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On the Analyticity Properties of the N-Body Scattering Amplitude
in Non-Relativistic Quantum Mechanics

by F. Riahi?)
Seminar fiir theoretische Physik, ETH, Ziirich

(4. VI. 68)

Abstract. We consider the scattering of N non-relativistic, spinless, distinguishable particles
interacting via two-body superpositions of Yukawa potentials. The on-energy-shell amplitude is
studied as a function of the total center-of-mass kinetic energy E and for physical values of the
‘angular’ variables x; = (1/&) p;, ¥; = (1/k) q;, 1 <i< N, k? = E, where p,,..., py and
q,, ..., gy are the initial, respectively the final momenta.

It is shown that this amplitude is the boundary value of a function analytic in the energy E
in a complex plane cut from —oo to — g2 for some @ > 0 and from 0 to +oco and in all variables
(%1, ..., yy) in a neighbourhecod of their physical values, up to an algebraic set of codimension 1.

0. Introduction

The exploitation of the analyticity properties of collision amplitudes, Green’s
functions and vacuum expectation values in relativistic quantum mechanics has been
proved to be an important tool for a qualitative understanding of subatomic pro-
cesses, as well as for the development of certain quantitative approximation proce-
dures.

Although some rigorous results have been already obtained for the simplest col-
lision processes [1], it appears that a further analysis of the more important multi-
particle scattering amplitudes encounters considerable difficulties. This motivates
the investigation of the non-relativistic N-body problem, since there, rigorous solu-
tions can be shown to exist. It is then hoped that some insight may be gained in the
many-particle structure of the S-matrix. It turns out again, that satisfactory ana-
lyticity properties can be expected only for an appropriate choice of variables.

Our aim is to show that for certain multiparticle processes, the analytic structure
of the exact N-body scattering amplitude in the “physical sheet” is the same as that
predicted by the perturbation theory.

In customary notation, the N-particle Hamiltonian with two-body forces

H=H+V=H+ J} V,

1<i<j=<N

will be defined in the total center-of-mass frame, as an operator in the Hilbert space

. vl =fd3;b1 d3p‘,va(ér’m) |y [2 <°°}

1) Present address: Dept. of Physics, Aria-Mehr University Teheran, Iran.

# = L2(R3(N_1)) = {W(pl’ tEeh PN)s
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with

(Ho"lf) (Pl’ ’PN) =Z 21:; "P(pl) ""pN)
i=1 t
(Vijw) (P1s -+, Py
= [@qv; (PP —a)p (o PG g, PR g ).

We shall always assume that the v;; are real.
Theorem 0.1 (T. KaTo [2]). — Forany 7,7, 1 <7< ] <N, let

vi;(.) € L*(R%) + L*(R%) .
Then A(V};) D A(H,) and for any a > 0, there exists a b < oo such that
[Viyw| <a[Hw| +b]y]

forally € A(H,). The sum H, + V is self-adjoint on A(H,) (and bounded from below).
In the sequel we shall restrict ourselves to square-integrable two-body potentials.
Under this assumption, it may be shown [3] that the Mgller operators

.Qiolllt: s — 11m eth 6—;‘H0t
t— 4+ 0
exist and allow for the definition of an isometric S-matrix
S: QY - O Y
by
SZ Qout¢_> Qin¢
for all ¢ € .

We shall further limit ourselves to a class of short range potentials which decrease
sufficiently rapidly in configuration space. More specifically, we assume:

(Ag) For any 4, 7, 1 <+ < 7§ < N, v,;;(p) is holomorphic in

{peC |Imp| < x}
for some », 0 << % << D.
For any & > 0, there exist (g) > 3/2 and C(g) << oo such that

lo;(p)| < Cle) (1 + |p|)~°®

uniformly in

{peC |Imp| <x—e}.

In order to avoid multichannel situations, we assume the potentials to be purely
repulsive:

(B) For any 7,9, 1 <<z <7 <N,
x- Vo, <0

where v,; is the Fourier transform of v,;:

58 = [ @ P, (p).

(%
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Assumptions (A,) and (B) and the virial theorem allow then to prove [4] that the
spectrum ¢(H) of H lies in [0, o).

Under assumptions (A,) and (B) some interesting analyticity properties can be
proved for the kernel of the S-matrix (cf. Theorem 3.1). More satisfactory however,
is the restriction to superpositions of Yukawa potentials. For simplicity, we consider
the class

(A) Forany ¢,7,1 <7 << <N,

ante. ©]

where do;; is a real measure on R! satisfying

+o0
f id o, ()| < oo (0.1a)

BBk, Fprl supp do,; C [#2,00), % >0. (0.1b)

Then v, ;(p) is square-integrable, due to

400
1
v;; | (P)| < wip? f a |0'1‘j(}')!
d hol hic i -
and holomorphic in (peCo: pré [x2 00} .

Due to (0.1a), (0.1b), # - V v, (%) is well-defined.
We note that the assumption (A) may be generalised to include non-spherically
symmetric superpositions of Yukawa potentials as well as potentials which merely
possess the analyticity and growth properties of Yukawa potentials.

The requirements (A,), (B) exclude discrete negative eigenvalues of the Hamil-
tonian H. It may be shown [5] that the following assumption is sufficient for the
control of the discrete spectrum of H in the continuous part [0, co) of its spectrum:

(C) For any 4,7, 1 i < <N, let v;;(x) be C® for & # 0. There exists an «, 0 <
o << 1, such that for any 4, 5:
%V o,®) < —oavyls) .
Under (A), (B), (C) the S-matrix is unitary [5]:
Q"U=0"U=H, SS*¥=5*5=1.

We shall explore certain analytic properties of the N-body scattering amplitude =
defined by

Prsos Py |S| Qs qy> — <Pry v, Py | G s @D

N N N N
= 5(t§Pz _gqi) 5(14‘.“1'?? ‘"@_Z;Mi ‘Lz) (Prs oo Pys Qoo -+ 5 Ay) -

We have set u; = 1/2m,;, 1 <1 < N.
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In fact, the kernel of the S-matrix is primarily defined in the sense of distribu-
tions and then extended by continuity to a functional on L2(R*Y) x L2(R*Y), which is
antilinear in the first factor and linear in the second.

The general time-independent scattering theory [6] gives 7(p;, ... qy) as bound-
ary value in the sense of distributions of the kernel of the N-body T-operator. Let
Imz # 0 and

R(z) = (z — H)™
be the resolvent of the Hamiltonian H. The T-operator is connected to R(z) via

Tz =V +VR(RV (0.2)
and to the S-matrix by

N N N N
13;.%1fd3p1 dﬁqNé(Zpi) 5(2%-) 6(2/«%?? PN Q?)
i=1 i=1 d=1 f=1
N
X Py PN VL o Q) TPy oo Prs Qs oee s Qs D i P+ 1 8)
i=1

N N N N
Zfdspl da‘]xa(é‘Pi) Y (Z:qj) (5(;#,-1)? _Zﬂj ‘I,z>
i= j= = j=

X @*(Pry - PY) Y@y o, @) T(P1y -+ Py Dy -+ 5 ) , (0.3)

for ¢, w € D(R?Y).
We shall always work in the center-of-mass frame and on the energy shell where

N N N N
;PiZQ(Ié=Os Z:MP;)':Z:M:%:

and introduce the variables
N
E—i=Yupt, k=0
i=1

pi=kx;, q=ky,, 1<i<N
with

v N N N
xi,yj€R3,i§xi:§yi:O,§Mi ?:;Miyle.

Let
N N
.Qg={(x1,...,xN)EC'?’lexi—O,Zﬂix?=1j.
i=1 i=1

Q¢ is a complex submanifold on C*V (with the usual complex structure): we eliminate
N-1

say &y = 2 &, and compute the gradient of the polynomial ¢ which defines Q¢ :

= N-1 N—1 \2
Py, o ¥y _y) :Zﬂi x?+#N(2xi) — 1.
i=1 i-1

N-1
Vig=2p %+ 2py ) % .
=1

Clearly
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A straightforward calculation shows that the determinant of the homogeneous system

Vip=0, ..., Vy_, ¢ =0 remains always positive, so that (V, ¢, ..., Vy_, @) does
not vanish on {p(»,, ..., ¥y;) = 0}.
We denote

OV x QY = (2 x QF) N RV,

We shall investigate the analyticity properties of 7(k %, ..., £ yy) on the complex
energy shell: (&, #;, ..., yy) € Clx QY x QF.

Due to (0.3), this amounts to an investigation of the regularity properties of
T(py, .- Pr» Qus - - -» Qy; %)- It may be shown [5] that under the assumptions (A),
(B) and (C) and up to an analytic set of codimension 1 in Q¥ xQF, t(k*,,..., kyy)
is the pointwise limit fore | O of T((k + i &) %, ..., (k+ 1 &) yy; (k +  £)?) for real
(®1, -, Yy) €2V x 2V and for k> 0.

Therefore, we shall study T(k &,, ..., kyy; k2) for (%, ..., yy) €V x QVand ke
C. It will turn out that this amplitude is holomorphic in

{Imk >0, Rek =0} U{0 < Imk <9, Rek=0}

for some g > 0 and for almost all (%, ..., yy) € 2V x 2. In other words, we shall
obtain analyticity in the complex energy plane with two cuts along the real E-axis,
from — oo to — p? and from 0 to oc.

This is a (partial) generalisation of previous results for the two- and three-par-
ticle scattering amplitudes [7, 9].

In section I we introduce and discuss briefly a system of coupled linear integral
equations of the 2nd kind for the N-body scattering amplitude: the Faddeev-Yaku-
bovskii (F.Y.) equations. We show the complete continuity of the (N — 1)st iteration
of their kernels and define new amplitudes which will be used in the subsequent
sections.

In section IT we study the iterations of these equations in the framework of per-
turbation theory.

In section III, the full amplitude as solution of the iterated F.Y. equations, is
investigated by means of the Fredholm method.

Some final remarks make up the last section.

1. The Faddeev-Yakubovskii Equations

We first introduce the F.Y. equations [10, 11] for our N-particle system in a
slightly different manner as that of Reference [11]: our amplitudes shall have pre-
scribed connectivity properties from the left as well as from the right hand side (two-
sided amplitudes). They will turn out to be particularly useful for the derivation of
analyticity properties.

For Im z # 0, the resolvents

R(z) = (z— H)7' Ryfz) = (z — Hy)™

of the self-adjoint operators H and H, are bounded operators. The off-energy-shell
scattering amplitude T'(z) (cf. Eq. (0.2)) satisfies the Lippmann-Schwinger equation

T(z) — V + V Rylz) T(2) (1.1)
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(and R(z) = Ry(2) + Ry(2) V' R(z)) which does uniquely characterise H [10], but has
the unconvenient feature that for N > 2, no iteration of its kernel V' Ry(z) is com-
pletely continuous.

For the definition of the F.Y. equations we shall use the notation of [11]. Let
{1, ..., N} be the index set for N particles. A partition of {1, ..., N} into % clusters,
1 < k < N is denoted by a,. Inside each cluster the indices are arranged in the natu-
ral order. Different partitions into £ clusters will be denoted by ay, b, ¢, ... or by
ay, az, ... There is only one partition 4, and one ay. Furthermore, there is a one-to-
one correspondence between the partitions a,_, and the pairs of indices (7, 7), 1 <<

1< £ N
ayo = ({1} {2} o7} oo ).

A partition g, is finer than b, a; C b; (or b; D a,;) if 7 > 7 and if a, is obtained from
b; by further partitioning some of its clusters.
A chain «, is a sequence of partitions

Otk == (ﬂk, Clk+1, ceey a:\-r_l) — (ak, d.k+1) = cas — (ak, ak+1, seey an, an+1)

where a, D a,, ,, R < n N — 2, (ay_y = ay_4)-
For every partition «, a channel Hamiltonian H, is defined by

H=H+V% W= 2 ¥,

any—1Cap

V;k is the sum of all interactions between particles within the different clusters of
a,. Weset 1, =0.

The corresponding resolvents and off-shell scattering amplitudes are R, (2) and
Y;k(z) Obviously, H, = H and H,, = H,.

Let a; be a partition and % > 7. We shall use matrices Aﬁi of type (%, a;) whose
rows and columns are labeled by chains «,, 8, with a4, b, C a;:

Ak = (4a7k%).

In general, the matrix elements AZ:‘ % are linear operators in the Hilbert space H

which are always defined on 4(H,).
Special matrices of type (%, a;) are those of quasi-diagonal form:

B o, ., B
AZi(O) = (A::(O)k = Aa:ﬂ 16 (ay, bk)) (1.2a)
oy, B %, ., B
Azi(n = (Aaik(l)k - Aa::f 2 6(ay, by) (@41, bk+1)) (1.2b)
where
1 for a, = b,
0, b = {O otherwise

(1.2a) can be defined for £ << N — 1 (with the convention that 4), isa1x1 matrix)

aN—1
and (1.2b) for £ << N — 1.
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We define further the “numerical” matrix X 5:‘ by

N-1 N-2

oy, B
Xaf km]]k 1“551]’1)1]1]6 j+1Ca
o
with
1 for b,,,C a,
6(bi+1 & 611-) o {O otherwise

In dealing with matrices of type (%, a;), it is tacitly assumed that the upper index-
chains of A::‘ g vary only over those o, , where a;, b, C a,. Throughout this section
Im z # 0 is assumed and z is often dropped as a variable.
The o,-connected components T:f’ (a, C a;) of any subamplitude T,, are defined
recursively, beginning by ‘
TN =V, +V, R.V,. (1.3)

a; aN_—1 @ a4

The Faddeev equations [10] for 7,¥~" take the form

T“N—l _ T“N—l XS T“Nul R 2 TﬁN—l

a; anN_1 aN_1 a;
by_1FaN—1

1
=2 Tg ™ (L4)
1
EN—-1
and are related to the Lippmann-Schwinger equations for T,, by invertible opera-

tions.
In analogy with the matrices A,”;i of type (%, a;), we shall consider the different

T,Y~* as components of a column vector T3t of type (N — 1, a)).
Then (1.4) can be written in matrix form by defining a 1 x 1 matrix MY’

aN—1
N N1
Mav L TaN_1 (1.5)
and by setting
Qi‘;"l = Mffi;‘ml X;Z_‘l K . (1.6)
We obtain:
T\ -1 _ Tivff) + Q'\ —1 TI\ -1 (17)

AIN_1 _ PEN—1
with T'° o = T“N—l'

The F Y. kernels are defined recursively starting from (1.4), (1.5) and (1.7):

Mgl o P i, b By, by + 3 QML (1)

1
dpCoy_y

We use the convention of summation over all repeatedly occuring indices, the res-
trictions being indicated under the summation sign:in (1.8), 3’ stands for the sum-
dkC_ak__l
mation over all §; with 4, C a,_, (and of course a,_; C a;). Furthermore, we define
Oy 0 Oppqr ¥, Vg O
Qa:: g :ZMa:+1 il 6('2}5’ ck) X ok RO

a;

20
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or in matrix form

k k k
Qaz- = Mai({)) Xal- RU *

Starting with (1.3), we introduce recursively

°‘k 1 Z Q“k By Tﬁk (1.9)
bkcalc x
and
T%-1 _ T%-1

4;{0) U—1
It may be shown as in [11] that for 2<CA<C N — 1, & > 1, the T::“ satisfy the fol-
lowing equations on 4(H,):
Th = Tk + Ok T (1.10)
i 1

and that a solution of (1.10) together with a set of less connected amplitudes T:]f ;
a; C a;, j > k, leads to the resolvent Ra_ by

T ZT"‘k o 2:’ T“kﬂ s, 2 T::i\: 1

g1 *N—-1

Finally, for the full interacting N-particle system:

+ 2042’32 Tﬁz

In order to prepare the proof of the complete continuity of the (N — 1)st iteration
of Qf,z_, we develop a simple graphical interpretation of (1.10).

For square-integrable potentials V, _ and for Re z < 0:

1
H Ry(2) ” < — and H V R,y(2) “ < N

| 2] aN -1 | 2]

, >0
so that i :
lim |7, Ro(2)|| = 0.

Re z——o0 aN—-1

There exists then a constant C > — oo such that for Rez << C:

2”6\1 1<_

aN—1

the series }; [V Ry(z)]" converges uniformly in the Banach algebra of bounded opera-
n=0
tors on H# and we have

T(z) =ZOO'[V Ry V . (1.11)
n=0

Every term V,-1 i, Bo Vigjz Ry ... RV, ; can be represented by a graph ¢ in the
following way:

N horizontal lines correspond to the particles 1, 2, ..., N. To every Vi,, ! verti-
cal line connects the lines for the particles ¢, and 7, starting from the left with V,-l i,
and ending with V; ; [12].
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We shall often denote by the same symbol a graph and its analytical contribution.
Every graph ¢ has a unique sequential connectivity «; = (a;, @;44, . . ., @y_;) from
the left: ay ; = ({1}, ..., {#1 71}, . . ., {N}). If &, § > 4, is the sequential connectivity
of Vi j» - Vi;,and V; ; is the next potential which connects two disjoint clusters
A; and B; in a;, then «; , = (a;_,, @;), where a;_, is obtained from a; by replacing 4;
and B; by their union 4; u B;.

The coarsest partition a; is called the connectivity of the graph §.

T'(z) is the analytic continuation of the sum of all graphs in (1.11) from {Re z << C}
into {Im z # 0}. T:jv—l(z) is similarly the analytic continuation of the sum of all graphs
with sequential connectivity g, satisfying b, C a; or b, = a; and fy_; = oy, (all
these graphs have the same first vertex). The Faddeev equation (1.4) yields thus a
cluster decomposition of T:?"“‘l into a trivial part T:;\Y__ll with connectivity ay_; and
a remainder with higher connectivity.

Similarly, T;:" is the analytic continuation of the sum of all graphs with sequential
connectivity 8, = (b,, ..., b,_4, ), b, C a, or b, = a; (cf. (1.9), (1.10)).

Since 1dentities between Born series as (1.11) have to hold for a large class of
potentials V;; and all z, with Rez < C, C = C(V};), there is in general no cancellation

between different graphs, so that these identities do hold graphically too (private
communication from W. HUNZIKER).

The following identity can then easily be proved:

Tok= TJ R, ' TN

. ak a .
i +1 G i
CN_1¢a,,
PN AN 1 YN—1 EN—1
=T, 1Ry, J} Tu\zR > T R R, ) T
bN—ﬁaN—I CN—1Can_2 Zy 1Ca
CN—1%aN—3 IN_1%0% 41
or, equivalently, upon using (1.1), )1.3):
oy 1 AT Bn_1 EN_1
T“i Ry = Vay_, Ro W"\T 2 Vow1 BoWay - Z Viy_1 Bo W“k
Toy 1y Zy—1Ca
ZN-1%%%41
(1.12)
. Anr 4
with bounded operators W,y —1, ... Wi:’ ! The Wa},\'l are sums of the iden-

tity operator and of products of the type B Rkj and have at most the connecti-
vity a;, 1 > k.
WCN_1 has at most the connectivity a,.

We investigate now the F.Y. kernel Q“Z f2 — 0*2%2 Notice first that

ng,ﬂz ZZIMGS!V:-} (5(.412, 2) 7"3 36([) C 62) [1 — a(bzl 02)] R

= Q5 6(by C ay) [1 — d(ay, b)) - (1.13)



308 F. Riahi H.P. A,

Combining (1.9) and (1.13):

T::II _ Ta2 R 2 TVN 1 ZQM .3> _ Z é::,ﬂg Tﬂ‘; R 2 Tf\ 1

Cny—_1¢ag bgCag Cn—1Cb2
b2=3=a-') C\ 1¢b3
2' Q“‘3 3 TﬁS R, E Tf\ 1 _ Z Q“a L Tﬂs R, 2 T?\ -1
b3Ca2 Cn— 1¥4a3 “ baCag C\ 1% a9

The comparison of the coefficients of TZZIV_I gives:

% ~ g, B3 B
Tuz2 = 2 Qa; 3 Tbi X (1.14)
bgcaz

The identity (1.14) provides a simple graphical characterisation of (T):?ﬁ&
TZ: 1s the sum of all graphs having the sequential connectivity o, and similarly
for T'g“”, while @2‘3'63 is the sum over all graphs which occur in the expansion of T>
3 2 2

with respect to Tf: This expansion is characterised as follows:

To every graph ( in T:: there exists a unique rightmost vertex ., and a sub-
graph @, to its right, such that V, R, @, has the connectivity 4,. Then, the sub-
graph §, possesses the sequential connectivity 8, b3 C a,, ¢y_; € b3. On the left of

¢, there remains a subgraph @, with a sequential connectivity «;, 2 << L < N — 1,

Example: N =5

—1—4

i eacs —
Pty
-
—4
s

% = ({1234} {5}, {123} (4} {5}, {12} {3} {4} {5)) = (4s. @y
ey = {12} {3} 4} {5
Bs = ({134} {2} {5}, {1} {2} (34} (5}, = 5.

If L = 2, then 85 and ¢y, _, are only restricted by by C ay, ¢y F b3, ey C ap. If L > 2,
then one has to require ¢y_; ¢ b3, ¢y, C az and

oy B3 =0 (1.15)

The symbol |__ in (1.15) has the following meaning: for any two chains «; and f,,
B; = vy is defined as y, = (¢, C4uqs - -y Cipp 0y), B < 3, where the
connections ¢;_,, ..., ¢ arise from «; by the successive adjunction of potentials which

together produce the sequential connectivity ;. One can convince oneself that this
definition only depends on «; and f8; and not on the specific way in which f3; is realised.
Conversely, any two graphs @, and §, where (G, has the sequential connectivity

az and V, _ as right-most interaction and G, the sequential connectivity f,, give in
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the form G, R, G, rise to a graph in T:::, provided that c¢y_; & bs,cy_, C @y and (1.15)
is satisfied.
According to the case whether ¢y_; C a;., or cy_; F a;,,, We obtain:

~oa, f o o
Qpy =21 Taf RyV,, ,Ro+2? Ta£+11 Ry V,, R (1.16)
In 21 and X2 the summation is over all ¢y_;, and all &y such that oy L 3 = a,,

cy_1 F by and CN—l C a;. In 22 one hasin addition the restriction ¢y_, ¢ a;,, and the
convention T v By=1.

Using (1.12) and (1.16) we have thus the
Lemma 1.1. —

Qs ~ 33V, . Ry Wy, Vs RyWyy ... Vi; Ro Wy, (1.17)

“9 i1f1 iriL

where 2’3 extends over all sequences | = ((44, 71), . - ., (¢z, 7)) satisfying

(21, 71) L— (23, Jo) L wue L (iL’ 7-L) - 133 = g

and where W;,, ..., WJ . are bounded operators which are finite sums of the iden-
tity operator and of products of the type Vay_1 By W, has at most the connectivity
of (4, 71) I— ... L_ (s 7s)-

We are now prepared to prove the
Theorem 1.1. — For Im z # 0 and square-integrable potentials V

aN— 1
N—1 cxl,oz;N ac, oz oz, G{. fo_l,a_fy
(@A 12 = Z Q’ZQ s L (1.18)

“2 ..,az

1s a Hilbert-Schmidt operator (HS operator):

N N
./gdi*jb,d"jb; 6(“21'1):) (2P1) QZ N 1) (Pl""’P—'V’P]’.P'-:P;v;z)]z<C(Z)

with C(z) < oo
Proof. — We bring first (Q*)"~! into a more convenient form: due to (1.13),

-~ 1 +1
(0?)¥~1! may be expressed in terms of Qaf"atz for which Lemma 1.1 gives an explicit
Ay

representation. Notice that in (1.18) the sum extends over alleo3, . . ., o) ! satisfying
1 g i ' 1 ' N-1 N _ -1
o Lo =0, ..., 0 | ’2+ = Oy sev g Olg | b Oy = Oy

i+1

Let ocL be the minimal left-chain in Q 393 , i.e. let L(¢) be the largest integer such
2

that af ;) | o™ = ab. Then clearly:

o L T =
where s(z) < min {L(7), ¢}.
Furthermore
oy L og™ = og
and from (1.13),

i i1 7
a’L(i) o =0 .
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Therefore

1_ 1 > 1 2 3
o =g Lo =g L _ope Lo

We make the induction assumption that for 1 < kA < N — 1:

s 2 k-1 k
oy = oy L — gy Lo Loty L -
Since obviously
k k k
U | By | oo L Ay = )
and
1 k k k 1
Oy |y g B g e wma | By = 0y
we obtain
1 1 2 k—1 k k
O =) Ly oo O gy L g e g
B | 2 — k k+1
= oy | gy | e L og gy Lo Lol
since a} is trivial, we have finally
11 2 N—
% =Orgy L —Apeg Lo g (m 1 -
Together with Lemma 1.1 this gives the representation
1
2 \7_1 0'.2, Gtz
[(Q? ZIﬁh RoWy Vi RoWpo oo Viy i Ro Wiy (1.19)

with summation over all sequences | = ((¢,, 74), - - ., ({y_1, 7y—1)) Such that

(e ) L G ) T e (B3 P g} = ]

and bounded operators W;, which are again linear combinations of the identity
operator and products V, Rk?, and have at most the connectivity of

(11, 71) L— (22, 72) |— -+ |— (%4, 7) -

Therefore the arguments of [13] are directly applicable to prove the complete con-
tinuity of (1.19).
For later use we now introduce amplitudes with specific sequential connectivities
from the left as well as from the right.
The amplitude
NN-UN-1_ g S b

a; aN—1

+V, RV, —=MN-vN-1
satisfies the Faddeev equations

anN—1AN—1 _ areN—1-BN-1 aN—1:YN—1 pA7YN—1.8N—1
Nai - Nai({)) -+ 4‘: Qai Nai

_ AN*N—1.BN-1 an—1.BN—1 AN—1:AN—1
- Nai(O) + 4‘; Nal. Qai
where

aN—1BN-1
N (O) ];‘le 6(0;1\7——1’ bN—l)
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and
Oa =Ry X; M
in analogy with (1.6).

Let
A0, B B, o
0Py P %
X“z‘ = Xaz_
M“N—I’ﬁz\f—l . MG‘N—lxﬁN—l M“NHBN = T
az- - tli a‘)v_l af\?—'l

and define recursively for 3 < 2 <{ N — 1:

yr%k—1:8k— A7%k+11 8 — 5,8
Mai ! Mak+1 hH 6(“!:: )6(ak I’bk 1 + 2 M * ka *
dkCak 1
with
k—1 Yh—1 prk—1
Qai = RO Xai Mai(()) .
We can then define recursively N**~1"%~1 by raising the left and the right connecti-
1
vity:
g —1-Pp—1 _ % Vi yk’dk —51:"31:
N“i o Z Q“i N“i Q“z‘ )
ceCay_q
Chy_
The amplitudes N :_’"'3’“ satisfy the F.Y. equations
o, B atﬁ % Ve AVE B A7 B g O 04,8,
N Pe — ak(ok__l_Z'Qkkak Nkic_l_ENkakk

a;

By iterating from both sides L times, L = 1, 2, ... we obtain with Q , =0, and Nﬁl
=F '}
NP = N7 P 371 N () (1.20)

The inhomogeneity N 22’32 in (1.20) can be entirely expressed in terms of amplitudes
for subsystems of the N-particle system.

Thus, N**"2 is represented, up to the inhomogeneity, as a sum over two-sided
amplitudes N2 which are “sandwiched” between (for large L) highly connected
kernels (Q;)**"2 and (QF)*>"2.

In conclusion, we remark that the F.Y. equations for subsystems a;, 1 <1 <C
N — 1, enjoy, in the relative momentum Hilbert spaces '-Hai, similar properties as

announced in Lemma 1.1 and Theorem 1.1 for the kernel Q?,l:

Theorem 1.2. -
11,85 %4 2:P;
QaiJrl = Q tif T20(bia Ca;yy) (1 —0(a541, b;41)]
satisfies on ?lai a representation of the type (1.17). For Imz # Oand V, . € L*(R?)

for all ay_, C a,, :
[(Qi-i-l)N—i]"‘i-i-Ivﬁi-f-l
is a HS operator in ‘Hai.

The proof of this theorem is entirely similar to the proof of Theorem 1.1.
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2. Analyticity Properties in Perturbation Theory

The investigation of the analyticity properties of the perturbation series (1.10) is
an important first step before studying the exact amplitude. We shall see in the next
section that for a class of two-body potentials, the exact amplitudes have in the
“physical sheet” the same analyticity properties as those which we shall derive here
for an arbitrary term of the Born series.

A connected graph is called c-connected (¢ positive integer), if it can be decom-
posed into ¢ connected subgraphs by ¢ — 1 vertical cuts (without cutting a potential
line).

The graphs in the Born series may be classified into

(i) disconnected graphs
(1) weakly connected graphs (less than ¢,-connected)

(111) strongly connected graphs (more than ¢,-connected)

The value of ¢, will be precised in the sequel (¢, = 2L in Theorem 2.1).

Due to the momentum-conservation d-functions, disconnected diagrams are only
defined on certain subvarieties in the variables #,, ..., yy. The exact scattering
amplitudes for the corresponding process can be obtained by the convolution pre-
scription from the amplitudes of the subprocesses [12, 14].

Weakly connected amplitudes have rescattering singularities, whose positions
depend in a complicated manner on the configuration of both the initial and final
momenta (cf. [9] for N = 3).

Amplitudes of sufficiently high connectivity have only threshold singularities
at loci which do not couple incoming and outgoing momenta. For their characterisa-

tion, let a; = (a(1), a(2), ..., a(é)) be a partition of {1, ..., N} into ¢ clusters a(v),
1<wv<i Let
Kaly) = 2 Xk Haly) = (2 2 mk)_l-
kea(y) kea(p)

Then
i
Qf;i = {(xl, e, ) € 2V Z:Mu(y) Koy = 1}

is the subvariety of 2V where all the relative momenta within the subsystems
a(1), ..., a(?) vanish. We set
o -2 -y @
ai,i>1 )
and
H,={keC:Imk=0}—{k=il, A=0>0}— {k=0}.

The mapping k£ - E = k% maps the interior of H, biholomorphically onto the com-
plex E-plane with the cuts (— oo, — g%} and [0, + o0).

Using the two-sided amplitudes N “2P2 and (1.20) the strongly connected ampli-
tudes are generated by representing 7'(z) in the form

T=T+ X (@Y™ N> Q" 21)
Otz gorey (52
with a sufficiently large L.
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The main result of this section is contained in

Theorem 2.1. — For two-body potentials of the class (A), (B) and for L Sufﬁcienﬂy
large, there exists a p > 0 such that every term in the perturbation series for 7' — T},
1s

(i) Holder continuous for k € H, and (%, ..., yy) € 2V x Q¥
(ii) holomorphic for 2 € H, and (&, ..., yy) € Q) x Q).

Remark. — A function f: M C C' xQY xQF - C! is called holomorphic in the set
M, if for every point P € M, there exists a neighbourhood U(P) C C! x QF x QX and
a convergent power series fp in the local coordinates of U(P) such that f= fp on
MO U(P). '

The proof of Theorem 2.1 will be given in a series of lemmas. An arbitrary graph
@ contributing to T — T} can be splitted in the form

G = Gi Ry Gy Ry G (2.2)
where G, R, and R, , contribute to (Q%)**® resp. (0%, while , contributes
to N2,

According to the “Feynman rules” [12], § is holomorphic in &, &, ..., ¥y, if in
its Feynman integral the real contour of loop momenta avoids all singularities of the
potentials and free propagators and if the integral converges absolutely with all its
derivatives with respect to %, ¥,, ..., yy.

We first consider (j, in (2.2) and make a provisory choice of the loop momenta
according to the following algorithm, which is closely related to a construction by
P. FEDERBUSH [15]:

LetV, ;, V; V; ; be the sequence of potentials in §, from left to right.

Let kY, ..1,.?,1 ’k?i,%;:é = k,’xi,wlt < 17 << N, be the external momenta on the left of the
graph. Define . Eet iy, B
ky = pyy (g, + )7 (R + R I =i, (2.3)
pi, (g, + )77 (R A+ K I=1y.

Suppose the (i,)st particle line be not connected with any other line before the (7;)st
line (“longest segment”). '

Example:

h

I

Put the first loop momentum s* on this “longest segment’” and define

0 L+ 1,7
57 o= st =1, (longest segment’)

— s b=
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The first intermediate state carries the momenta &} + s}, 1 << ! < N, with

N N
2 k=25=0.
i=1 i=1

Let k7 and s7, 1 <CI <{ N, be chosen for all intermediate states following V,-Q,,-Q,

1 <o <r <t After 1 we introduce

iy 1lr41
kj S T
k;"“l —_— {u’j,,__}_l ({uir+1 + M;l‘r_‘__l)_l (k:r+1 + k;f+]) l: ir_’_l (2.4)
Mir+1 (Mir+1 + Mj,,_i_l)_l (k:r+1 i k;r—F—l) I = jr—i—l
and
S; I+ ir+11 7.r+1
gt = § g I =i, (‘longest segment’) (2.5)
s+ = =4,
again with

. e
YR = 3 st =0,
=1 =1

Lemma 2.1. — The »th energy denominator

N
D=k — 3, (K] + s])2
=1

never vanishes for s1, ..., s € R3, real (x,, ..., %) E.Qf)v and Im %k # 0.
Proof. — According to (2.3, (2.5), the (k)71k;, 1 <! < N, are linear combinations
of #, ..., #y. We set

B =Fkal , 1 <I<N,k=xe%, x>0, @+ nm, ninteger.

Then a simple calculation gives

N N
D, = — x? [1 _Zyl(xl’)2} — D w2+ ImD,-cotgp +i ImD,.  (2.6)
f=1 f=1

Now, either Im D, # 0, in which case the lemma holds trivially, or Im D, =0 and
then D, < 0 for all real s, ..., s", provided that
N
2 ) < 1.

=1

By construction, one has for all# > O and g > r:
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N
Therefore either 3 u,(x])2 << 1 for some # >> 0 and then the same inequality holds
=1

N
for allp > 7, or 3 u,(#7)? = 1 and then also for all 0 < p << 7.
-1
Let a; = (a(1), ..., a(s)), ¢ > 1, be the partition corresponding to

(1o 7)) I (o, fa) L oo L (5, 71)
5
We claim that 3 u;(%])2 = 1, if and only if
-1

Z‘lua(v) xz(y) =21 5 (27)
=1 ~
The condition (2.7) is necessary and sufficient for » = 1, since 3, u; 7 = 1 and
-1
Z‘ P+ M\ i Vg +x)i=1 (28)
I+i1,71 o [ 1\ Miy T Hjy ) “( Miyt My ) ] ! "
1-1

are compatible, if and only if the relative momenta of the (i,)st and (7;)st particles
vanish, that is

which is equivalent to (2.7). N
Assume now that for some 1 < p < 7, the identity 3 u,(f)? = 1 is equivalent

I=1
with the vanishing of all relative momenta within the clusters of the partition b, =
(6(1), ..., b(k)) corresponding to (iy,7y) L ... L (¢,,7,). I T/:Jp+1’ 15,y connects

two particles within the same cluster b(»), 1 < » < %, then evidently &} = &/,

1 <! < N. If, on the other hand V; i connects two particles within different

clusters b(v) # b(»’), then a calculation similar to (2.8) shows that

N N
2 () =3 (%))
=1 =1

is equivalent with the vanishing of the relative momentum of b(v) and b(»’).
From (2.6) one deduces the
Lemma 2.2. — For s, ..., s" € R%, real (%, ...,%y) €2V and Im k s 0, D, can only
vanish for
§]=18,=...=8,=0.

The Holder continuity as announced in Theorem 2.1, will be an immediate conse-
quence of this lemma, by a power counting argument as in [5].

A sequence of potentials Vi@ig’ 1 < p < 7, is called connecting, if (¢y, 7;)1 — ...
|l (4,, 7,) has the connectivity a,.

Lemma 2.3. — There exists a 6 =6 (uy, ..., uy), 0 << d <1, such that for every
connecting sequence of potentials Vigfo’ 1<p <r:

N

D uE)? <o <1,

=1
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Proof. — Let &Y = &, 1 << I <C N and k] = k «] be defined by (2.3) and (2.4). Then
one has

N N
;‘Ml(x;)z —;Mz(x;HP = (Mi,H "+ Mf,H)_l (Mz'H_l x:,.ﬂ = My x;,H)z.
=1 =1
If the sequence J = ((¢3,74), - - -» (¢, 7,)) is connecting, then the quadratic form
r—1
Q@ ..n, y) :oé\:; (M‘“'Q-H £ Mjgﬂ)_l (MiHl ngH — M, e x?9+1)2

is positive definite on 2V. Therefore:
N
121 — Y )= 0%, ..., %) =1—0,(x, ..., %)
i1
for (%, ..., xy) € 2.
It remains to show that

8= max 751(‘”1, B o (2.9)
Jo(%, o xpy) € QN

This follows by complete induction:
We assume that the lemma holds for all subsystems of less than N particles. The
set of all possible sequences J in (2.9) may be then reduced to a finite subset.

First we identify sequences where one and the same potential occurs consecutively
several times, with a sequence with only one of the iterated potential occuring. Next,
we consider those sequences where a subsequence generates a strongly connected
subgraph a; = (a(1), ..., a(i)), without any of its particle lines being connected in-
between to other lines.

Example:

Due to the induction hypothesis and up to an infinitesimal error (provided that
all connectivities are sufficiently high), these sequences lead to the same quadratic
forms ; as a sequence where the relative momenta within a(1), a(2), ..., a(?) are
reduced to zero.

Noting that 2V is a compact 3 (N — 1) — 1 dimensional surface in R*Y, lemma 2.3
is proved by a finite, repeated application of this reduction procedure, since for fixed

given J and as a consequence of the Heine-Borel theorem, max d;(%, ..., &y)
< 1. (xl,.‘. ,xN)
If V; |

iyigy + e Vigj, 18T times connecting, then

N

Dl <o

t=1
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Thus, for highly connected diagrams the translations &; tend to zero. Therefore one
can in sufficiently connected graphs introduce loop momenta s” € R® independent of

the &, ..., ¥y, with D, remaining different from zero for Im & # 0.
Let k7, s; be chosen as before for 1 <{ o < 7 and let (i, 74), - - ., (¢, 7,) be n-fold
connecting with # > ¢o (4y, - .., uy). — Assume that the sequence (7,., J,41)s - - -

(¢,, 7,) 1s connecting. Then we modify the prescription (2.4) in such a way that the
7, 1 <1 < N, vanish identically:

By assumption, there is a connecting subsequence of N — 1 potentials, say (7,,
Joy)s +» s (Boy_ s Toy_y) Within (4,04, 7,04), - - -, (4, 7,). Consider first the corresponding
subgraph. It can be easily seen that one may select the intermediate %), 1 <I<N,
01 < A < py_, to be appropriate partial sums of the &7, such that the ;! 1 <
[ << N, reduce to zero after the complete connection.

Then the remaining potentials of the full original sequence do not give rise to
new closed loops and may be inserted into the subgraph by requiring that all ],
0. <A <gy_y, 1 <I< N, remain unchanged at these new vertices. Momentum
conservation is trivially satisfied at each new vertex.

Throughout this procedure, we choose the s according to (2.5). Clearly, for s > 7:

."V

Z!‘Ll(xf)z < 1

o

and Lemma 2.1 remains valid for this new choice of loop momenta.
Our final choice of the loop momenta will be a combination of these two algo-
rithms. One begins with (2.4), (2.5). If a subsequence of the potentials, V; ; , V.,
e’‘e
..+ Vi 7. generates a subsystem {/,, ..., [} C{l, ..., N} of high connectivity

without any of the particles within {/,, ..., /,} being connected with the remaining
ones between the o”* and the 7'” step, then we procede after V; ; as follows:

kf_l RS i'r’ jt
£
% D) k,’v_1 I =1, (‘longest segment’)
=1 (2.10)
-y E 1=,
i+,
=1

and s; as in (2.5).
If the connectivity of the subgraph is sufficiently high, then the derivations of the

g
k] from the mean value 1/g 3’ ki ' are small, so that the energy denominator D,
r=1 ¥

remains different from zero as in Lemma 2.1.
Furthermore, if the sequence T/;-g PR Vir £ V;H_ egr continues to con-
nect particles from {/;, ..., 7} entirely among themselves and if one proceeds accord-

ing to our second prescription, then after a complete connection the deviations from
the mean cluster momentum vanish and each particle line within this subsystem will

g
carry the momentum 1/g 3’ k; as the only k-dependence.

r=1
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The analogous prescription will be applied to the graph (j, from the right. If the
iteration order L in (2.1) is sufficiently large, then in G, the dependence of the loop
momenta on the external momenta has “died out” and they can be fitted together
through G,.

We note that for each subsystem of less than N particles and for any sequence
of potentials connecting just the particles within this subsystem, only the relative
momentum of the subsystem with respect to the remaining cluster(s) survives. Thus,
we have the

Lemma 2.4. — Using the two prescriptions described above for the choice of loop
momenta from the left in ¢, and similarly from the right in §,, there exists only a
finite number of graphs in 7" — 7; which carry different repartitions of the external
momenta.

We now turn to the analyticity properties of the potentials. The argument of a
potential V; ; , after which the momenta have been chosen according to (2.4), (2.5)

18
1

r—1 | r—1 4
;;;‘f‘ﬂj: (Mir kir — -‘u';f,. k;; ) + Sir - 8§ . (21])
For (x,, ..., xy) € 2V, there exists obviously a & = &(uy, ..., uy) < oo such that
1 r—1 r—1
el LA Al AL AR
for all » — 1, 4,,7,. For real (%, ..., ) €Y and all s!, ..., s € R® the argument

(2.11) lies in the regularity domain of Vi i, provided that
[Imk| <%, k#0. (2.12)

This follows immediately, if one notices that for all real s and ¥ € R® with | & | <{ &
and for all real A with %2 < A, the condition

A+ (Ra+52+0

gives the maximal analyticity strip (2.12).
If our second prescription is used, then the deviations of the relevant &¢ from their
mean cluster value are already sufficiently small (for sufficiently high connectivity),

so that £ may be retained as upper bound for the coefficient of the £-dependent part
of the argument of the potential.

Therefore any graph ¢ in the perturbation series for T — 7; is holomorphic for
ke{0 << Imhk < »/E} and for real (¥, ..., %y, Y1, - .., ¥y) €5 X Q4.
We define

0= "%
If we set

E=6%k, 0<Imk<gcosp, ](pi<%
and “‘rotate” the loop momenta s in G by setting

v -

s =¢%s, seR3 (2.13)
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then all energy denominators D, stay away from zero for real (&, ..., yy) in 25 x
QV. (2.13) reads

At (E7ha+ 6952 0

and remains satisfied for all real § and 4 > »2, provided that

|Im£| < o cosp,

Thus, the Feynman integral over the rotated contour s = ¢'¥ ¢, s € R® defines a
function of % and (,, ..., yy) holomorphic for real (%, ..., yy) in 2§ x 2% and
0 << Im (7' k) < p cosg.

In the non-empty intersection

{0 <Imk <p}0{0 < Im (ke *%) < g cosg}

both analytic functions coincide, since the integrand are uniformly decreasing at
infinity so that the Cauchy formula can be applied.

In this way, we can continue each Feynman integral into the upper &-plane
except for k =14, A > p > 0 and also across the real axis with the origin excluded.
Since

HC | {(,=¢%k, 0 <Imk <pcosgp}
lo| <n/2
this completes the proof of part (ii) of Theorem 2.1. The Hélder continuity in (&, &,
o g W) B H X QN 5 QN follows from the remark after Lemma 2.2.

3. Fredholm Theory

In this section we shall derive for the exact N-particle amplitude 7" — 7 ana-
lyticity properties similar to those announced in Theorem 2.1 for an arbitrary term
of its Born series. The proof proceeds in two steps:

(i) For all purely repulsive holomorphic two-body potentials of short range (assump-
tions (A,) and (B)) a function

kay, oo hay [(T—T) (B | kyy, .o kY (3.1)

can be defined which is holomorphic in (k, #,, ..., yy) €{0 << Im k <C o} x 27 x Q4.
Here one exploits only the analyticity properties of the potentials in order to define
a function holomorphic in the external momenta % &, ..., 2 ¥y. Also the operator-
analyticity of the resolvents R, ( ) outside the spectrum [O oo) of H . will be used.

However, the F.Y. equatlons will be only required for estabhshmg a cluster de-
composition and could be replaced by the WEINBERG equations [12].

(ii) The analytic continuation into H, x 2§ x 2 will rely heavily on the special ana-
lyticity of superpositions of Yukawa potentials, since we shall define resolvents Raj (2)
on rotated contours of the type (2.13).

It will turn out that the uncontrollable singularities in the “unphysical sheet” do
not interfere with the analytic continuation. The absence of spurious solutions [16]
to the F.Y. equations is important in order to control the singularities of R, (z) for
0 < ¢ << #/2 without any further technical assumption beyond (B).
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An infinitesimal analytic continuation of (3.1) into the “unphysical sheet’ across
the right-hand cut in the £2-plane will be possible using the results of K. HEpPp [5],
if there are no bound states for positive energies. This can be controlled by assump-
tion (C).

For the definition of (3.1), we use again the representation (2.1). In the same way
we decompose the amplitudes Taj for subsystems a;, ¢+ > 1, which occur in Q% and

in QF into (lower) iterations of the F.Y. series for T,, and amplitudes Nf:::“’r"“

which are sandwiched between (within «;) highly connected sequences of amplitudes
of finer partitions b; C a,.

After a finite number of steps, all non-perturbative contributions to 7" — 7} will
be sandwiched between sufficiently connected sequences of potentials and ampli-
tudes of subsystems &; C a;.

Then, the dependence on the external momenta % %y, ..., 2 yy, routed through
the diagram as in section 11, is only within the arguments of the potentials and free

resolvents and through the argument z of the Nf:::“’ri“(z). For a, = (a(l), ..., a(i)),

a(v) ={(»1), (»2), ..., (vk)} C{1, ..., N}, let
N:Z:H’THI(IA’H, !ﬁlkl’ vy Pigs e :135;%- Mgy o aiki; 2)

be the kernel of N7t "#1(z) in the Hilbert space H,_ with the center-of-mass move-

ment of the clusters a(1), ..., a(¢) factored out:

2 b= 4=0,1<v <. (3.2)

kea(v) kea(v)

Then the kernel of N §z+ LTi+1(E2) in the N-particle Hilbert space H reads

Pro s Py NGV gy, v, @ = [T 0 (Pay — Q)
y=1

J%+1 Ti+1 Paly) Dali) 9a(y) 9a(i) .
XN;,.+ " (Pll'_"'gl ,-..;pik‘__kz': qu_‘""g*,...,qik._'*”'*,
1 ! i 1 !

i i

A

X B2 =D ot p?,(,,)) (3.3)
v=1

with ¢4y, Paw)» Qaw defined as in (3.2).

The integrations over the loop momenta eliminate the d-functions in (3.3). The
results of section Il guarantee further that in highly connected sandwiches, the
relative momenta

_ DPaly) __ Yali)
Pll kl F R ’Qki ki
are independent of %, &, ..., Yy
Finally, the center-of-mass momenta p,,, g, involve loop momenta s?, ..., s*

and & ,, ..., R yy typically in the form

Do) = k Yo T Satn
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i
where the s, are linear combinations of s!, ..., s’. Therefore, on 2f 2 — 3 p,0
pe=1

a(v)
X Pay never intersects the spectrum [0, oo) of H o, (the free center-of-mass movement

of the clusters a(») has been already factored out):
If Im (k2 —_ 2 Ha) pg(,,)) = 0, then equation (2.6) shows that
y=1

k2 —Ztua(v) pz(v) <0.
=1

The analyticity property of the two-body potentials of class (A,) is sufficient to
prove, as in section II, that the (&, #;, ..., ¥y)-dependence in the arguments of the
v;; always varies within their domain of analyticity. The estimates of [13] guarantee
again the absolute convergence of all integrals and we obtain the

Theorem 3.1. — Unter the assumptions (Ay) and (B), the highly connected N-body
arnplitude{k %, ..., k&g | (T — 1) (k%) | Ry, ..., B yy> is holomorphic in

SO={0<Imk <p}x QY x Q
and Hélder continuous in {0 < Im k < g} x QY x QV.
We now turn to the construction of an analytic continuation
KBy, e, oy | (T2 —TE) (%) | & 3y, w0, BYxD
of (3.1) into
SP=1{0 < Im(ke*?) < pcosp,sgnp Rek > 0} x QF x QF
for 0 << ¢ << /2. We notice that U 5% coincides with H, x QY x QF.

|| <n/2
A function with the required analyticity properties can be constructed, once we

have kernels J\Afffi (Pryy -1 Qix5 %), 1 <IN -1, ﬁfi = Nﬁi“’f"""l’@ defined on
contours
e pLeRY, ..., e7"q, eR® (3.4)
i
in the Hilbert space ?lfi with the Lebesgue measure over (3.4) and the center-of-mass
movements factored out:

> B=XY §4=0, 1L £, (3.5)

lea(v) lea(y)
Let us assume that these kernels exist and are holomorphic for all z within

. {zeC1 — {0}, 29 <argz < 2m} if g =0

{zreC— {0}, O<argz <2 —2¢} if ¢ <0
and that

[IT e Ts (5 - 3 a)

RON I= 1 kea(v) kea(y)
2
< 00

5 N el
NE (B, @5 %) ( — 2 )
=1

with their HS-norm tending to zero for Re z - — co. We have set p? = ¢'? p.
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Ifp, ..., Pxy 91, - -+, Qu is @ 2 N-tuple of 3-vectors satisfying

N N
Z{‘Pf =2'q;=0 : (3.62)
i= i=1

e"f‘f’(p”—p—zﬂ)eRS,e—w(qﬂ ky)eR3 <v<i,1<I<k, (3.6b)

v

Pty = k%o + Suy s %) ERE, Sy = 8,y P ERS (3.6¢)

D oty %oy <1, 0 < Im (e "% k) <gcosp, sgnp Rek >0 (3.6d)
y=1 .

then we claim that

1

7
Pay) 9ali) . 2
(pll all R qiki - ]t:.i ’ K _Ztua(v)Pa(v)>
v=1

is well-defined.
In fact, the relative momenta lie on the rotated contour (3.4). Secondly,

i
— 2 ) P € 2% .
P}
For, assume, for instance, ¢ > 0 and let b ¢ Z°¢
b=fe%, B=0, —2¢ <yp <0

A}

T T
=xe", x>0, 0<9<7—(p (O<(p<m2—~).

& ¢

Then a simple calculation shows that

D=1 — D iy [k 80y + S0 — b= — o [1 — > thay xam}

y=1 P

"‘Zﬂa(v) §2,,) — Bsin(0 — V) <5 gt ImD cotgO + ¢ ImD (3.7)
p=1

never vanishes for (3.6a)—(3.6d) and a similar result holds for 0 > ¢ > — 7/2. There-
fore, the singularities in the “unphysical sheet” CZ% do not interfere with the ana-
lyticity of the kernels N7 in their argument xz.

If we define <k oy, ..., kay | (T9—T9) | ky,, ..., kyy> for (k, %, ..., yy) €5
by the same representation as the one obtained by reducing (2.1), with Nf,::“’riﬂ
9z+1 F+p ¥

replaced by N, and all loop momenta on rotated contours, s e™*? € R3, then
by Theorem 2. 1 this function will have the required analyticity properties.

For ze (] Z*, assumeinadditionthatthekernels NY (pyy, ..., Qix,; ) are holo
0< ¢ <o £ :
morphic in py;, ..., q; ¢, (satisfying (3.5)) in a neighbourhood of the set

U (bue ™ cRiee, e RO

0’ <y
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and satisfy for p,, ..., f]iki eRPand 0 <@ Cpresp. — a2 << <@ <O0:
th.(giw’ Pus s @” ‘;?likJ 2) = N (&% Ppy, -0 s €7 Qix s 2) -
1 1

Thereby, N = N, , is defined by (3.3).
If furthermore the N"’ decrease sufficiently rapidly at infinity, uniformly in
Y P - r €% q; ko then we may again distort the contour of integration without

crossing any singularity of the integrand and obtain
<kxy, ..., kay [(T—T1;) (B | kyy, ..., By
=<k®y, ... hay (TP —TY (B | kyy, oo, By
for (k, xy, ..., yy) € S¥ 0 SO
Since S?N S® £ ¢ for all | ¢ | << 7/2, both functions have a common analytic

continuation into S¥ U S°, _
Thus, we may already formulate the

Theorem 3.2. — Under the assumptions (A) and (B), <k%y, ..., Rxy | (T — T})
(k%) | kyy, ..., Ryy> as defined by Theorem 3.1, has an analytic continuation into
H,x Q¢ x 2 and is Hslder continuous in H,x Q% x Q".

Proof. — As outlined above, we only have to prove the existence of kernels ]\?Zj‘l"”
(P11s - --» q; Ko z) on rotated contours, for z € Z%. The construction proceeds induc-

tively according to an increasing connectivity of the partitions a;, + > 1, of {1, ...,
N} :
We start with some partition a,_, and review well-known results [7, 9] for a
two-particle system.

For definiteness, assume ¢ > O and set V =V, , pu= Hay_y» He = W?

AN—-1
H==H, .
For ze C1 — {0}, argz # 2, p* = ¢? p, q* = €'% q, P, q € R3 the kernel.
0 (p" — q) (2 — i g V)1 & 3.5)

is a HS operator in #? with its HS-norm tending to zero for Re z - — oo. Therefore,
the equation

t‘P(P‘?", qqp; Z) (Z = qZ 2“;0 S (p‘P _ q@) (2 —u qg 627,'(;9)—1

1
Z—p 12 e2i® *(r?%, q7; 2) Py (3.9)
R3

has as solution a HS operator
#(p”, % 2) (2 — p g2 ) (3.10)

holomorphic in z e {argz # 2 ¢, z # 0}, provided (Fredholm alternative) that there
are no L2-solutions f¢ to the homogeneous equation

(07 = [ @r v (p7— 1)

R3

o PO, (3.11)

Z—urte
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Necessary and sufficient for the existence of a square-integrable solution of (3.11) is
the vanishing of the Fredholm determinant D?(z) [18]:

*) =1+ 3 D2

n=1
0 #—10 ..0 0 O
& 0 n2—2..0 0 0

—1)n | 0% 4 0 ...0 0 0O

Dy =% % | (3.12)
On1 On_z Oh_s of 0 1
o ob_, oh_, ...0f of O

where of is the trace of the ¢th iteration of the kernel (3.8). We observe that for
2¢ < argz << 2m and 0 < @' < g, the iterated traces -

e*1% d’p; ¢ @ @ @ @ P
z'/q z_‘upggzz'@“v(Pl — p%) v (p§ — p§) ... v (P} — PY)
3nl” !

are independent of ¢’:
o/ () = 03(2) -

The deformation of the contour does not lead to a contribution at infinity due to the
uniform decrease of the potentials and free propagators at infinity. Moreover, for
Zop<argz<<2m

D%(z) = D%z) + 0

For, a zero of the Fredholm determinant D°z) in Z% would lead to a non-trivial
L2-solution f° of (3.11) and thus to an eigenvector
1°(p)

(p) = L Pk 313)
of the Hamiltonian H° with eigenvalue z € Z%. This is however in contradiction to
the spectrum ¢(H® = [0, 00), which follows from (A), (B).

We remark that (3.10) is even meromorphic in {argz # 2 ¢} [17]. But the singu-
larities in the “‘unphysical sheet”, which are poles in this case, become more and more
complicated for multiparticle systems and it is a lucky circumstance that our process
of analytic continuation does not lead into the “unphysical sheet” at all (cf. Eq. (3.7)).

As a consequence of (3.9), we may write

(p?, q%; 2) (2 — ) q? e2£(p)—1 =0 (p*—q") (z — 1 q? 62i‘p)“1

1

3y o319 @ ® —q°
+'/-d1'e v(p—mr)m v (17 Q)Z”ngzm
R3
+ d3rd3386""’v( w%rfp);tw(rw Sfp-z)m_l__“
p z—pu r?eti? PTT z— st ei®
R6

1
2—p g eiv”

x v(s? — q%) (3.14)
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From this representation it follows that *(p?, q¥; 2) is analytic in p® and gq°,
since

A+ (pP—1)?+0, A+ (s"—q"?

forall r, s e R® and all A > 2, if only | Im p | << x cosg resp. | Im q | < x cosg.
It remains to prove that for 0 < ¢’ < @ and p, q € R®

t(p”, ¢"; %) =7 (p”, 4" 2) . (3.15)

Firstly, for | Im (¢'*=%) p) | << % cosg, | Im (¢!®=%) q) | << % cose, this follows by
using the representation of t%(p%, q¢%; 2) (z — u q* ¢**?)~* by a Fredholm series [18].
Inserting this into (3.14) as in [9], one can apply the Cauchy formula to prove Equa-
tion (3.15).

Here the square-integrability of v(s¥ — ¢%) in s for fixed ¢, uniformly in ¢ and
of v (p? — %) (2 — u r2¢®*?)~! in r are important for the existence of *(r?, s7; 2).
Then (3.15) is proved by analytic continuation.

Finally we remark that since the HS-norm of the kernel (3.8) tends to zero for
Re z > — oo, the Born series for (3.10) converges for sufficiently small Re z and the
HS-norm of (3.10) also tends to zero for Rez > — oo.

We shall now prove inductively similar properties for the kernels N ,’fi R¥ which
we define as solutions of the F.Y. equations for subsystems:

N“’ R¢ = Nz o R? + Q«P N<P R? = N;’ ) R? + N‘?’ R‘”(R"’) 2’1_ RY. (3.16)

We have set:
e _ itle
Qai * Qwi ¥

For all subsubsystems &; C a;, 1 > 4, we assume the existence of kernels N ,“;‘; on
rotated contours with the following properties:

(a) Z\AT?,‘;(Z) R§(z) is a HS operator in the relative momentum Hilbert space #g’j, holo-
morphic for z € Z%, with its HS-norm going to zero for Re z - — oo.
(b) The kernel of 1\?2’1(27) is holomorphic in a complex neighbourhood of the relative
coordinates on the rotated contour (cf. (3.4), (3.5)) and for z € Z°.

For ¢’ > 0 sufficiently small

ij(ﬁll e, (‘ijlf- g5 = Nz;vj_w’(f’n e, ..., ‘i,’zj e 2) (3.17)
and then by analytic continuation, also for all ¢, 0 < ¢’ < ¢. Here, Ngj =N by

with fx?b as defined in (3.3).

(c) The cluster decompos1t1on properties of the N ? are the same as those of N b; ON
the unrotated contour. The N “3 R{ can be represented by a Fredholm series in terms
of amplitudes of subsubsystems ¢, C b,.
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Notice that the 2nd property in (c) entails the first one. Under these assumptions
we shall study the iterated Equations (3.16).

For L > 1, assumption (c) allows for a decomposition and reduction of
(0% (@)1 N2 0a) B (2 (3.18)

into a sum of products of terms with the same structure as those in Theorem 1.2 and
equation (1.17). Assumption (a) and the method of [13] allow then to estimate (3.18)
and prove that it is a HS operator for z € Z% in the relative momentum Hilbert space

e,

Furthermore, the operators

(02 (@)1, (R ()™ (0% (&1 RS (@)

are of HS-class in #Z’i forzeZ?and L 2> N — 1.

Therefore the iterated equations

K—1

(N2 (2) — NTo)()] RE(2) = 3 (07 (&)]" NY (2) RS (2)

. L-1

+ (02 (3%] N2 () — N2 o)(2)] RS (2

have as unique solution a HS operator [Z\Afﬁi(z) - Nfi(o)(z)] R¥(2) analytic in z, for
K > N — 1, provided that the Fredholm determinant D¥%(z) does not vanish.

Again, D¥(z) is made up by traces of iterations of the kernel @fi(z), similar to
(3.12). Every term in the corresponding series involves only expressions containing
amplitudes for finer partitions bj C a,. Due to the induction hypotheses, these ampli-

tudes have a representation by Fredholm series, where the Fredholm determinants
and the iterated traces in the numerators are always identical to those for ¢ = 0.
By further reduction one arrives at sums over perturbation-theoretic expressions
involving potentials and free propagators on rotated contours and Fredholm deter-
minants for subsystems b,, # > 4, which are independent of ¢.
Furthermore, whenever intermediate momenta of “spectator particles” occur in
the argument z of a Fredholm determinant, it will be of the general form

n
2
Z— Z/I’Lb(v) Py
v=1

and will have a real part tending to — co for large pj,, and z € Z°.
n
Due to our assumptions (A), (B), the Fredholm determinants [D;f (z = 3 Uy
—1 n =1
p?m)} are uniformly bounded in this region.

Therefore the asymptotic behaviour of the multiple Feynman integrals are those
of the Born series, in which, due to the known uniform decrease of potentials and
free propagators at infinity, a rotation of contours and the use of the Cauchy formula
are always possible (cf. section IT).
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For z € Z% we obtain thus
Dy(z) = D¥(), 0 < ¢ <o (3.19)

where D%(z) is the Fredholm determinant of the iterated F.Y. equations on the un-
rotated contour.

Due to the spectrum property o(H, ) = [0, o), it may be shown that for every
ze€Z% an integer K > N — ¢ can be found such that D%(z) # 0. For, D(z) = 0
entails [19] that there exists an integer 0 <{ #» << K and an fx € '#ai such that

fK - 6@'(2an)1@ Qai(z) fK .

The spectrum property O'(Hai) = [0, oo) excludes the value n = 0, as in (3.13). If
D¥%(z) = 0 for all K > N — 4, then one could construct infinitely many different
eigenvalues of Qai(z) on the unit circle. This hovewer, is in contradiction with the
compactness of [Qai(z)]N % in ?lai.

Thus, for every compact set in Z? there exists a finite open covering {U%} such
that Di(z) # O for z € UX. For Re z negative and sufficiently small, the Neumann
series converges. Therefore the HS-norm of ﬁﬁi(z) R{(z) tends to zero for Rez -~
— o0,

This finishes the induction step for the assumption (a) for a; itself. Assumption (c)
follows either by analytic continuation in z from the convergent Born series in
Rez << — C, C > 0, sufficiently large or from the Fredholm series for Z(TZi(z) R{(2).

The analyticity of K‘*,‘fi (P11, - - -» ik, #) in the external momenta can be exhibited
by a representation as in equation (1.20). If L > N — 7 and if one selects loop mo-
menta according to the “longest segment” rule of section II, then the dependence
on the external momenta will be only contained in the arguments z of the amplitudes

for subprocesses and in the free propagators. This proves then the first part of (b).
The equality (3.17) follows most easily by using the representation of N7 by the

Fredholm series, sandwiched between [@;’i (2)Y~* and [Q—g’i(z)]N A,
Theorem 1.2 and the representations similar to (1.19) exhibit clearly by induction
that

Prs--s Py |Vijj, RoWpy o W, RoWyo @i,

IN-1IN—1
is for fixed p,, ..., py square-integrable in q;, ..., qy:
Namely <py, ..., py | Viyj; Rol @u» - - -» @y> is square-integrable in the relative

g-momentum (u; + w; )" (s, ¢;; — py, q;,) for fixed relative p-momentum. This

property remains valid after application of the bounded operator W}, (which ope-

rates in the Hilbert space :u(iml))' Assume that

Py, P |V

i o Wiy oo Vikfk RyWinl 4y, -, @y
1ssquare-integrablein the relative g-momenta in the Hilbert space ?lat, dy= (5, 04) L—
. l— (2, 7,) for fixed relative p-momenta.
Multiplying with <q,, ..., qy | Vik+1fk+1 Ry1q, ..., qy> and integrating over

q;, - .., qy (after elimination of the momentum-conservation é-functions this amounts
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to an ordinary product), one obtains a square-integrable function in the relative q’-
momenta in the Hilbert space ?lam With g == () Lo aws lees e Tppals 10F
fixed relative p-momenta.

This again remains valid after the application of the bounded operator Wj, .,
which operates in #, .

Similarly, the sandwiching kernels are square-integrable in their respective “in-
ternal’” momenta for fixed external momenta, with L2-norms which depend conti-
nuously on ¢.

Reduction as in the proof of (3.19) and using the relative, uniform, absolute con-

vergence of the Fredholm series [18] for N fi(z) R{(z) lead to (3.17) by a simple inspec-
tion of the individual terms.
This completes the proof of Theorem 3.2.

4. Conclusions

The initial objective of this investigation was to lay a foundation to a systematic
and mathematically rigorous derivation of analyticity properties for the N-body
scattering amplitudes in non-relativistic quantum mechanics. It has turned out that
our results give rise to more questions than to definite answers.

We have concentrated on the analyticity properties of the “true’” N-body scat-
tering amplitude 7 — T;. The sum 7} of the first few iterations of the F.Y. equa-
tions is known from the solutions of the lower-body problems. For (%, %, ..., ¥y) €
H,x QN % OV, the singularities of these terms are expected to be confined to a finite
number of Landau varieties, since the highly connected remainders of lower-body
amplitudes T, in 7 have again only threshold singularities and since therefore

effectively, only a finite number of diagrams are relevant.

Let (QV x %)y be the complement in Q¥ x 2V of finitely many Landau varieties.
Then the complete N-body amplitude is expected to be holomorphic for (%, %, ...,
Yu) € H, X (28 X QV) 1.

However, a more detailed elucidation of the nature of these physical region sin-
gularities should be possible and is of interest, e.g. for cluster properties of the S-
matric.

Analyticity of T — T in the cut E-plane is only the first step in the proof of
dispersion relations for the N-body scattering amplitude. Up to now, a complete
and rigorous proof of dispersion relations has been given only for the two-body
scattering amplitude [7]. The behaviour of the amplitude at infinity in complex
directions and on the right-hand cut appears fairly well controllable (although tedious
estimates and angular integrations are involved [9]). Yet, no results, neither on the
existence of boundary values nor on the asymptotic behaviour along the lefthand
cut have been obtained.

Another necessary extension of the present results will lie in the inclusion of
multiparticle bound states. The results of [9] make already clear that future “dyna-
mical” calculations for the non-relativistic N-body problem will probably not be
made on the basis of dispersion relations, but by attacking directly the F.Y. equa-
tions.
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