 60 désintégrations des tests sur la courbure
des traces de ces événements ont montré que la paire de particules était constituée
d’'une particule chargée positivement et d’une particule chargée négativement.
On peut donc immédiatement se restreindre & la réaction suivante:n +n >n -+ p+m~.

Pour des neutrons incidents d’énergie cinétique inférieure a 400 MeV seuls des
protons sortent des cascades intranucléaires et donnent donc deux branches chargées
positivement. La création de mésons z intervenant pour des neutrons d’énergie
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cinétique supérieure a cette limite, la source la plus importante résulte des neutrons
du pic de diffusion (n~p >=a"n et m~n >mx n) qui ont une énergie cinétique
d’environ 600 MeV. R. WEILL [26] en a calculé le flux et il a estimé un nombre
d’environ 300 neutrons par plaque. Rappelons que nous avons observé en moyenne
un / par plaque. Avec une section efficace de 800 mb, 159, des étoiles produites par
ces neutrons ont deux branches chargées et 29, de ces événements-J” ont une branche
chargée positivement (p) et une branche chargée négativement (n~). On voit ainsi
que le nombre d’étoiles a deux branches (positive et négative) est trés faible. De plus,
seule une petite portion d’entre elles sont susceptibles de satisfaire les conditions a)
et b).

Nous pouvons donc conclure que la contribution, dans notre échantillon 4, de
faux événements dus a des étoiles 4 deux branches est absolument négligeable.

Conclusion

L’analyse détaillée des résultats des mesures faites dans les émulsions pour
évaluer dans la phase finale la valeur du moment magnétique a été faite en résolvant
d’importants problémes, jusqu’alors non considérés. Ce sont:

— ajustement cinématique des grandeurs mesurées,

— calcul des probabilités de détection,

~ définition d’une fonction de vraisemblance utilisant ces probabilités de détection,
— maximisation d'une fonction quelconque d’un nombre variable de parametres.

Avec une rigueur aussi grande que possible, nous avons sélectionné un échantillon
tres pur d’événements A qui nous a permis de calculer une valeur non biaisée du
moment magnétique et son erreur.
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