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Les régles de supersélection continues?)

par C. Piron
Institut de Physique Théorique Genéve

(2 VIII 68)

Abstract. Starting from the calculus of propositions, we develop a formalism which allows to
treat continuous superselection rules and give some examples of applications of this formalism.

I. Introduction

Wick, WIGHTMAN et WIGNER [1] ont proposé d’appeler supersélection une regle
qui interdit toute transition d’un certain sous-espace dans un autre, quelle que soit
I'interaction subie par le systéme (en particulier lors d’'une mesure), par opposition
aux regles de sélections qui interdisent certaines transitions au cours de 1’évolution
du systeéme isolé. Considérant l'espace d’Hilbert § divisé en sous-espaces cohérents
9, ils ont caractérisé une telle régle par les propriétés suivantes:

1° Un opérateur autoadjoint 4 ne correspond a une observable que si ses éléments
de matrice
<@, | 4 | @, > ob m o+, et | @ € Dn,

sont identiquement nuls.

2° On ne peut pas mettre en évidence la phase ¢'* de 1'état:
1 1 \
"y (|gn +e*|@,>) ot n +n et | €H, .
En d’autres termes, les matrices densités:

1 F —i
0= 2 (' (pn1> el * F(pn2>) (<(pn1 ’ A g <(Pn2 |)
et
- 1
0= (| @ @, | + | @0 <@s, |)
sont équivalentes:
tr (A o) = tr (4 ¢)  'observable 4.

Elles représentent donc le méme état, lequel est un mélange. Dans notre formalisme,
c’est ces deux propriétés qui nous servent de définition pour les régles de super-

1) Recherche, en partie, financée par le Fonds National Suisse de la Recherche Scientifique.
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sélection c’est pourquoi nous définirons toutes les grandeurs physiques en termes
d’espaces cohérents sans faire appel 4 un grand espace qui les contiendrait tous [2].
Ainsi nous abandonnons l'aspect dynamique de I’ancienne définition et du méme
coup l'analogie avec la notion de régle de sélection.

II. Le formalisme

En général, le systeme de propositions 7 (c’est un treillis complet, orthomodulaire,
atomique et semi-modulaire) n’est pas irréductible, mais est union directe de sous-
systémes de propositions 7, qui sont eux des sous-treillis irréductibles [3]:

r=\1, aef. (2.1)
Pour chaque « € 2 donné, il existe un morphisme de 7 dans 7, défini par:
Pyt HI=> %, (2.2)

ou %, est la proposition qui intervient dans la décomposition canonique de » = V # e
Ainsi le sous treillis 7, est un rétract de 7. *

Le centre 3 de 7, c’est-a-dire le sous-treillis des propositions compatibles avec
toutes les autres, est isomorphe au treillis des parties de £2.

Chaque 7, peut étre réalisé par les sous-espaces fermés d'un espace vectoriel sur
un corps que nous supposerons étre le corps C des complexes. Dans ces conditions
nous représenterons les propositions de 7, par les projecteurs d'un espace d’'Hilbert
$,. Les propositions de 7 sont alors représentées par les familles de projecteurs
). -

Une observable numérique est un o-morphisme (unitaire) 4: 4 > A(A) du treil-
lis des ensembles de Borel B(R) de la droite réelle R dans 7:

a(0a)-Vu 2.3

Ay 1L Ay = A(4y) 1 A(4y) (2.4)
AR) =TI (2.5)

A chaque observable correspond une famille d’observables A, =u, A comme le
montre le diagramme suivant:

BR) L ar M, (2.6)

et réciproquement, étant donné une famille d’observables 4, de buts 7, il existe une
observable 4 définie par:

Ad) =\ 4,(4) . 2.7

Ainsi chaque observable 4 peut étre représenté par une famille d’opérateurs {4}
agissant dans les espaces $,.
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Un état est une application 2B de 7 dans le segment [0, 1] satisfaisant aux relations:

W) =1 (2.8)
m (i} "‘i) = f’ﬂB(%i) #; | % (2.9)
W(x) = W(y) =0=W(x vV y)=0. (2.10)

B restraint au centre 3 est une probabilité au sens ordinaire; si c’est un mélange il
existe 3 € 3 telle que W(3) # 0 et W(R') # 0, et ainsi

B, (2) = W A 3) W(3)~*
Wy(x) = Wx A 3') W(3) ™
sont deux états de 7 tels que:
W(x) = W(3) Wy () + W(3") Wa(x) .

Ce qui prouve qu’un état est un mélange si sa restriction sur 3 est un mélange. Ainsi
tout état pur peut étre représenté par un point « € £2 et un vecteur unitaire de I'espace
9, correspondant [4]. En général, un état est représenté par une famille de matrices
densités {p,} agissant dans les espaces §), et une probabilité m définie sur les parties
de 2; et la valeur moyenne d’une observable A est donnée par [5]:

A = f tr (o, A,) m(dot) (2.11)
ou ’

f tr (o,) m(da) = 1. (2.12)

Si Q2 a la puissance du continu (si la régle de supersélection est continue), il est utile
d’admettre aussi les probabilités m définies, non pas sur toutes les parties de {2, mais
seulement sur une tribu de £2. Dans un tel cas, I'état n’est défini que sur une partie
de 7, et la valeur moyenne d’une observable A ne peut étre calculée par la formule
(2.11) que si la fonction tr (g, 4,) est intégrable pour .

Une symétrie © est un automorphisme du systéme de propositions , c’est-a-dire
une application bijective telle que:

SV y) =604V &) (2.13)
% 1Ly= Gl 16 (2.14)

Larestriction de S au centre 3 est un automorphisme qui induit sur £2 une permutation
f selon la formule

S(L,) = I (2.15)
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La restriction de © au sous-treillis 7, est un isomorphisme de 7, sur 7; 4:

Yo
T > T,
S S
* (2.16)
M ()
> Ty (%)
Ga "My = M & (217)

L’ensemble des symétries de 7 forme un groupe qui agit transitivement sur £ si et
si seulement les 7, sont tous isomorphes entre-eux. Dans ce cas les espaces d"Hilbert
9, sont tous isomorphes 4 un méme espace §. C’est ce que nous supposerons dans
la suite en identifiant les §, a un méme espace §. Une symétrie & est alors représentée,
selon un théoréme de Wigner, par une famille d’opérateurs semi-unitaires {U,} et
une permutation f de Q. Il faut remarquer que chacun des U, n’est défini qu’a une
phase prés.

A chaque observable 4, la symétrie & fait correspondre une nouvelle observable
As selon le schéma:

| P le (2.18)

As{4) = S 4 (4) (2.19)
L’observable A¢ étant représentée par {4,}, on en déduit la formule:
A5 =U, 4, U . (2.20)

De méme a chaque état I, la symétrie & fait correspondre un nouvel état W selon le
schéma:

T———> [0! 1]

gl - J (2.21)

r
Ws(S x) = W(x) . (2.22)
L’état W étant représenté par {o;} et m’, on en déduit les formules:
0w = Un0. Ug' (2.23)
m(f{de)) = m{de) 224)

De I'inspection des diagrammes (2,18) et (2,21) découle la relation:
Ay, = <A (2.25)

qui exprime l'invariance de la valeur moyenne.
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Soient ¢> qg,7, ... les éléments d’un groupe G réalisé par les symétries S(p), S(q),
), ..., al’équation

S
S(p) Slg) = S(p 9)

il correspond dans notre représentation & une phase pres, la relation:

U (P) Up(g) = (. 9) Up(p 9) (2.26)

oll w,(p, ) est le facteur de phase, un nombre complexe de module 1, qui dépend non
seulement de p et ¢ mais aussi de «. Ce facteur n’est d’ailleurs pas quelconque, la loi
d’associativité appliquée aux équations [6]:

Uri®) Unalg) Uy lr)
= 0,»(P, 9) (P9, ) Up((p 9)7)
= w,(p, g7) w,(q, 7) U (p(g 7))

impose la relation:

mr(a)(p’ 9) wa(lb g, r) = wa(p’ q 7) wa(qx 7). (2.27)
Sion considére une autre représentation de S(p) et qu’'on change U, (p) en U)(p) =
&, (p) , on est conduit & un autre facteur de phase: :
r — ¢a P q
WP, 9) = 0a(p, ) g (2.28)

Nous dirons, de deux facteurs de phase reliés par une telle relation, qu’ils sont équi-
valents ou encore qu’ils sont du méme type. Ainsi, sans changer de type de facteur,
on peut supposer m,(¢e, ¢) = 1 ou ¢ est 'élément neutre de (z, ce qui entraine en vertu
de (2.27)

0y(p, &) = yfe, p) = 157 pE G (2.29)

Si un facteur de phase est identiquement éqal a 1 on dit qu’il est du type trivial.
Tout facteur n’est pas du type trivial, néanmoins on a le résultat suivant:

Supposons G opérant transitivement dans £2 [7] et soit L G(x,) le stabilisateur de
% € {2 (c’est-a-dire le sous-groupe qui laisse «, invariant), si

alors w,(p, q) est du type trivial.
En effet, la condition (2.30) permet de déduire de la relation (2.27) I’égalité:

W, (B, §) = 0, (P, 7) ¥ 77 g € LGay)

qui nous permet de poser:

¢a(?) = ¢q(ao)(¢)) = wa(?» ‘Z) .

. _____¢Oto P
W (B: ) = g, (B, 9) 5" ¢ao(‘1)

11 en résulte:

d’oti, toujours en vertu de (2.27)

w,p,q9) =1 p,geG et acll.
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Jusqu’ici nous n’avons pas introduit de topologie, les symétries agissent algé-
briquement sur les observables et les états. Or la plus part des symétries ne peuvent
s’interpréter que comme transformations passives, c’est-a-dire comme changements
de représentation du systéme physique. Les symétries qui correspondent aux trans-
formations actives et qui fournissent des lois statiques et dynamiques pour le systéme
physique sont particulierement simples et se caractérisent entre autres par des pro-
priétés de continuité. Soit P l'ensemble des points (des atomes) de 7, c’est-a-dire
I'ensemble des propositions qui sont représentés par des familles de projecteurs tous
nuls a I'exception d’'un seul de rang un. On peut définir sur B une topologie a 1'aide

de la distance: d(x, ) = supg (T(x) — W(y)) (2.31)

ol supg, désigne la borne supérieure pour 'ensemble des états pures W définis sur 7.
C’est bien une distance, car pour tout x € § il existe un état pur qui vaut un pour x.
Dans notre cas cette topologie est le produit de la topologie discréte sur £ par la
topologie induite par le produit scalaire sur les rayons de 1'espace d’Hilbert $§. Mais
c’est chercher la difficulté que d’introduire une fois pour toute cette topologie sur B.
Car le groupe G qui est donné avec sa topologie, ne pourra opérer continfiment
que d'une maniére, en général, triviale sur £ [8]. Or l'interprétation physique exige
bien qu'une suite xy, x,, x5, . . . converge pour supg (W(x,) — W(x;)) tendant vers zéro
mais elle n’impose pas la réciproque. C’est pourquoi il est utile d’introduire une autre
topologie pourvu qu’elle soit moins fine que celle définie par (2.31).

IT1. Applications

Le role des régles de superselection discrétes en physique est bien connu, nous ne
nous y attarderons pas. Mais il peut paraitre difficile de citer un exemple de regle de
superselection continue. En fait, les régles de superselection continues se sont intro-
duites en physique quantique bien avant les discrétes et, les physiciens les ont maniées
sans le savoir. En effet en mécanique quantique le temps joue le role de régle de super-
sélection. Ce role se justifie physiquement du fait que la mesure du temps ne perturbe
pas le systeme, en effet I'horloge du laboratoire est en général soigneusement isolée
du systéeme étudié par I'expérimentateur. Développons en quelques lignes ce point
de vue, posons £2 isomorphe a R la droite réelle identifié au temps. Le treillis des pro-
positions est alors I'union directe dessous-treillis isomorphes aux treillis des projec-
teurs des espaces d’Hilbert §, ¢ € R. L.’état pur du systéme est entierement déterminé
par la donnée d'un vecteur unitaire y, de l'espace §, correspondant a l'instant
considéré, c’est-a-dire dans notre notation:

0= | v <y, | (3.1)
m(dt) = & (¢ — 1) dt . (3.2)

Une famille d’opérateurs auto-adjoints {4,} représente une observable dépendant en
général explicitement du temps. Par exemple, la famille {¢ I,} est I'observable «temps»
et sa valeur moyenne dans I'état pur y, est donnée selon (2.11) par:

<t>:ftr(tf,,qut><zpt|)(3|t——t0)dt=lo. , (3.3)
B st
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L’évolution est induite par des transformations de symétrie qui forment une repré-
sentation du groupe des translations dans le temps [9]. Ainsi & chaque translation du
temps 7 on fait correspondre une symétrie S(t) définie par la famille d’opérateurs
unitaires {U,(7)} et la permutation f, de £ définie par:

f.0 t—=t+T. (3.4)

En imposant I'homogénéité dans le temps c’est-a-dire U, (r) = U, (r) = U(z) et une
condition de continuité, le théoréme de Stone permet d’affirmer l'existence d'un
opérateur autoadjoint H tel que [10]:

Ur) = e 27, (3.5)

Un deuxiéme exemple est celui d'une particule instable [11]. Si 'observation de
I'époque de désintégration ne perturbe pas le systéme, nous pouvons postuler que la
propriété d’étre désintégrée ou non ainsi que I'époque 7 de la désintégration éventuelle
sont regles de supersélection. Sous cette hypotheése, le systéme est décrit par un espace
d’Hilbert $° correspondant & la particule non-désintégrée et une famille de §, cor-
respondant a la particule désintégrée au temps 7. L’état général, a un instant 7, est
alors représenté par:

{go ( } et m. () dv (3.6)
ou selon (2.12)
tr (0%(t)) + f tr (0,(8)) m, (&) dv=1. (3.7)

tr (0°(¢)) est la probabilité que la particule ne soit pas désintégrée a l'instant ¢, et

tr (o,(¢) m,(f) dv est la probabilité que la particule se soit désintégrée entre
I'instant 7 et l'instant 7 + dr. Cette probabilité est évidemment nulle pour ¢ << 7 et
reste constante pour ¢ > 7.

Nous supposerons que la particule étant non-désintégrée peut, soit évoluer selon
un hamiltonien H soit se désintégrer et ceci avec une probabilité /" df indépendante
du passé de la particule; d’ot I'équation:

6o = i [0%), H®) — I'o%(t) . 3.8)

D’autre part, la particule une fois désintégrée évolue selon un hamiltonien H; d’ou
I’équation:

0,(t) =1ile,(, H]. (3-9)
Si nous posons pour normalisation
tr (0,(t)) = tr (¢°(v)) (3.10)
nous trouvons
m () dr=1h(—7)dr (3.11)

ou & est la fonction saut de Heaviside.

Comme dernier exemple nous allons traiter un cas ,moitié classique, moitié quan-
tique. Il s’agit d’une particule classique de masse m portant un spin quantique /,.
L’espace des régles de supersélection £2 est I'espace réel a 7 dimensions (p, g, f) et
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chaque espace d'Hilbert §, ,, est a deux dimensions complexes. Un état pur est
représenté par un vecteur unitaire y, , , d'un espace §, , , déterminé. L’évolu-
tion de ce systeme est induite par la symétrie:

Vorat, = Upo tots Pootote (3.12)
=, (Po 90 to) (3.13)

9 =4, (Po, 90, b (3.14)
=1t +71 (3.15)

obtenue par intégration des équations:

P 0pq0 = Hpgi¥pq0s P=—0,H; ¢=0,H, (3.16)
ol Hy ,; est un opérateur autoadjoint, ’hamiltonien quantique '
et H_ une fonction de p, ¢, ¢, 'hamiltonien classique.

En particulier si #, , ;= (/| ¢|%) o® ot1 0® est la matrice de Pauli et si H, = $?/2m +
g/| q |, cherchons la solution du probléme de diffusion. Un état asymptotique rentrant
étant donné par un vecteur unitaire 9;,, la valeur S du parametre d’impact et la
quantité de mouvement a l'infini p, la particule est déviée dans le plan S, peo d'un
angle 6, donné par la formule bien connue [12]:

2
Cot b — 7”‘:'5 | (3.17)
le vecteur unitaire y,,, s'obtient par intégration de (3.16). On trouve facilement en se
rappelant la conservation du moment orbital — m ¢2 0 = | poo | - | S|
kmla—6,)
puime =Ty, 3.18)

Dans cet exemple le lecteur remarquera que la topologie que joue un rdle naturel
n'est pas celle donnée par la distance entre atomes selon (2.31) mais celle obtenue
comme produit, de la topologie sur les rayons de $), et de la topologie habituelle de R7.
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