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Les règles de supersélection continues1)

par C. Piron
Institut de Physique Théorique Genève

(2 VIII 68)

Abstract. Starting from the calculus of propositions, we develop a formalism which allows to
treat continuous superselection rules and give some examples of applications of this formalism.

I. Introduction

Wick, Wightman et Wigner [1] ont proposé d'appeler supersélection une règle
qui interdit toute transition d'un certain sous-espace dans un autre, quelle que soit
l'interaction subie par le système (en particulier lors d'une mesure), par opposition
aux règles de sélections qui interdisent certaines transitions au cours de l'évolution
du système isolé. Considérant l'espace d'Hilbert § divisé en sous-espaces cohérents

§„ ils ont caractérisé une telle règle par les propriétés suivantes:

1° Un opérateur autoadjoint A ne correspond à une observable que si ses éléments
de matrice

<<P„\A\<Pn> °ù n,4= n et \<pn.y <=§>„.

sont identiquement nuls.

2° On ne peut pas mettre en évidence la phase e,x de l'état:

7y (I <Pnr + &n I <Pn2y) °Ù », 4= w et [ çy > £ §„.

En d'autres termes, les matrices densités:

Q y (I Vn? + eU 9V) «^ I + *~" <9?„2 I)

et

ë y (|<rV <<Pm I + 1^) <<Pn2 |)

sont équivalentes:
tr (A g) tr (A g) V l'observable A.

Elles représentent donc le même état, lequel est un mélange. Dans notre formalisme,
c'est ces deux propriétés qui nous servent de définition pour les règles de super-

') Recherche, en partie, financée par le Fonds National Suisse de la Recherche Scientifique.
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sélection c'est pourquoi nous définirons toutes les grandeurs physiques en termes
d'espaces cohérents sans faire appel à un grand espace qui les contiendrait tous [2].
Ainsi nous abandonnons l'aspect dynamique de l'ancienne définition et du même

coup l'analogie avec la notion de règle de sélection.

II. Le formalisme

En général, le système de propositions x (c'est un treillis complet, orthomodulaire,
atomique et semi-modulaire) n'est pas irréductible, mais est union directe de sous-

systèmes de propositions xa qui sont eux des sous-treillis irréductibles [3] :

T=V*a u.eQ. (2.1)

Pour chaque a e Q donné, il existe un morphisme de x dans ra défini par :

PA k+^k* (2-2)

où xa est la proposition qui intervient dans la décomposition canonique de x \/ xœ.

Ainsi le sous treillis xa est un rétract de t. a

Le centre 3 de x, c'est-à-dire le sous-treillis des propositions compatibles avec
toutes les autres, est isomorphe au treillis des parties de Q.

Chaque ra peut être réalisé par les sous-espaces fermés d'un espace vectoriel sur
un corps que nous supposerons être le corps C des complexes. Dans ces conditions
nous représenterons les propositions de rœ par les projecteurs d'un espace d'Hilbert
§a. Les propositions de x sont alors représentées par les familles de projecteurs
R}-

Une observable numérique est un cr-morphisme (unitaire) A: A l->- A(A) du treillis

des ensembles de Borei 23(R) de la droite réelle R dans r:
/ oo \ oo

A (^y AA Y (At) (2.3)

AX±A2=>A(AX) J_A(A2) (2.4)

A(R) I. (2.5)

A chaque observable correspond une famille d'observables Aa /ua ¦ A comme le

montre le diagramme suivant :

23(R)-Jl_^t^Ut, (2-6)

et réciproquement, étant donné une famille d'observables Aa de buts xa, il existe une
observable A définie par :

A(A) \J Aa(A) (2.7)
a

Ainsi chaque observable A peut être représenté par une famille d'opérateurs {Aa}
agissant dans les espaces §a.
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Un état est une application SB de t dans le segment [0,1] satisfaisant aux relations :

2B(/) 1 (2.8)

/00 \ Où

2B V**)~Z*&(*i) *,-±*j (2.9)

3B(x) 3B(y) 0 => 2ß(* V y) 0 (2.10)

ÏB restraint au centre 3 est une probabilité au sens ordinaire ; si c'est un mélange il
existe 363 telle que SBfe) # 0 et $8(3') # 0, et ainsi

v&M sb(* a 3) mi)-1

W2(x) W(x A 3') mi')-1

sont deux états de x tels que :

3B(x) 2B(3) 2Bi(") + 2B(3') 2B2(*)

Ce qui prouve qu'un état est un mélange si sa restriction sur 3 est un mélange. Ainsi
tout état pur peut être représenté par un point oc e Q et un vecteur unitaire de l'espace
§a correspondant [4]. En général, un état est représenté par une famille de matrices
densités {ga} agissant dans les espaces §>a et une probabilité m définie sur les parties
de Q; et la valeur moyenne d'une observable A est donnée par [5] :

<Ay=Jtr(gccAa)m(dcc) (2.11)
a

où

y tr (ga) m(d%) 1. (2.12)
a

Si Q a la puissance du continu (si la règle de supersélection est continue), il est utile
d'admettre aussi les probabilités m définies, non pas sur toutes les parties de Q, mais
seulement sur une tribu de Q. Dans un tel cas, l'état n'est défini que sur une partie
de t, et la valeur moyenne d'une observable A ne peut être calculée par la formule
(2.11) que si la fonction tr (pa Aa) est intégrable pour m.

Une symétrie S est un automorphisme du système de propositions x, c'est-à-dire
une application bijective telle que:

<B(xVy) S(x) V S(y) (2.13)

x _L y => Q(x) J_ S(y) (2.14)

La restriction de S au centre 3 est un automorphisme qui induit sur Q une permutation
/ selon la formule

S(4) Im (2.15)
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La restriction de S au sous-treillis xa est un isomorphisme de xa sur xt (a)
:

/"a
>Va

Sa

W(a)
X/(*)

®a • /*« Pficù ¦ S

(2.16)

(2.17)

L'ensemble des symétries de x forme un groupe qui agit transitivement sur Q si et
si seulement les xa sont tous isomorphes entre-eux. Dans ce cas les espaces d'Hilbert
§a sont tous isomorphes à un même espace §. C'est ce que nous supposerons dans
la suite en identifiant les §a à un même espace §,. Une symétrie S est alors représentée,
selon un théorème de Wigner, par une famille d'opérateurs semi-unitaires {Ua} et
une permutation / de Q. Il faut remarquer que chacun des Ux n'est défini qu'à une
phase près.

A chaque observable A, la symétrie S fait correspondre une nouvelle observable
As selon le schéma:

»(R)

A'

-y r
S (2.18)

-> T

A°(A) QA (A) (2.19)

L'observable As étant représentée par {A^}, on en déduit la formule:

AsfW UaAaU-1. (2.20)

De même à chaque état 2B, la symétrie S fait correspondre un nouvel état 2B* selon le

schéma :

S

au
T > [0, 1]

À,

2BS(<5 x) m(x)

L'état 2BJ étant représenté par {g^} et ms, on en déduit les formules :

ms(f(d<x) m(cb.)

De l'inspection des diagrammes (2,18) et (2,21) découle la relation:

<A°ys= <A>

qui exprime l'invariance de la valeur moyenne.

(2.21)

(2.22)

(2.23)

(2.24)

(2-25)
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Soient p, q,r, les éléments d'un groupe G réalisé parles symétries S(p), £>(?),

Q(r), à l'équation
<ò(p)Q(q) <5(Pq)

il correspond dans notre représentation à une phase près, la relation :

U„aP) UM coa(p, q) Ua(p q) (2.26)

où a>œ(p, q) est le facteur de phase, un nombre complexe de module 1, qui dépend non
seulement de p et q mais aussi de a. Ce facteur n'est d'ailleurs pas quelconque, la loi
d'associativité appliquée aux équations [6] :

uqrUP) UrUi) ujr)
0>r<a>(P. i) mÀPq, r) Ua((p q)r)

o)a(p,qr)(oa(q,r) ua(p(qr))
impose la relation :

(or(Jp, q) (oa{p q, r) œa(p, q r) œx(q, r) (2.27)

Si on considère une autre représentation de <5(p) et qu'on change Ua(p) en U^(p)
(f>a(p) Ua(p), on est conduit à un autre facteur de phase:

<(^=^dfOT- (Z28)

Nous dirons, de deux facteurs de phase reliés par une telle relation, qu'ils sont
équivalents ou encore qu'ils sont du même type. Ainsi, sans changer de type de facteur,
on peut supposer a)x(e, e) 1 où e est l'élément neutre de G, ce qui entraîne en vertu
de (2.27)

oa(P, e) coa(e, p) lVpeG: (2.29)

Si un facteur de phase est identiquement éqal à 1 on dit qu'il est du type trivial.
Tout facteur n'est pas du type trivial, néanmoins on a le résultat suivant :

Supposons G opérant transitivement dans Q [7] et soit L G(a.0) le stabilisateur de

a,eß (c'est-à-dire le sous-groupe qui laisse a0 invariant), si:

o>aSP> %) V p e G et q0 e LG(a0) (2.30)

alors co^p, q) est du type trivial.
En effet, la condition (2.30) permet de déduire de la relation (2.27) l'égalité:

ma,(Pi ma0(P, r) V r~xqe LG(a0)

qui nous permet de poser:
K(P) <t><,w(P) ma(P, 9) ¦

Il en résulte:
'a. (P i) rW'a (P' i) W» (P, I) J. i i is

d'où, toujours en vertu de (2.27)

ma(P, i) 1 V p, q e G et a e Q.
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Jusqu'ici nous n'avons pas introduit de topologie, les symétries agissent
algébriquement sur les observables et les états. Or la plus part des symétries ne peuvent
s'interpréter que comme transformations passives, c'est-à-dire comme changements
de représentation du système physique. Les symétries qui correspondent aux
transformations actives et qui fournissent des lois statiques et dynamiques pour le système
physique sont particulièrement simples et se caractérisent entre autres par des

propriétés de continuité. Soit ^B l'ensemble des points (des atomes) de x, c'est-à-dire
l'ensemble des propositions qui sont représentés par des familles de projecteurs tous
nuls à l'exception d'un seul de rang un. On peut définir sur ty une topologie à l'aide
de la distance : _d(x, y) supm (2B(*) - 2B(y)) (2.31)

où sup-2% désigne la borne supérieure pour l'ensemble des états pures 2B définis sur x.
C'est bien une distance, car pour tout x e Iß il existe un état pur qui vaut un pour x.
Dans notre cas cette topologie est le produit de la topologie discrète sur Q par la
topologie induite par le produit scalaire sur les rayons de l'espace d'Hilbert §. Mais
c'est chercher la difficulté que d'introduire une fois pour toute cette topologie sur *B.

Car le groupe G qui est donné avec sa topologie, ne pourra opérer continûment
que d'une manière, en général, triviale sur Q [8], Or l'interprétation physique exige
bien qu'une suite xx, x2, x3, converge pour supç® (W&(xx) — 2B (#,-)) tendant vers zéro
mais elle n'impose pas la réciproque. C'est pourquoi il est utile d'introduire une autre
topologie pourvu qu'elle soit moins fine que celle définie par (2.31).

III. Applications
Le rôle des règles de superselection discrètes en physique est bien connu, nous ne

nous y attarderons pas. Mais il peut paraître difficile de citer un exemple de règle de

superselection continue. En fait, les règles de superselection continues se sont
introduites en physique quantique bien avant les discrètes et, les physiciens les ont maniées

sans le savoir. En effet en mécanique quantique le temps joue le rôle de règle de
supersélection. Ce rôle se justifie physiquement du fait que la mesure du temps ne perturbe
pas le système, en effet l'horloge du laboratoire est en général soigneusement isolée

du système étudié par l'expérimentateur. Développons en quelques lignes ce point
de vue, posons Q isomorphe à R la droite réelle identifié au temps. Le treillis des

propositions est alors l'union directe dessous-treillis isomorphes aux treillis des projecteurs

des espaces d'Hilbert §, t e R. L'état pur du système est entièrement déterminé

par la donnée d'un vecteur unitaire rp, de l'espace §, correspondant à l'instant
considéré, c'est-à-dire dans notre notation :

St I Wt> <Vt I (3-1)

m(dt) ô(t- t0) dt. (3.2)

Une famille d'opérateurs auto-adjoints {At} représente une observable dépendant en
général explicitement du temps. Par exemple, la famille {t It] est l'observable «temps »

et sa valeur moyenne dans l'état pur xpt est donnée selon (2.11) par:

<[t> Ar (t It | V(> <ipt |) ô 11 - g ât=\. (3.3)
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L'évolution est induite par des transformations de symétrie qui forment une
représentation du groupe des translations dans le temps [9]. Ainsi à chaque translation du
temps t on fait correspondre une symétrie S(x) définie par la famille d'opérateurs
unitaires {Ut(T)} et la permutation/T de Q définie par:

fT: t\-*t + x. (3.4)

En imposant l'homogénéité dans le temps c'est-à-dire U, (x) Ut (x) U(x) et une
condition de continuité, le théorème de Stone permet d'affirmer l'existence d'un
opérateur autoadjoint H tel que [10]:

U(x) e-iHT. (3.5)

Un deuxième exemple est celui d'une particule instable [11]. Si l'observation de

l'époque de désintégration ne perturbe pas le système, nous pouvons postuler que la
propriété d'être désintégrée ou non ainsi que l'époque x de la désintégration éventuelle
sont règles de supersélection. Sous cette hypothèse, le système est décrit par un espace
d'Hilbert 5)° correspondant à la particule non-désintégrée et une famille de §T
correspondant à la particule désintégrée au temps x. L'état général, à un instant t, est
alors représenté par:

Q°(t)
et mT(t) dx (3.6)

QA1)
où selon (2.12)

tr (g°(t) +Jtr (gT(t) mT(t) dx 1 (3.7)

tr (g°(t)) est la probabilité que la particule ne soit pas désintégrée à l'instant t, et
tr (gT(t)) mT(t) dx est la probabilité que la particule se soit désintégrée entre

l'instant x et l'instant x + dx. Cette probabilité est évidemment nulle pour t < x et
reste constante pour t > x.

Nous supposerons que la particule étant non-désintégrée peut, soit évoluer selon

un hamiltonien H°, soit se désintégrer et ceci avec une probabilité r dt indépendante
du passé de la particule ; d'où l'équation :

Qo(t) i [g«(t), Ha] - rg°(t) (3.8)

D'autre part, la particule une fois désintégrée évolue selon un hamiltonien H; d'où
l'équation :

Qr(t) i[Qr(t), H}- (3.9)

Si nous posons pour normalisation

tr(gT(t)) tr(g°(x)) (3.10)

nous trouvons
mr(t) dx r h (t - x) dx (3.11)

où h est la fonction saut de Heaviside.
Comme dernier exemple nous allons traiter un cas .moitié classique, moitié quantique.

Il s'agit d'une particule classique de masse m portant un spin quantique 1j%.

L'espace des règles de supersélection Q est l'espace réel à 7 dimensions (p, q, t) et
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chaque espace d'Hilbert kOp,q,t est à deux dimensions complexes. Un état pur est

représenté par un vecteur unitaire Yyîoj(0 d'un espace $>Pt,qo,t, déterminé. L'évolution

de ce système est induite par la symétrie :

Wp.q.t, — Up„,qa,l0iPp0,Ja,t0 (3.12)

P Pt (Po, q0, Q (3.13)

q q-r (Po, q0, h) (3.14)

t t0 + x (3.15)

obtenue par intégration des équations :

iWp,g,t Hp,q,tVp,q,t> P -dnHc'> q àpHc (3.16)

où Hptqtt est un opérateur autoadjoint, l'hamiltonien quantique
et H une fonction de p, q, t, l'hamiltonien classique.

En particulier si Hp t (kj\ q\2) a3 où a3 est la matrice de Pauli et si Hc p2j2 m +
g/| q \, cherchons la solution du problème de diffusion. Un état asymptotique rentrant
étant donné par un vecteur unitaire ipin, la valeur 5 du paramètre d'impact et la
quantité de mouvement à l'infini px, la particule est déviée dans le plan S, pœ d'un
angle 0oo donné par la formule bien connue [12] :

Cot^ AP^1\ (3.17)
2 gm

le vecteur unitaire yout s'obtient par intégration de (3.16). On trouve facilement en se

rappelant la conservation du moment orbital — m q2 6 j pœ j • | S j

Veut-«" Ï¥^ÏTST°
Vin- (3.18)

Dans cet exemple le lecteur remarquera que la topologie que joue un rôle naturel
n'est pas celle donnée par la distance entre atomes selon (2.31) mais celle obtenue
comme produit, de la topologie sur les rayons de §, et de la topologie habituelle de R7.
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