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On the Analyticity Properties of the 2V-Body Scattering Amplitude
in Non-Relativistic Quantum Mechanics

by F. Riahi1)
Seminar für theoretische Physik, ETH, Zürich

(4. VI. 68)

Abstract. We consider the scattering of iV non-relativistic, spinless, distinguishable particles
interacting via two-body superpositions of Yukawa potentials. The on-energy-shell amplitude is
studied as a function of the total center-of-mass kinetic energy E and for physical values of the
'angular' variables *,- (1/A) p{, y{ (1/A) qt, 1 < i < N, k2 E, where px, pN and
qx, tjy are the initial, respectively the final momenta.

It is shown that this amplitude is the boundary value of a function analytic in the energy E
in a complex plane cut from — oo to — q2 for some g > 0 and from 0 to -I- oo and in all variables
(xx, yn) in a neighbourhood of their physical values, up to an algebraic set of codimension 1.

0. Introduction
The exploitation of the analyticity properties of collision amplitudes, Green's

functions and vacuum expectation values in relativistic quantum mechanics has been

proved to be an important tool for a qualitative understanding of subatomic
processes, as well as for the development of certain quantitative approximation procedures.

Although some rigorous results have been already obtained for the simplest
collision processes [1], it appears that a further analysis of the more important multi-
particle scattering amplitudes encounters considerable difficulties. This motivates
the investigation of the non-relativistic iV-body problem, since there, rigorous
solutions can be shown to exist. It is then hoped that some insight may be gained in the
many-particle structure of the S-matrix. It turns out again, that satisfactory
analyticity properties can be expected only for an appropriate choice of variables.

Our aim is to show that for certain multiparticle processes, the analytic structure
of the exact iV-body scattering amplitude in the "physical sheet" is the same as that
predicted by the perturbation theory.

In customary notation, the Af-particle Hamiltonian with two-body forces

H H0+V H0+ Z VU
1<i<j <N

will be defined in the total center-of-mass frame, as an operator in the Hilbert space

^ LURw-i)) LPl,...,pv), \\ip\\ =fd*px... d*psò[zp)j \ip\2<™
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with
V »

(HoW) (px, ...,pN) =2Jr^r-w(Pi Pn)
t=l l

(V{jW)(Pi,---,Pn)

=fd>qv{j(*^-q)f(px,...,^»+q,...,l^»-q,...,PN).
We shall always assume that the y are real.

Theorem 0.1 (T. Rato [2]). - For any *', /, 1 <*'</< N, let

y.(.)eL2(R3) + L~(R3).

Then A(VA D A(H0) and for any a > 0, there exists a b < oo such that

\\vuW\\ <a\\Hof\\ +6lvll
for all y e Zi (//„). The sum H0 + F is self-adjoint on A (H0) (and bounded from below).

In the sequel we shall restrict ourselves to square-integrable two-body potentials.
Under this assumption, it may be shown [3] that the M0ller operators

out
Qln s - lim e'Ht e-'H°'

J-S. + 00

exist and allow for the definition of an isometric S-matrix

S: Q^'U^Q^'il
by

S: ßout <t> -> ßin c/>

for all ^ e "U.

We shall further limit ourselves to a class of short range potentials which decrease

sufficiently rapidly in configuration space. More specifically, we assume :

(A0) For any i, j, 1 < i < j < N, vu(p) is holomorphic in

{p e C3: | Imp | < x)
for some x, 0 < k < D.

For any e > 0, there exist 0(e) > 3/2 and C(e) < oo such that

K(p)\^c(s)(i + \p\)-e^
uniformly in

{p e C3: | Imp | < x — e}

In order to avoid multichannel situations, we assume the potentials to be purely
repulsive :

(B) For any i, j, 1 < i < / < N,
X ¦ V V;j(x) < 0

where v„ is the Fourier transform of vi; :
ij o

~vtj(x)= fdspe-'P-'v^p).
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Assumptions (A0) and (B) and the virial theorem allow then to prove [4] that the
spectrum a(H) of H lies in [0, oo).

Under assumptions (A0) and (B) some interesting analyticity properties can be

proved for the kernel of the S-matrix (cf. Theorem 3.1). More satisfactory however,
is the restriction to superpositions of Yukawa potentials. For simplicity, we consider
the class

(A) For any i, /, K i < j < N,

Vij(p)
+ 00

¦/"
— OO

döij(X)
X+p*

where datj is ;a real measure on R1 satisfying

+ 00

{Xd\ °iM)| <oo

and with
— 00

supp dO;j C [x2, oc') * >o.
Then vtj(p) is square- integrable, due to

Vij\(P)\<x: i
'¦+p*

+ 00

J d\a,uW\

(0.1a)

(0.1b)

and holomorphic inF {peC3: p2^[x2,oo)}.

Due to (0.1a), (0.1b), x ¦ V v{J(x) is well-defined.
We note that the assumption (A) may be generalised to include non-spherically
symmetric superpositions of Yukawa potentials as well as potentials which merely
possess the analyticity and growth properties of Yukawa potentials.

The requirements (A0), (B) exclude discrete negative eigenvalues of the Hamiltonian

H. It may be shown [5] that the following assumption is sufficient for the
control of the discrete spectrum of H in the continuous part [0, oo) of its spectrum :

(C) For any i,j, 1 <»'<)' < N, let ty(#) be C00 for x =£ 0. There exists an a, 0 <
a < 1, such that for any i, j:

x • Vv;j(x) < -avh.(x)
Under (A), (B), (C) the S-matrix is unitary [5] :

ßout •U LJnïl='U, S S* S* S 1

We shall explore certain analytic properties of the iV-body scattering amplitude t
defined by

<px, pN | S | qx, qN> - <px, pN | qx, qN>

4Èpì -Zi) 4ÉpìPì-Zpì i2) T(Pi' ¦•••Pif fc—. s.v) ¦

\t"-l i-l j \i-l i-I /
We have set ptl 1/2 mt, 1 < i < N.
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In fact, the kernel of the S-matrix is primarily defined in the sense of distributions

and then extended by continuity to a functional on L2(R3X) xL2(R3A), which is
antilinear in the first factor and linear in the second.

The general time-independent scattering theory [6] gives r(px, qN) as boundary

value in the sense of distributions of the kernel of the TV-body T-operator. Let
Im z # 0 and

R(z) (z - H)-1

be the resolvent of the Hamiltonian H. The T-operator is connected to R(z) via

T(z) V + V R(z) V (0.2)
and to the S-matrix by

\imfd*px... d*qN 6 (Zp) ò (È*) 0(Èpì PÌ -Zh <*?

x <P*(Pi, — .Pn) V(9i- ••• .9.v) T(px,...,pN, qx, qN; Z'Pi PÌ + * *)
t-i

=fd*px d*qN Ö (gp] ô (fq^ Ô^Zpii p2 - JAh q2

x cp*(px, ,px) ip(qx,... qN) x(px,... ,pN,qx,... qN) (0.3)

torcp, ipeD(RSN).
We shall always work in the center-of-mass frame and on the energy shell where

N X N N

Zpi 27 9* °. Zpì pi=Zpì <£
i— 1 i -= 1 i 1 i - 1

and introduce the variables

E k*=ZPiPl, k^O
i-l

pt kxt, qt ky,, 1 < i < N
with

V A* N N

*i. y< eR3,Zxi== Zy- ° • Zpi *t Zpì fi l-
i-\ i=i i=i 1=1

Let

&c=\(xx,...,xN)eC",Zxi 0,ZPi% x\
{ i-l i l J

Qc is a complex submanifold on C3*v (with the usual complex structure) : we eliminate
N-1

say xN 27 xi and compute the gradient of the polynomial <p which defines Qç :

i l
N-1 /N-1 \2

<P(XX, Xy_x) JJpli X2 + ptN(ZXi) -1-
i-l \i-X /

Clearly
N-1

Vicp 2piixi + 2piNZxj-
i-l
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A straightforward calculation shows that the determinant of the homogeneous system
Vx cp 0, VN_X cp 0 remains always positive, so that (Vx cp, VN_x cp) does

not vanish on {cp(xx, xN__x) 0}.
We denote

Qff ^ qN ^ ^ Q^ ^ R6A,
^

We shall investigate the analyticity properties of r(k xx, k yN) on the complex
energy shell : (k, xx, yN) eC'x Qq X ®c ¦

Due to (0.3), this amounts to an investigation of the regularity properties of
T(px, pN, qx, qN; z). It may be shown [5] that under the assumptions (A),
(B) and (C) and up to an analytic set of codimension 1 inQ* XÜq, t(k xx,..., kyN)
is the pointwise limit for e \ 0 of T((k + i e) xt, (k + i e) yN; (k + i e)2) for real
(*1( yN) e ÜN x ÛN and for k > 0.

Therefore, we shall study T(k xx, kyN; k2) for (xx, yN) eûNx QN and k e
C1. It will turn out that this amplitude is holomorphic in

{Im k > 0, Re k + 0} U {0 < Im k < o, Re k 0}

for some q > 0 and for almost all (xx, ..,yN) eQNX QN. In other words, we shall
obtain analyticity in the complex energy plane with two cuts along the real £-axi3,
from — oo to — q2 and from 0 to oo.

This is a (partial) generalisation of previous results for the two- and three-particle

scattering amplitudes [7, 9].
In section I we introduce and discuss briefly a system of coupled linear integral

equations of the 2nd kind for the /V-body scattering amplitude : the Faddeev-Yaku-
bovskii (F.Y.) equations. We show the complete continuity of the (N — l)st iteration
of their kernels and define new amplitudes which will be used in the subsequent
sections.

In section II we study the iterations of these equations in the framework of
perturbation theory.

In section III, the full amplitude as solution of the iterated F.Y. equations, is

investigated by means of the Fredholm method.
Some final remarks make up the last section.

1. The Faddeev-Yakubovskii Equations

We first introduce the F.Y. equations [10, 11] for our .Y-particle system in a

slightly different manner as that of Reference [11] : our amplitudes shall have
prescribed connectivity properties from the left as well as from the right hand side (two-
sided amplitudes). They will turn out to be particularly useful for the derivation of

analyticity properties.
For Im z ^ 0, the resolvents

R(z) (z-H)-1 R0(z) (z - HA-1

of the self-adjoint operators H and H0 are bounded operators. The off-energy-shell
scattering amplitude T(z) (cf. Eq. (0.2)) satisfies the Lippmann-Schwinger equation

T(z) V+V R0(z) T(z) (1.1)
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(and R(z) R0(z) + R0(z) V R(z)) which does uniquely characterise H [10], but has
the unconvenient feature that for N > 2, no iteration of its kernel V R0(z) is
completely continuous.

For the definition of the F.Y. equations we shall use the notation of [11]. Let
{1, TV} be the index set for N particles. A partition of {1, iV} into k clusters,
1 < k < N is denoted by ak. Inside each cluster the indices are arranged in the natural

order. Different partitions into k clusters will be denoted by ak, bk, ch, or by
a\, a\, There is only one partition ax and one aN. Furthermore, there is a one-to-
one correspondence between the partitions aN_x and the pairs of indices (i, j), 1 <
i <j < N:

aN_x=({l}{2}...{i,j}...{N}).
A partition al is finer than bjt a, C b, (or 6- D aA if i > / and if at is obtained from
b, by further partitioning some of its clusters.

A chain ak is a sequence of partitions

**= (ak,ak + i>--- ,ax-i) K.«*+i) ¦¦• (ak,ak + 1, ...,«„, a„+1)

where «,D«„tl,K«<A'-2, («iv-i - %-i)-
For every partition ak a channel Hamiltonian Ha is defined by

\-H0+vak v^ Z KN_X
aN-lC"k

Va is the sum of all interactions between particles within the different clusters of
ak*WesetVaN 0.

The corresponding resolvents and off-shell scattering amplitudes are Ra (z) and

Tak(z). Obviously, HH H and H^ H0.

Let «j be a partition and k > i. We shall use matrices A\. of type (k, aj) whose

rows and columns are labeled by chains cak, ßk with ak, bk C oti :

Kr^ri-
In general, the matrix elements A*k' k are linear operators in the Hilbert space "H

which are always defined on A (H0).
Special matrices of type (k, a{) are those of quasi-diagonal form :

y _ 4"-ic-ßk _ Aak+rßk+i
Sl„ ln\ — 1^1« ini — ^l/.„,(«)- y»,io, -y à(ak,bk)) (1.2a)

ak+r
where

<.<i> (*".$ All^ß^ ô(ak, bk) Ô(ak+X, bk+x)) (1.2b)

\' f°r ak bk
à(ak,bk) \n * *

v k *' }0 otherwise

(1.2 a) can be defined for k < N — 1 (with the convention that A„ is a 1 x 1 matrix)
and (1.2b) for k < N - 1.
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We define further the "numerical" matrix Af. by

Kfk n\y - d(aj, bj)] fjô(bJ+x C «,)

with

m r- \ \' for hi + l C ai
^¦-Ca^(o otherwise •

In dealing with matrices of type (k, aj), it is tacitly assumed that the upper index-
chains of A*k' k vary only over those xk, ßk where ak,bkC at. Throughout this section

Im z =£ 0 is assumed and z is often dropped as a variable.
The o^-connected components J"*, (ak C a A of any subamplitude Ta. are defined

recursively, beginning by
TaN-i v + V R V (13)±ai Vl+ Vl "i ».'

^ ;

The Faddeev equations [10] for r"AT_1 take the form

yA*-i _ T-aiv-i TaN—i p y 7^>
«,• "N-1 aN-l ° ^ aj

<>iV-l*<*AT-l

ftv-i

\-ZTZ-1 (L4)
«A7_l

and are related to the Lippmann-Schwinger equations for Ta, by invertible operations.

In analogy with the matrices Aha, of type (k, a,-), we shall consider the different

j-<*n-i as components of a column vector T^r1 of type (AT — 1, a2).

Then (1.4) can be written in matrix form by defining a 1 xl matrix M^N__i

M* T**-1 (1.5)
i*N— 1 aX—l

and by setting
nN-i _ „e^M^^-'fi,. (1.6)

We obtain :

rpN—l rpN—l s}N—l 7^Ar—1 I-l 7\
"> _ aj(°) ^"j *< " '

with ä1 r^-1.
The F.Y. kernels are defined recursively starting from (1.4), (1.5) and (1.7):

M^-x MH+vßk+x ÓK) y ÔKi; ^_i} + 27 0."*'** M^* (1.8)
^Ca*-1

We use the convention of summation over all repeatedly occuring indices, the
restrictions being indicated under the summation sign : in (1.8), £ stands for the sum-

rf*o*-i
mation over all òk with dk C ctk_x (and of course ak_x C «,)• Furthermore, we define

Q:fk=Z<t+vVk+'à(ak, ck) Xlfx R0
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or in matrix form 1,1.1QÎ^M^X^R».
Starting with (1.3), we introduce recursively

TlTl= Z QlfkTÌ) (1-9)
bkA-ak-r

and
T k-i T k-i1

«,-(0) - x
ak_x ¦

It may be shown as in [11] that for 2 < k < N — 1, k > i, the T*k satisfy the

following equations on A (H0) :

n=Km+qx tx (i.io)

and that a solution of (1.10) together with a set of less connected amplitudes TJ,
ctj C a{, / > k, leads to the resolvent Ra. by

j- _ y Ta* 1 y fH+r 1 4- V TaAr_1
-•o,- Zj x

nt
^~ Zj "k+1

~ •••~ Zj "n-1
H "k+r aN-i

Rat -^0 + Ä0 ^ Ä0 •

Finally, for the full interacting A-particle system :

Ta'2 T*2 4- Vo"2''2 T^2

In order to prepare the proof of the complete continuity of the (N — l)st iteration
of Ql., we develop a simple graphical interpretation of (1.10).

For square-integrable potentials V and for Re z < 0:

|| R0(z) I < --L and || VaNi R0(z) ||< -^, y > 0

so that
AJlm-J!^.v-i*o(*)l=0.

There exists then a constant C > — 00 such that for Re z < C :

Z\\V«n-iRo(z)\\<T
"N-1

00

the series £ [V R0(A]n converges uniformly in the Banach algebra of bounded opera-
» o

tors on ?/ and we have „00

T(z)=^[VR0(z)]"V. (1.11)
n-Cs

Every term V{ j R0 Vis>j R0 R0 Vt j can be represented by a graph Q in the

following way :

TV horizontal lines correspond to the particles 1,2, N. To every V{ j a vertical

line connects the lines for the particles iv and /„, starting from the left with V; j
and ending with V, [12].
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We shall often denote by the same symbol a graph and its analytical contribution.
Every graph Q has a unique sequential connectivity rxf (a{, ai+x, aN_x) from
the left : aN_x ({1}, .,{ix jx}, {N}). If «-, / > i, is the sequential connectivity
of Vj j Vf j and Vt • is the next potential which connects two disjoint clusters

Aj and Bj in ajt then Xj_x (aj_x, a.-), where a-_x is obtained from «. by replacing ^
and Z?^ by their union .4 ¦ u Bj.

The coarsest partition a, is called the connectivity of the graph Q.

T(z) is the analytic continuation of the sum of all graphs in (1.11) from {Re z < C}

into {Im z # 0}. r";Y_1 (2) is similarly the analytic continuation of the sum of all graphs
with sequential connectivity ßk satisfying bk C at or bk at and ßN_x txN_x (all
these graphs have the same first vertex). The Faddeev equation (1.4) yields thus a

cluster decomposition of I"";"1"1 into a trivial part T^'1 with connectivity ot.N_x and

a remainder with higher connectivity.
Similarly, T*k is the analytic continuation of the sum of all graphs with sequential

connectivity ßn (bn, ..,bk_x, a,), b„ C a, or b, a, (cf. (1.9), (1.10)).

Since identities between Born series as (1.11) have to hold for a large class of
potentials VtJ and all z, with Re z < C,C C(V( •), there is in general no cancellation
between different graphs, so that these identities do hold graphically too (private
communication from W. Hunziker).

The following identity can then easily be proved :

Ta* — Ta*+i p V TCN-1

cN_rCk
cN-r*ak+r

_ t"N-1 r> V"" t%-1 d V Ty'V-l J3 p V <r?V-l-ImN-i1(0 Zj 2aN_2R0 Zj Vv_8#0 •••«<) Z ^,
*iV-l*«V-l Cy_1C«A'-2 Z.V lOfc

CJV-l*aJV—3 2iV-l*a*+ l

or, equivalently, upon using (1.1), )1.3):

?::*«=K-ir»wTnZ\ z vbN-iR»K~-i- z ^ *.*£-*
hN-l*aN-l Z.V-lC«A

z.V-l*a* + l
(1.12)

with bounded operators JT^fy1, WaN~L. The FFaA_1 are sums of the iden-

-1 "jtity operator and of products of the type Vf Rh_ and have at most the connectivity

Uj, j > k.

WAj'1 has at most the connectivity at.

We investigate now the F.Y. kernel Ç*2'^2 Q*2^2. Notice first that

Ç-** gM%r3 OK, c2) Alf3 3(6, C c2) [1 - a(h, c2)] R0

Q%,ßso(bsCa2)lA-o(a%,b2)]. (1.13)
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Combining (1.9) and (1.13):

«1
Cjy_l*<»2

^2 'T1'

"1 Zf y«2 i "3 ^0
63C«2
è-2=J=a9

Z T-

C,y_!C*2
C.V-l*^

•W-l
1

Z c63C«2

*o 27 r*-> 2: e«S-ft) ^8
63c<»2

(»2*«2)

i2 Ro Z i.yN-i
CN—1*"2

The comparison of the coefficients of T^A_1 gives:

-T^2
a2

^ 27 ^
63Ca2

«3,03 T/%
J63. (1.14)

a:i"The identity (1.14) provides a simple graphical characterisation of Ça;

T 2 is the sum of all graphs having the sequential connectivity a2 and similarly
for T63, while Q*s' 3 is the sum over all graphs which occur in the expansion of 7""2

with respect to Tb3. This expansion is characterised as follows :

To every graph Q in Ta2 there exists a unique rightmost vertex Vc and a

subgraph Qr to its right, such that V R0 Qr has the connectivity a2. Then, the
subgraph Qr possesses the sequential connectivity ß3, b3 C a2, cN_x <£ ba. On the left of
Qr there remains a subgraph Q, with a sequential connectivity cll, 2 < L < N — 1.

Example: N 5

a2 ({1234} {5}, {123} {4} {5}, {12} {3} {4} {5}) («2, a3)

%-i - {12} {3} {4} {5}

ßa ({134} {2} {5}, {1} {2} {34} {5}), a, a3

If L 2, then /?3 and cN_x are only restricted by 63 C ct2, ca--i 4- ^3> cAr-i C «2- ItL>2,
then one has to require civ_1 <£ 63, Cy_! C «t and

I— Ä, (1.15)

The symbol I in (1.15) has the following meaning: for any two chains a,- and ßJt

the chain xt I ßj yk is defined as yk (ck, ck+x, c{_x, a;), k < *', where the
connections c{_x, ck arise from a,- by the successive adjunction of potentials which
together produce the sequential connectivity ß,. One can convince oneself that this
definition only depends on a,- and ß, and not on the specific way in which ßj is realised.

Conversely, any two graphs Qx and Q2 where Qx has the sequential connectivity
or, and Ve as right-most interaction and Q2 the sequential connectivity/^, give in
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the form Qx R0 Q2 rise to a graph in T"2, provided that cN_x <t 63, cN_x C aLand (1.15)

is satisfied.
According to the case whether cN_x C aL+x or cN_x <£ aL+x, we obtain:

Ç;3'"3 I1 Til R» V*N-r Ro + E% T*LL+~l Ro V°N-l R° (1A6)

In E1 and 272 the summation is over all cN_x and all a.L such that txL I ß3 a2,

cN_x 41 63 and cN_x C aL. In E2 one has in addition the restriction cN_x <£ aL+x and the

convention T*N R0 1.

Using (1.12) and (1.16) we have thus the
Lemma 1.1. -

Qaaf3 ^ Vhh R0 WJX Vi2h R0 WJ2... VtLJL R0 WJL (1.17)

where E3 extends over all sequences / ((ix, jx), (iL, jL)) satisfying

(ix, jx) I— (i2, h) I— I— (iL, jL) I & <*2

and where WJX, WJL are bounded operators which are finite sums of the identity

operator and of products of the type Vd R WJk has at most the connectivity
of (ix, /i) I I— (ik, jk).

We are now prepared to prove the
Theorem 1.1. - For Im z ^ 0 and square-integrable potentials Va :

IN 12 2 3 AT—1 N
r/£)2\Ar-l-ja2'a2 _ y /Ja2,a2 (na2'a2 £)*2 'ai n 28)

2 -V— 1
a2 «2

is a Hilbert-Schmidt operator (HS operator):

jfld'Pi d*Pl 4Zp) ô(Z/) BQ2)f~Th" (Pi.-,Pn,P'i.-,P'n,')I2 < C(z)

with C(z) < oo.
Proof. - We bring first (Ç2)^"1 into a more convenient form: due to (1.13),

~ i i+1
(Q2)N~X may be expressed in terms of Ç"3'"2 for which Lemma 1.1 gives an explicit

representation. Notice that in (1.18) the sum extends over alloc2,, af"1 satisfying

oi, I a2 ai,...,4 | 4+1 aÌ,...,af-1 |__ af af"1.
>. i ai+lLet aî(i) be the minimal left-chain in Q f s i.e. let L(i) be the largest integer such

a2

that a^(,-) I a3+1 a2. Then clearly:

where s(i) < rain {L(i), i}.
Furthermore

and from (1.13),

i i i-\-X i
<*-L(i)

I a *s(i)

1 i i-rl 1
aLW I— <4+ a2

.a2+1 ai.
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Therefore
aî 4(1) i— 4 «lai i— 4(2) i— «s •

We make the induction assumption that for 1 < k < N — 1 :

4 4(1) i— 4(2) i— • • • i— 4t*1-u i— 4 •

Since obviously

4l_4-il—••• L_ <*) <*)
and

we obtain
4 I— 4-1 I— 4-2 I— • • •

I 4»<*)

4 4(d i— 4(2) i— • • • i— 4(*-i) i— 4-11— • • • i— <s)
1 2 i i A—1 i k i k-\-\~ aL(l) I aL(2) I • • • I aL(*-l) I a£(A) I aA + l

since a$ is trivial, we have finally

al ai(l) I aL(2) I
• • • I aL(AT-l) '

Together with Lemma 1.1 this gives the representation

\mN-^=Zvhh Ro Wn VHh R° WJ*- W. Ro Wj»-1 <L19)

with summation over all sequences / ((ix, jx), (iN_x, Jn-i)) sucn that

(ix, /i) I— (t'j, /a) I— I— (iN-i, Ìn-Ì) <*l

and bounded operators WJk which are again linear combinations of the identity
operator and products Vd Rk. and have at most the connectivity of

(ix, h) I— (t'„ j2) I— I— (ik, jk)

Therefore the arguments of [13] are directly applicable to prove the complete
continuity of (1.19).

For later use we now introduce amplitudes with specific sequential connectivities
from the left as well as from the right.

The amplitude

N«N-l.ßN-l y ô(a b )+y R y M«N-l.ßN-l
"i aN-l V N-l' N-V aN-l "i bN-l ai

satisfies the Faddeev equations

ATaA'-l.%-l _ -kt-IN-I'Pn-I SP ff-N-l'VN-1 -ajYN-I'Pn-1

^«JV-1.%-1 V1 ATaN-l,0N-l nôN-l'0N-l

where

AT^.V-l.fA^l y T*jaN—l,PN—l cfK

n«n-i-Pn~i _ -p ./ h \
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and

in analogy with (1.6).
Let

Xak^k _ xßk'*k
i i

âfis-1'to-i M«N-i,ßN-i M"N'ßN T
x"i "i "N-1 "-1

and define recursively for 3 < k < N — 1 :

AC-i-'*-» ÂÇ+fft+i OK, 6,) «(a,.,. 6,_x) + 27 <*'** ^T*
with

Qtj^RoX^M^.
We can then define recursively Af"?-1' *-1 by raising the left and the right connectivity:

NH-i,ß*-i= £ QlfxNlfKQlf«.
ckA-ak-r

The amplitudes N*?' k satisfy the F.Y. equations

ATxk-ßk _ jcrH'ßk V~'r)a*'y* A7r*'^ — Äiak,ßk +- y NXk'Ôk 7)ök'ßk
JV«. - iVa.(0) +Z^«j iV«j — iV«i(0) +Z(JV»j V«;

By iterating from both sides L times, L 1, 2, we obtain with Ç2 Ç, and iV2

N:
tf*h _ jV^-fc +27(Çi)a2'72 A1'2'''2 (Çz.)"2^2 • (1-20)

The inhomogeneity A/"2' 2 in (1.20) can be entirely expressed in terms of amplitudes
for subsystems of the A-particle system.

Thus, JV"2' 2 is represented, up to the inhomogeneity, as a sum over two-sided

amplitudes NV2' 2 which are "sandwiched" between (for large L) highly connected

kernels (QL)^Vi and (Ç^2'^2.
In conclusion, we remark that the F.Y. equations for subsystems «,-, 1 < i <!

N — 1, enjoy, in the relative momentum Hilbert spaces "Ua., similar properties as

announced in Lemma 1.1 and Theorem 1.1 for the kernel Ç2 :

Theorem 1.2. -
Q^1,ßi+1 Q"4lfi+2à(bi+2 C ai + x) [1 - ô(ai+x, 6£+1)]

satisfies on "Ua. a representation of the type (1.17). For Imz # 0 and VaN_1 e L2(R3)

for all aN_x C a},

m+y-Ti+1,ßi+l
is a HS operator in "Ua

The proof of this theorem is entirely similar to the proof of Theorem 1.1.
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2. Analyticity Properties in Perturbation Theory
The investigation of the analyticity properties of the perturbation series (1.10) is

an important first step before studying the exact amplitude. We shall see in the next
section that for a class of two-body potentials, the exact amplitudes have in the
"physical sheet" the same analyticity properties as those which we shall derive here
for an arbitrary term of the Born series.

A connected graph is called c-connected (c positive integer), if it can be decomposed

into c connected subgraphs by c — 1 vertical cuts (without cutting a potential
line).

The graphs in the Born series may be classified into

(i) disconnected graphs

(ii) weakly connected graphs (less than c0-connected)

(iii) strongly connected graphs (more than c0-connected)

The value of c0 will be precised in the sequel (c0 2L in Theorem 2.1).
Due to the momentum-conservation (5-functions, disconnected diagrams are only

defined on certain subvarieties in the variables xx, yN. The exact scattering
amplitudes for the corresponding process can be obtained by the convolution
prescription from the amplitudes of the subprocesses [12, 14].

Weakly connected amplitudes have rescattering singularities, whose positions
depend in a complicated manner on the configuration of both the initial and final
momenta (cf. [9] for AT 3).

Amplitudes of sufficiently high connectivity have only threshold singularities
at loci which do not couple incoming and outgoing momenta. For their characterisation,

let a{ (a(l), u(2), a(i)) be a partition of {1, N] into i clusters a(v),
1 < v < i. Let

*M Z xk Pdv) (2 Z mk\X ¦

kea(v) \ kea(v) J

Then

Û* {(»!, -,xN)eQ*: ZfiM4(„, l}
is the subvariety of QN where all the relative momenta within the subsystems
a(l), a(i) vanish. We set

QÏ QN- U ^.
«;,Ì>1

and

He {k e C1: Im k > 0} - {k i I, X > q > 0} - {k 0}

The mapping k -> E k2 maps the interior of HQ biholomorphically onto the complex

£-plane with the cuts (— oo, — q2] and [0, + oo).

Using the two-sided amplitudes A"2' 2 and (1.20) the strongly connected amplitudes

are generated by representing T(z) in the form

t tl + 27 (QLrAz n0"72 (QLrß2 (2.1)
a2,...,<52

with a sufficiently large L.
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The main result of this section is contained in

Theorem 2.1. - For two-body potentials of the class (A), (B) and for L sufficiently
large, there exists a q > 0 such that every term in the perturbation series for T — TL

is

(i) Holder continuous for k e He and (xx, yN) eQNXQN
(ii) holomorphic for k e He and (xx, yN) e Q^ X Q^.

Remark. - A function/: M C C1 xQç xQc -> C1 is called holomorphic in the set

M, if for every point P eM, there exists a neighbourhood U(P) C C1 X Qc X &c and
a convergent power series fP in the local coordinates of U(P) such that f fP on

MnU(P).
The proof of Theorem 2.1 will be given in a series of lemmas. An arbitrary graph

Q contributing to T — TL can be splitted in the form

Q Qi R0 02 Ro G3 (2-2)

where Qx R0 and R0 Q3 contribute to (QL)a2' 2
resp. (QL)Y'2' 2, while Q2 contributes

to A*2'r2.

According to the "Feynman rules" [12], Q is holomorphic in k, xx, yN, if in
its Feynman integral the real contour of loop momenta avoids all singularities of the
potentials and free propagators and if the integral converges absolutely with all its
derivatives with respect to k, xx, yN.

We first consider Qx in (2.2) and make a provisory choice of the loop momenta
according to the following algorithm, which is closely related to a construction by
P. Federbush [15] :

Let V V V.

Let fe°, ...,k%, k°t

graph. Define

%,,,]„, • • •> - itn be the sequence of potentials in Qx from left to right.
k xit 1 < i < N, be the external momenta on the left of the

k) Pix (Pix

Pix (Pix

p,rl K
Pir^K

I 4= ix

K) I ix

kn) l jx

h

(2.3)

Suppose the (ix)st particle line be not connected with any other line before the (jx)st
line ("longest segment").

Example :

Put the first loop momentum s1 on this "longest segment" and define

0 I 4= ix,jx

l- longest segment'

h
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The first intermediate state carries the momenta kj + s], 1 < / < N, with
Ar N

Zki=Zsi Q-

l-l i-l
Let fe? and *?, 1 =4 / < N, be chosen for all intermediate states following V,

1 < P < f < t- After Vf we introduce^ lr+ l'r+ l

"7 ^ ^ tr + l, lr + 1

Pi (Pi + Pi )^(K +K l ir+x (2.4)Hr + l vr\ + l rlr + V V V + l >r+l' r+1 v '

ttr+l K+l + ^+l)_1 ^+1 + ^+.l ' *' + *

fe;f+i

and

~r + l

again with

Lemma 2.1. - The rth energy denominator

'< I + tr + l' 1 r + l
sr+1 I ir+x ('longest segment

.°i + si-°r+1 1 ir + i

ZK+1-
i-r

=2>i+1 o.
i-i

(2.5)

ör *2-27^(fei + o
i-l

never vanishes for s1, sr e R3, real (*1( xN) e Qq and Im k j= 0.

Proof. - According to (2.3, (2.5), the (k)'1 k\, 1 </ < N, are linear combinations
of xx, xN. We set

k\ kx\, 1 < / < N k « eiv x > 0

Then a simple calculation gives

4= m JT n integer.

D.
x

zl-lx-ZpiW) - ZpiW2 + ImDr- cotgy + i Im Dr. (2.6)

Now, either Im Dr ^ 0, in which case the lemma holds trivially, or Im Dr 0 and
then Dr < 0 for all real S1, sr, provided that

N

Il-lZpM)2 < x ¦

By construction, one has for all r > 0 and q > r :

N

E
t-i

ZPt(x!)2<ZPt(xt)2^x-
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N
Therefore either £ Pt(xt)2 < 1 for some r > 0 and then the same inequality holds

i-iA
for all q > r, or 2J pti(x\)2 1 and then also for all 0 < q < r.

i-i
Let at (a(l), a(i)), i > 1, be the partition corresponding to

(h, ii) I— (H, Ìì) I— • • • I— (V> ir) ¦

N
We claim that £ Pi(xl)2 1, if and only if

i=i
i

Zf*M *«<*> X
¦ (2-7)

v-r
N

The condition (2.7) is necessary and sufficient for r 1, since 2J Pt xf 1 ar,d
i-i

(*, + xA2 1 (2.8)

y /«ii+wi y y ßn+KiZ Pix>
i*'i'h
t-i

are compatible, if and only if the relative momenta of the (ix)st and (/Jst particles
vanish, that is

Pix xh Ph xh
which is equivalent to (2.7). N

Assume now that for some 1 < p < r, the identity £ pii(xf)2 1 is equivalent
i-i

with the vanishing of all relative momenta within the clusters of the partition bh

(6(1), 6(A)) corresponding to (ix, jx) I I— (ip, jp). If Vip+1, jp+x connects

two particles within the same cluster b(v), 1 < v < h, then evidently xf xf+1,
1 < I < N. If, on the other hand V connects two particles within different^ ^ 'p+Vp+l r
clusters b(v) ^ b(v'), then a calculation similar to (2.8) shows that

iw*f)2=2>i(4+1)2
i-i z-i

is equivalent with the vanishing of the relative momentum of b(v) and b(v').
From (2.6) one deduces the

Lemma 2.2. - For s1, sr e R3, real (*1( .,xN) eQN and Imk ^ 0, Dr can only
vanish for

s\ s\= srN 0.

The Holder continuity as announced in Theorem 2.1, will be an immediate
consequence of this lemma, by a power counting argument as in [5].

A sequence of potentials V{ ,-
1 < g < r, is called connecting, if (ix, jx) I —

I (ir, jr) has the connectivity ax.

Lemma 2.3. - There exists a è è (pix, .,fiN), 0 < ô < 1, such that for every
connecting sequence of potentials Vf ;-

1 < g < r :

2>«)2<<5<1.
i-i
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Proof. - Let «? xh 1 < l < N and k\ k x\ be defined by (2.3) and (2.4). Then

one has

ZpM)2 -iw*r+1)2 (pir+x + Pi^)-1 K+14+1 - pu+x xi+x?.

If the sequence / ((ix, jx), (ir, jr)) is connecting, then the quadratic form

Qj(xx, xN) =Z (A. + ^ )-i (ftc+i «? - ^ ^o+1)2

is positive definite on ßA. Therefore :

1 > 1 -2>W)2 Ç7(*i, ...,%) !- òj(xx, xN)

for («j, xN) e QN.

It remains to show that

max Òr(xx,... ,xN) < 1. (2.9)
AT J

J,(xx,...,xN)eON

This follows by complete induction :

We assume that the lemma holds for all subsystems of less than N particles. The
set of all possible sequences / in (2.9) may be then reduced to a finite subset.

First we identify sequences where one and the same potential occurs consecutively
several times, with a sequence with only one of the iterated potential occuring. Next,
we consider those sequences where a subsequence generates a strongly connected

subgraph ai= (a(l), a(i)), without any of its particle lines being connected in-
between to other lines.

Example :

1,1,1111

X

Due to the induction hypothesis and up to an infinitesimal error (provided that
all connectivities are sufficiently high), these sequences lead to the same quadratic
forms Qj as a sequence where the relative momenta within a(l), a(2), a(i) are
reduced to zero.

Noting that QN is a compact 3 (N — 1) — 1 dimensional surface in R3JV, lemma 2.3
is proved by a finite, repeated application of this reduction procedure, since for fixed
given / and as a consequence of the Heine-Borei theorem, max ôj(xx, xN)

< j (*l,-,*y)

If Va:, Vf j is n times connecting, then

ZpM)2 < * ¦
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Thus, for highly connected diagrams the translations x\ tend to zero. Therefore one
can in sufficiently connected graphs introduce loop momenta sr e R3 independent of
the xx, xN, with Dr remaining different from zero for Im k ^ 0.

Let kf, sf be chosen as before for 1 < a < r and let (ix, jx), (ir, jr) be «-fold
connecting with n > c0 (pix, piN). - Assume that the sequence (ir+x, jr+x), ¦ ¦ -,
(it, jt) is connecting. Then we modify the prescription (2.4) in such a way that the
x\, 1 < I < Ar, vanish identically:

By assumption, there is a connecting subsequence of N — 1 potentials, say (*'

7ei). • • •- (\v-i- iey-x) within (V+i. ir+i). ¦¦¦, (h, it)- Consider first the corresponding

subgraph. It can be easily seen that one may select the intermediate xf, 1 < / < N,

qx < X <; Qn-i to be appropriate partial sums of the xj, such that the xalN~1, 1 <
I <j N, reduce to zero after the complete connection.

Then the remaining potentials of the full original sequence do not give rise to
new closed loops and may be inserted into the subgraph by requiring that all xf,
Px < X < qN-X, 1 < / < N, remain unchanged at these new vertices. Momentum
conservation is trivially satisfied at each new vertex.

Throughout this procedure, we choose the sf according to (2.5). Clearly, for s > r:

ZPi(xt)2 < 1

i-i
and Lemma 2.1 remains valid for this new choice of loop momenta.

Our final choice of the loop momenta will be a combination of these two
algorithms. One begins with (2.4), (2.5). If a subsequence of the potentials, Vt ,-, Vt •

Vf jT, generates a subsystem {lx, lg) C {1, N} of high connectivity
without any of the particles within {lx, lg} being connected with the remaining
ones between the qrh and the rth step, then we procede after Vt j as follows:

1 e

— 2J fe/-1 I iT ('longest segment ')

k] (2.10)

Zk< l Ìr

v-1
N

l-l
and sj as in (2.5).

If the connectivity of the subgraph is sufficiently high, then the derivations of the
s

kj from the mean value 1/g Y^ kj"1 are small, so that the energy denominator DT
v — l

remains different from zero as in Lemma 2.1.

Furthermore, if the sequence V V ,• V ,,-,,,... continues to con-

nect particles from{lx, lg} entirely among themselves and if one proceeds according

to our second prescription, then after a complete connection the deviations from
the mean cluster momentum vanish and each particle line within this subsystem will

e

carry the momentum 1/g Y^ kj as the only ^-dependence.
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The analogous prescription will be applied to the graph Q3 from the right. If the
iteration order L in (2.1) is sufficiently large, then in Q2 the dependence of the loop
momenta on the external momenta has "died out" and they can be fitted together
through Q2.

We note that for each subsystem of less than N particles and for any sequence
of potentials connecting just the particles within this subsystem, only the relative
momentum of the subsystem with respect to the remaining cluster(s) survives. Thus,
we have the

Lemma 2.4. - Using the two prescriptions described above for the choice of loop
momenta from the left in Qx and similarly from the right in Q3, there exists only a

finite number of graphs in T — TL which carry different repartitions of the external
momenta.

We now turn to the analyticity properties of the potentials. The argument of a

potential V{ ;- after which the momenta have been chosen according to (2.4), (2.5)

is

\_ (ft kj-1 - pi, kj-1) + sj-1 - sr (2.11)
+ Ui V 'r ' >r 'r ' 'r v 'Pir+Wr

For (xx, xN) eQN, there exists obviously a £ Ç(pix, ptN) < oo such that

; \Pi *i_1 - Pi *i_1 < IPir+Wr ' ' ' '
for all r — 1, ir, jr. For real (xx, xN) eQN and all s1, sr e R3 the argument
(2.11) lies in the regularity domain of V{

; provided that

\Imk\^j, k 4= 0. (2.12)

This follows immediately, if one notices that for all real s and JteR3 with | * | < £

and for all real X with x2 < X, the condition

X + (k x + s)2 4= 0

gives the maximal analyticity strip (2.12).
If our second prescription is used, then the deviations of the relevant x^ from their

mean cluster value are already sufficiently small (for sufficiently high connectivity),
so that £ may be retained as upper bound for the coefficient of the ^-dependent part
of the argument of the potential.

Therefore any graph Q in the perturbation series for T — TL is holomorphic for
k 6 {0 < Imk < x/i} and for real (xx, xN,yx, yN) e Qq X Qq.

We define

Q j.If we set

k e"p k 0 < Im k < q COS99, | cp | < —

and "rotate" the loop momenta s' in Q by setting

s* eiv e R3 (2.13)
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then all energy denominators Dt stay away from zero for real (xx, yN) in Qq x
Q%. (2.13) reads

X + (ei,f k x + ei<f 's)2 + 0

and remains satisfied for all real * and X > x2, provided that

1 T t I II H
\lmk\ < Q C0SÇ9 I (f < -y.

Thus, the Feynman integral over the rotated contour s' el<f s', s* e R3 defines a

function of k and (xx, yN) holomorphic for real (xx, yN) in Qq XQq and
0 < Im («-*> k) < q coscp.

In the non-empty intersection

{0 < Im k < q) n {0 < Im (k e~i,f) < g cosçs}

both analytic functions coincide, since the integrand are uniformly decreasing at
infinity so that the Cauchy formula can be applied.

In this way, we can continue each Feynman integral into the upper ß-plane
except for k — i X, X > g > 0 and also across the real axis with the origin excluded.
Since

Hq C U {k eiv~k, 0 <Imk <q costp}
I <P I < n/2

this completes the proof of part (ii) of Theorem 2.1. The Holder continuity in (k, xx,
yN) e HßxQN X QN follows from the remark after Lemma 2.2.

3. Fredholm Theory

In this section we shall derive for the exact A-particle amplitude T — TL

analyticity properties similar to those announced in Theorem 2.1 for an arbitrary term
of its Born series. The proof proceeds in two steps :

(i) For all purely repulsive holomorphic two-body potentials of short range (assumptions

(A0) and (B)) a function

<kxx,...,kxN\(T- TL)(k2)\kyx,...,kyNy (3.1)

can be defined which is holomorphic in (k, xx, yN) e {0 < Im k<p} xQq xQq.
Here one exploits only the analyticity properties of the potentials in order to define
a function holomorphic in the external momenta k xx, kyN. Also the operator-
analyticity of the resolvents Ra.(z) outside the spectrum [0, oo) of Ha. will be used.

However, the F.Y. equations will be only required for establishing a cluster
decomposition and could be replaced by the Weinberg equations [12].
(ii) The analytic continuation into HQ x Qq X Qq will rely heavily on the special
analyticity of superpositions of Yukawa potentials, since we shall define resolvents Ra.(z)

on rotated contours of the type (2.13).
It will turn out that the uncontrollable singularities in the "unphysical sheet" do

not interfere with the analytic continuation. The absence of spurious solutions [16]
to the F.Y. equations is important in order to control the singularities of Ra.(z) for
0 < cp < JT./2 without any further technical assumption beyond (B).
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An infinitesimal analytic continuation of (3.1) into the "unphysical sheet" across
the right-hand cut in the Ä2-plane will be possible using the results of K. Hepp [5],
if there are no bound states for positive energies. This can be controlled by assumption

(C).
For the definition of (3.1), we use again the representation (2.1). In the same way

we decompose the amplitudes T for subsystems ait i > 1, which occur in QL and

in QL into (lower) iterations of the F.Y. series for Ta. and amplitudes Na\+1' l+1
3 *

which are sandwiched between (within aj) highly connected sequences of amplitudes
of finer partitions bj C a{.

After a finite number of steps, all non-perturbative contributions to T — TL will
be sandwiched between sufficiently connected sequences of potentials and amplitudes

of subsystems 6- C af.
Then, the dependence on the external momenta k xx, k yN, routed through

the diagram as in section II, is only within the arguments of the potentials and free

resolvents and through the argument z of the Neat+1'Tt+1(z). For ai — (a(l), a(i)),
a(v) {(vl), (v2), (vk,)} C {1, N}, let

NQJ+vti+1(p11, ...,plkl, ...,pix> ¦¦¦,Piki, ku, ¦¦¦ aik/, *)

be the kernel of NeJ+1'Ti+1(z) in the Hilbert space "Ha. with the center-of-mass movement

of the clusters a(l), a(i) factored out:

Z P* Z hk 0 1 < v < i (3.2)
kea(v) kea(v)

Then the kernel of NeJ+1'ri+1(k2) in the A-particle Hilbert space "U reads

<Pi, ¦ ¦ ¦, Pn I Nït+i,t{+1{&) I 9i. ¦ ¦ • - 9v> Ùò IP** - «*>)
V- 1

v ^ei+1,r1 + 1 / pa(l) paa) qa(x) qa{i)
X Aaj [pxx - j-, pikj - —h- qxx - -^ • • • qtk, A.

x*-Z/**>&)) <3'3)

with pia(v), pa{v), qa(v) defined as in (3.2).
The integrations over the loop momenta eliminate the ó-functions in (3.3). The

results of section II guarantee further that in highly connected sandwiches, the
relative momenta

n Pa(l) n 1a{i)
p11 TT""'qki *T

are independent of k, xx, yN.
Finally, the center-of-mass momenta pa(v), qa^) involve loop momenta s1, s'

and k xx, kyN typically in the form

PaM & *a(») + SaM
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i
where the sflW are linear combinations of s1, s*. Therefore, on Qq k2 — £ Pat?)

v-l
X p2w never intersects the spectrum [0, oo) of Ha. (the free center-of-mass movement
of the clusters a(v) has been already factored out) :

If Im lk2 — 2JPa(v) Pa(v)) — 0< then equation (2.6) shows that
v-l

i
ä2-27^mpL)<o-

„_i
The analyticity property of the two-body potentials of class (A0) is sufficient to
prove, as in section II, that the (k, xx, y^-dependence in the arguments of the

v{j always varies within their domain of analyticity. The estimates of [13] guarantee
again the absolute convergence of all integrals and we obtain the

Theorem 3.1. - Unter the assumptions (A0) and (B), the highly connected A-body
amplitude (kxx, kxN\ (T — TL) (k2) \kyx, kyN> is holomorphic in

S° {0 < Im k < g} x Q* x Q%

and Holder continuous in {0 < Im k < g} x QN X QN.

We now turn to the construction of an analytic continuation

<k xx, k xN\(T* - Tl) (k2)\ kyx, kyN>
of (3.1) into

Sf {0 < Im (k e~iv) < g coscp sgn cp Re k > 0} x Q% x Q%

for 0 < cp < 7ij2. We notice that \J S* coincides with HexQ%XQq.
| <P | < n/2

A function with the required analyticity properties can be constructed, once we

have kernels A> (pxx, qik.;z), 1 < i < N - 1, NZ.= NQJ+vTi+1''p defined on

contours
e-i*pxxeR3,...,e-i*qik.eR3 (3.4)

in the Hilbert space 7/^. with the Lebesgue measure over (3.4) and the center-of-mass

movements factored out :

Z Pi Z ii ° - !<"<*'¦ (3-5)
lea{v) lea(v)

Let us assume that these kernels exist and are holomorphic for all z within

Zv

and that

\{z e C1 - {0} 2 cp < arg z < 2 n} if cp > 0

\{z e C1 - {0} 0 < arg z < 2 n - 2 cp) if cp < 0

fn<pp,<pqifjd(z pk- ziaA, l-l v-l \keatv) keatv) /

X N:i(Pfx,...,q?ki;z)h-Zpt<iïe2i'p
N

l-l

2

< oo

with their HS-norm tending to zero for Re z -> — oo. We have set p* e'9p.
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If px, pN, qx, qN is a 2 A-tuple of 3-vectors satisfying

2>=2>* o (3-6a)
i-l i-l

e-t9 ^ _ P«W j e R3
;

e-ùp ^ _ 3jA±j 6 R3_ y „ y y i y / y ^ (3.6b)

Pm> Ä *«m + *m • xaM g R3, *«(,) *„<„) e"'" e R3 (3.6c)

27^«W *«(") < * ' ° < Im (e~iv k) < Q œS(P sgncp Rek>0 (3.6d)
v=l

then we claim that

n*(Pii-ep-,...,<zy--yf ; ^-27^»Ä)
is well-defined.

In fact, the relative momenta lie on the rotated contour (3.4). Secondly,

v-l

For, assume, for instance, cp > 0 and let b^Z*

b ßeiv ß > 0 - 2 ç> ^ y < 0

Then a simple calculation shows that

D=k2- ZP*) [* *«<»> + *a(,)]2 - & : i- 2/ /"«w *«<.<»)

- ZV«m &> - ß sin (Ö - V) -sy e + 7™ ö cotS e + tlmD (3.7)
»> i

never vanishes for (3.6a)-(3.6d) and a similar result holds for 0 > cp > — jr/2. Therefore,

the singularities in the "unphysical sheet" CZq' do not interfere with the
analyticity of the kernels Nf. in their argument z.

If we define <k xx, ..'., k xN\ (Tv - Tl) \ k yx, k yNy for (k, xx, yN) e S*

by the same representation as the one obtained by reducing (2.1), with Ay"1' ,+1

replaced by Na'+1' t+1' and all loop momenta on rotated contours, s e~llf e R3, then

by Theorem 2.1, this function will have the required analyticity properties.
For.se p| Z9', assume inaddition thatthe kernels A*1. (pn, qik; z) are holo

0 < tp' < q>

morphic in pn, qik. (satisfying (3.5)) in a neighbourhood of the set

U {pxxe-i*'eR3,...,qikie-i*'eR3}
o < <p' < q>
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and satisfy for pn, qik. e R3 and 0 < cp' < cp resp. — nj2 < cp < cp' < 0:

K^'pn, ¦¦¦ eiv' qikA, 2) kyv'Pn, ¦¦¦• ** 9,y 2) •

Thereby, JVj. N is defined by (3.3).

If furthermore the N%. decrease sufficiently rapidly at infinity, uniformly in
c'*' Pu, ¦ ¦ -, ^ Qik -, then we may again distort the contour of integration without
crossing any singularity of the integrand and obtain

<kxx,...,k xN I (T - TL) (k2) \kyx>... ,kyiX>

<kxx,...,k xN I (T - Tl) (k2) \kyx,... ,kyK>

for (k,xx, ...,yN) eS'nS«.
Since ST) S° ^ <ß for all | cp | < nj2, both functions have a common analytic

continuation into S* U S°.

Thus, we may already formulate the

Theorem 3.2. - Under the assumptions (A) and (B), <\kxx, kxN \ (T — TL)

(k2) I kyx, kyNy as defined by Theorem 3.1, has an analytic continuation into
HqXQqX Qq and is Holder continuous in HexQNX QN.

Proof. - As outlined above, we only have to prove the existence of kernels N'a^1''p

(Pn, • • •> q.ik.', 2) on rotated contours, for z eZv. The construction proceeds inductively

according to an increasing connectivity of the partitions au i > 1, of {1,
A}.

We start with some partition ax_x and review well-known results [7, 9] for a
two-particle system.

For definiteness, assume cp > 0 and set V Va pi PaN_x> "W "^aN_x

H-H«N-1-
For z e C1 - {0}, argz # 2 cp, p" é* p, q* ei<p q, p, q e R3 the kernel.

v (p" - q") (z-piq2 e2^)-1 e3^ (3.8)

is a HS operator in "H* with its HS-norm tending to zero for Re z -> — 00. Therefore,
the equation

f(pf, q*; z) (z-pi q2 e21*)'1 v (p* - q*) (z - pi q2 e2^)'1

+ fd3r e3i>" v (p* - 1*) - -Vif« f(f, Q"; 2) 1^rjJ¥ (3-9)

R3

has as solution a HS operator

^(pv, q*; z)(z-n q2 e^y1 (3.10)

holomorphic in z e {arg 2 ^ 2 cp, z 7^ 0}, provided (Fredholm alternative) that there
are no L2-solutions f" to the homogeneous equation

np") =Jd3r e3i* v (p* - r") j-^ e2iv HO ¦ (3-11)

R3
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Necessary and sufficient for the existence of a square-integrable solution of (3.11) is
the vanishing of the Fredholm determinant Dv(z) [18] :

D*(z)

0

-ZD^z

KM (-l)n

n-1

n-1 0

al 0

at

n

0

Jn-1 "n-2

.0 0 0

2. ..0 0 0

.0 0 0

..of 0 1

¦a\ al 0

(3.12)

where oi is the trace of the »th iteration of the kernel (3.8). We observe that for
2 cp < argz < 2 n and 0 < cp' < cp, the iterated traces

al 2 77
-/«py^-»(pr-p5)«(p?-p?)-»(p:-pr

are independent of cp' :

<'(2) <(2) •

The deformation of the contour does not lead to a contribution at infinity due to the
uniform decrease of the potentials and free propagators at infinity. Moreover, for
2 cp < argz < 2 ti

D9(z) D°(z) 4= 0

For, a zero of the Fredholm determinant D°(z) in Z9 would lead to a non-trivial
L2-solution /° of (3.11) and thus to an eigenvector

e°(P) - 7^ <3-13)

of the Hamiltonian H° with eigenvalue z e Z*'. This is however in contradiction to
the spectrum a(H°) [0, oo), which follows from (A), (B).

We remark that (3.10) is even meromorphic in {argz / 2 cp} [17]. But the
singularities in the "unphysical sheet", which are poles in this case, become more and more
complicated for multiparticle systems and it is a lucky circumstance that our process
of analytic continuation does not lead into the "unphysical sheet" at all (cf. Eq. (3.7)).

As a consequence of (3.9), we may write

^(p*, q*; z)(z-pi q2 e2^)'1 v (p* - qv) (z - pi q2 e21*)-1

l „ ™ l+ / d3r e3ilp v (pv - r*
R3

+ fd3r d3s e6^ v (p* - r")

z — pirÀe'
V f* <f) z-PV

[f, s*; z)
z-pis2e2if

x v(s* - q*) z-piq2e2iV
(3.14)
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From this representation it follows that ^(p9, q9; z) is analytic in p9 and q*,
since

X + (p9 - r")2 4= 0 X + (s* - q*)2 4= 0

for all r, s e R3 and all X > x2, if only | Im p | < x coscp resp. \ Im q \ < x cosq?.

It remains to prove that for 0 < cp' < cp and p, q e Rs

tv(p<P't q¥. 2) f(pv', q*'; z). (3.15)

Firstly, for | Im (e«(«'~«''»p) j < x coscp, \ Im (e'^-f'1 q) | < x coscp, this follows by
using the representation of ^(p"", qf'; z) (z — pt q2 e2"p)~1 by a Fredholm series [18].
Inserting this into (3.14) as in [9], one can apply the Cauchy formula to prove Equation

(3.15).

Here the square-integrability of v(s'p — q9) in 5 for fixed q, uniformly in cp and
of v (pv - r9) (z- pir2 e2**)-1 in r are important for the existence of f^, s*; z).
Then (3.15) is proved by analytic continuation.

Finally we remark that since the HS-norm of the kernel (3.8) tends to zero for
Re z -^ — oo, the Born series for (3.10) converges for sufficiently small Re z and the
HS-norm of (3.10) also tends to zero for Re z -> — oo.

We shall now prove inductively similar properties for the kernels Nf Rq which
we define as solutions of the F.Y. equations for subsystems :

K{ Rt ^,0) Rl a (?; K. ri a;(0) ri + N*t RftRir1 Qlt Rl ¦ (3-16)

We have set :

Qli ^ ¦

For all subsubsystems 6- C a{, j > i, we assume the existence of kernels A£. on
rotated contours with the following properties:

(a) N%.(z) Rq(z) is a HS operator in the relative momentum Hilbert space 7^.,
holomorphic for z e Z*', with its HS-norm going to zero for Re z +>— oo.

(b) The kernel of N%.(z) is holomorphic in a complex neighbourhood of the relative
coordinates on the rotated contour (cf. (3.4), (3.5)) and for z eZf.

For cp' > 0 sufficiently small

k.(pxx tr«,..., qn. e-**; z) Nl^'(pxx <r*v qn. e~^ ; z) (3.17)

and then by analytic continuation, also for all cp', 0 < cp' < cp. Here, A". Nh.,

with Nb. as defined in (3.3).

(c) The cluster decomposition properties of the N%. are the same as those of Nb, on

the unrotated contour. The A£. R$ can be represented by a Fredholm series in terms
of amplitudes of subsubsystems ck C bj.
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Notice that the 2nd property in (c) entails the first one. Under these assumptions
we shall study the iterated Equations (3.16).

For L > 1, assumption (c) allows for a decomposition and reduction of

[Q:((z)]L N:iW(z) R«(z) (3.18)

into a sum of products of terms with the same structure as those in Theorem 1.2 and
equation (1.17). Assumption (a) and the method of [13] allow then to estimate (3.18)
and prove that it is a HS operator for z eZlp in the relative momentum Hilbert space

Furthermore, the operators

[â,.(2)]L, (RKz))-1 [Q:((z)]l R%(z)

are of HS-class in "Uf for zeZ9 and L > N — i.
ai --

Therefore the iterated equations

ré.(2) - Â;(0)(*)] Rl(z) =27[Ç*(z)]L Km(z) Rl(z)

+ [Qli(z)K][K{z)-Nli{Q)(z)]Rl(z)

have as unique solution a HS operator [Nf.(z) — Nf.{0)(z)] Rq(z) analytic in z, for

K > A — i, provided that the Fredholm determinant D%(z) does not vanish.

Again, D%(z) is made up by traces of iterations of the kernel Qf(z), similar to
(3.12). Every term in the corresponding series involves only expressions containing
amplitudes for finer partitions bj C a{. Due to the induction hypotheses, these amplitudes

have a representation by Fredholm series, where the Fredholm determinants
and the iterated traces in the numerators are always identical to those for cp 0.

By further reduction one arrives at sums over perturbation-theoretic expressions
involving potentials and free propagators on rotated contours and Fredholm
determinants for subsystems bn, n > /, which are independent of cp.

Furthermore, whenever intermediate momenta of "spectator particles" occur in
the argument z of a Fredholm determinant, it will be of the general form

«
2 — ZPtM Pb(v)

v=l

and will have a real part tending to — oo for large p2w and z e Z^.
r / ™

A>„ 2 ~ 2J Pb(")

Pb(v)

Due to our assumptions (A), (B), the Fredholm determinants
i

are uniformly bounded in this region.
i

Therefore the asymptotic behaviour of the multiple Feynman integrals are those
of the Born series, in which, due to the known uniform decrease of potentials and
free propagators at infinity, a rotation of contours and the use of the Cauchy formula
are always possible (cf. section II).
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For z e Z'e we obtain thus

DW ö£ (*) -
0 < cp' < cp (3.19)

where D°K(z) is the Fredholm determinant of the iterated F.Y. equations on the un-
rotated contour.

Due to the spectrum property a(Ha) [0, oo), it may be shown that for every
z sZv, an integer K > A - i can be found such that D°K(z) ^ 0. For, D°K(z) 0

entails [19] that there exists an integer 0 < n < K and an fK e -Wa. such that

The spectrum property o(Ha) [0, oo) excludes the value n 0, as in (3.13). If
Dk(z) 0 for all A > A — i, then one could construct infinitely many different
eigenvalues of Qa (z) on the unit circle. This hovewer, is in contradiction with the

compactness of [Qa.(z)]N~'t in Tia..

Thus, for every compact set in Z9 there exists a finite open covering {£/£} such
that D°K(z) # 0 for z e U%. For Re z negative and sufficiently small, the Neumann
series converges. Therefore the HS-norm of Nf.(z) Rq(z) tends to zero for Re z ->
— oo.

This finishes the induction step for the assumption (a) for at itself. Assumption (c)

follows either by analytic continuation in z from the convergent Born series in
Re z < — C, C > 0, sufficiently large or from the Fredholm series for Nf.(z) Rq(z).

The analyticity of Nf, (pxx, qik., z) in the external momenta can be exhibited

by a representation as in equation (1.20). If L > N — i and if one selects loop
momenta according to the "longest segment" rule of section II, then the dependence
on the external momenta will be only contained in the arguments z of the amplitudes
for subprocesses and in the free propagators. This proves then the first part of (b).

The equality (3.17) follows most easily by using the representation of A/ by the

Fredholm series, sandwiched between [QfXzf^ and [Qf.(z)]N~\
Theorem 1.2 and the representations similar to (1.19) exhibit clearly by induction

that
<Pi. -. ,Pn \Vhh Rq Wjx... Vi/*-! R° WJn-i\^' -¦ • «">

is for fixed px, pN square-integrable in qx, qN:
Namely <p1, pN\ V{: R0\ qx, qN> is square-integrable in the relative

q-momentum (/y + Pjx)~x (ptix qix ~ ptjx qjx) for fixed relative p-momentum. This

property remains valid after application of the bounded operator WJX (which
operates in the Hilbert space W(,-

?-
A. Assume that

<Pi,---,Pn\ Vhh Rq Wjx... Vhh Rq WJk \qx,..., qN>

is square-integrable in the relative q-momenta in the Hilbert space 'Hai,al (ix,jx) I

I (ik, jk) for fixed relative p-momenta.
Multiplying with <qx, ...,qN\ Vik+Xjk+X Ro I «i. - - •• 9îv> and integrating over

q[, q'N (after elimination of the momentum-conservation ó-functions this amounts
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to an ordinary product), one obtains a square-integrable function in the relative q'-
momenta in the Hilbert space 1la with am (ix, jx) I I (ik+x, ik + i), f°r
fixed relative p-momenta.

This again remains valid after the application of the bounded operator Wjk+X
which operates in "U„

Similarly, the sandwiching kernels are square-integrable in their respective
"internal" momenta for fixed external momenta, with L2-norms which depend
continuously on cp.

Reduction as in the proof of (3.19) and using the relative, uniform, absolute

convergence of the Fredholm series [18] for Nf,(z) Rq(z) lead to (3.17) by a simple inspection

of the individual terms.
This completes the proof of Theorem 3.2.

4. Conclusions

The initial objective of this investigation was to lay a foundation to a systematic
and mathematically rigorous derivation of analyticity properties for the A-body
scattering amplitudes in non-relativistic quantum mechanics. It has turned out that
our results give rise to more questions than to definite answers.

We have concentrated on the analyticity properties of the "true" A-body
scattering amplitude T — TL. The sum TL of the first few iterations of the F.Y. equations

is known from the solutions of the lower-body problems. For (k, xx, yN) e
He x QN X QN, the singularities of these terms are expected to be confined to a finite
number of Landau varieties, since the highly connected remainders of lower-body
amplitudes Ta. in TL have again only threshold singularities and since therefore

effectively, only a finite number of diagrams are relevant.
Let (QN x Qn)nl he the complement inQN x QN of finitely many Landau varieties.

Then the complete A-body amplitude is expected to be holomorphic for (k, xx,

yN)sHex(QNxQN)NL.
However, a more detailed elucidation of the nature of these physical region

singularities should be possible and is of interest, e.g. for cluster properties of the S-

matric.
Analyticity of T — TL in the cut .E-plane is only the first step in the proof of

dispersion relations for the A-body scattering amplitude. Up to now, a complete
and rigorous proof of dispersion relations has been given only for the two-body
scattering amplitude [7]. The behaviour of the amplitude at infinity in complex
directions and on the right-hand cut appears fairly well controllable (although tedious
estimates and angular integrations are involved [9]). Yet, no results, neither on the
existence of boundary values nor on the asymptotic behaviour along the lefthand
cut have been obtained.

Another necessary extension of the present results will lie in the inclusion of
multiparticle bound states. The results of [9] make already clear that future "dynamical"

calculations for the non-relativistic A-body problem will probably not be
made on the basis of dispersion relations, but by attacking directly the F.Y. equations.
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